
Electron-electron scattering in coupled quantum wells

M. Slutzky, O. Entin-Wohlman, Y. Berk, and A. Palevski
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv 69978, Israel

H. Shtrikman
Department of Condensed Matter, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 24 August 1995!

The inelastic electron-electron scattering rate in strongly coupled quantum wells is investigated. Both intra-
subband and intersubband scattering processes are considered. The theoretical results are compared with
experimental data obtained from the analysis of the resistance resonance measured on GaAs/AlxGa12xAs
heterostructures in the presence of an in-plane magnetic field. A good agreement with the theoretical curves is
obtained. The range of validity of the picture presented is discussed critically.

I. INTRODUCTION

The system of quantum wells~QW’s! coupled by tunnel-
ing exhibits a number of interesting properties. For example,
the resistance of two QW’s with different mobilities con-
nected in parallel strongly depends on the potential profile of
the QW’s and has a peak when the latter is symmetric.1 This
phenomenon is referred to as resistance resonance~RR! and
has been studied to some extent during recent years.2–4

Recently, it has been demonstrated~both theoretically and
experimentally5! that an in-plane magnetic field suppresses
the RR. The magnitude of the effect depends on the coupling
energy (D) between the wells and also on the width of the
single-particle states (\/t). Experimentally, it has been
found that the main temperature dependence of 1/t is likely
to emerge from electron-electron scattering. The comparison
of the experimental values of 1/tee ~as function of tempera-
ture! with the well–known theoretical expression for the in-
elastic rate in a two-dimensional electron gas6 ~2DEG! con-
firms this assumption.

This explanation is quite acceptable when the wells are
weakly coupled. In that case, the electrons are not scattered
between the wells and consequently the electron lifetime in
one of the wells is not altered significantly by the presence of
the second well. This picture, however, is not valid in the
opposite limit of strongly coupled wells. When\/D becomes
smaller than any of the time scales in the problem, the sta-
tionary states of the electrons are extended over the two
wells and the energy spectrum is modified accordingly.
Therefore, the theoretical description of 1/tee has to be re-
viewed and compared with the relevant experimental results.

In this paper we present an extensive theoretical and ex-
perimental study of the inelastic electron-electron scattering
rate in two strongly coupled QW’s. The theory presented in
Sec. II takes into account the two subbands that are formed
in the system at resonance. We consider both intrasubband
and intersubband scattering and derive asymptotic expres-
sions appropriate for typical experimental situations. In Sec.
III we present the experimental data of 1/tee obtained from
the analysis of the resistance resonance measured on
GaAs/AlxGa12xAs heterostructures in the presence of an

in–plane magnetic field. The experimental values of 1/tee

are compared with the theoretical curves. In the same sec-
tion, we discuss critically the applicability of the present
theory and indicate possible ways for its further verification.
Section IV includes our conclusions.

II. THEORETICAL CALCULATIONS

A. Hamiltonian

Consider first the Schro¨dinger equation of our system dis-
regarding the Coulomb interaction. We choose thez axis in
the direction perpendicular to the plane of the QW’s. Then
the Hamiltonian splits into two parts: The first pertains to the
free motion in thex-y plane and the second to the confined
motion along thez axis. The latter produces a series of
bound states. The eigenfunctions and the eigenvalues are
therefore given by

C l~r !5exp~ ikr !f l~z!, ~1!

e l~k!5El1
\2k2

2m*
. ~2!

Here r is the two-dimensional~2D! coordinate in thex-y
plane,k is the corresponding wave vector,m* is the effec-
tive mass, andEl is the discrete energy level that corre-
sponds to thel th bound state. These relations define thesub-
band structureof the spectrum. Due to the symmetry of the
Hamiltonian,f l(z) has to be either of even (l51,3,5, . . . )
or of odd (l52,4,6, . . . ) parity.

In samples with the GaAs/AlxGa12xAs heterostructure,
the barrier height is'300 meV. In our experiments, the
width of each QW is 139 Å, and the thickness of the barrier
(d) is typically 14–40 Å. At actual electronic densities
(;531011 cm22) only the two lowest subbands are popu-
lated ~Fig. 1!. The separation (D) between the two lowest
subbands vanishes exponentially asd is increased. For the
range of barrier thicknesses mentioned above,D is typically
;2.220.6 meV. The Fermi energyeF is ;10 meV. Thez
wave function corresponding to the lower subband (l51) is
symmetric, and that of the next subband (l52) is antisym-
metric. These properties will be used in the calculation of the
matrix elements of the Coulomb interactions.
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The general Coulomb interaction in our two subband sys-
tem can be written in the form

Hc5
1

2
Vl1l2l3l4

~q!cl1k1qs1

† cl2p2qs2

† cl4ps2
cl3ks1

, l i51,2,

~3!

whereclks
† (clks) is the creation~annihilation! operator for

an electron in thel th subband having wave vectork and spin
projections,

Vl1l2l3l4
~q!5

2pe2

q« E dz1dz2f l1
~z1!f l2

~z1!f l3
~z2!f l4

~z2!

3exp@2quz12z2u#, ~4!

in which « is the dielectric constant of the background me-
dium ~GaAs! and the repeated indices are summed over. In
the following we shall discard the exchange Coulomb inter-
actions, as their effect is likely to be small.

Since the parity of the two particle wave function has to
be conserved, the only nonvanishing matrix elements are

V11115V1 , V22225V2 , V12125V21215V3 ,

~5!

V11225V22115V4 , V12215V21125V5 .

The elementsV1 , V2 , and V3 are the amplitudes for the
processes in which the electrons remain in their respective
subbands~intrasubbandinteractions!, whereas the elements
V4 andV5 correspond to theintersubbandinteraction, i.e.,
processes transferring each of the interacting electrons to the
other subband. The functionsf l(z) are real, and therefore
V45V5 .

The Coulomb interactions that give rise to the inelastic
decay rate of the electrons are screened. We present in the
Appendix the derivation of the dynamically screened Cou-
lomb interaction,G l l 1l2l3

(q,v), within the random-phase ap-
proximation. We also show there that it is sufficient to use
the static limit for the screening in the calculation of the
relaxation rate.7–9

B. Calculation of the rate

As we consider only two subbands, we adopt the two-
band formalism for the calculation of the scattering rate re-
sulting from the Coulomb interactions. The inelastic rate for
an electron in thel th subband, averaged over the Fermi sur-
face, has the form7

1

t l
ee5

2pb

N0\
(

l1 ,l2 ,l3
(

k,p,q,s,s8
uG l l 1l2l3

~q!u2d@e l2~k1q!1e l3~p2q!2e l~k!2e l1~p!#

3 f l ,s
0 ~k! f l1 ,s8

0
~p!@12 f l2 ,s

0 ~k1q!#@12 f l3 ,s8
0

~p2q!#, ~6!

whereb51/kBT, N0 is the 2D density of states and

f l ,s
0 ~k!5 f l

0~k!5
1

exp@b~e l~k!2eF!#11
~7!

is the equilibrium Fermi distribution function.
The expression for 1/t l

ee can be put in a form that is more convenient for the calculation. Introducing the generalized~for
the two-band case! polarization

P l l 8~q,v!5(
k,s

f l ,s
0 ~k2q!2 f l 8,s

0
~k!

\v1 ih1e l~k2q!2e l 8~k!
, ~8!

and noting that

(
k,s

f l ,s
0 ~k!@12 f l 8,s

0
~k1q!#d@e l 8~k1q!2e l~k!2\v#5

1

p~e2b\v21!
Im@P l l 8~q,v!# ~9!

we finally obtain

FIG. 1. The energy spectrum of the coupled quantum wells.
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1

t l
ee52

b

2pN0
(

l1 ,l2 ,l3
E

2`

` dv

sinh2~b\v/2!(q uG l l 1l2l3
~q!u2x l l 2

~q,v!x l1l3
~q,2v!, ~10!

where the susceptibilityx l l 2
(q,v) is the imaginary part of the generalized polarization. This quantity is calculated in the

Appendix.
Next we consider the possible channels for scattering. The total scattering rate can be separated into the rate resulting from

the intersubband transitions and that coming from the intrasubband processes,

S 1

t l
eeD tot5S 1

t l
eeD inter1S 1

t l
eeD intra. ~11!

For instance, for 1/t1
ee we write

S 1

t1
eeD intra52

b

2pN0
E

2`

` dv

sinh2~b\v/2! (
q

$uG1111~q!u2x11~q,v!x11~q,2v!

1uG1212~q!u2x11~q,v!x22~q,2v!%, ~12!

S 1

t1
eeD inter52

b

2pN0
E

2`

` dv

sinh2~b\v/2! (
q

uG1122~q!u2$x12~q,v!x12~q,2v!

1x12~q,v!x21~q,2v!%. ~13!

Similar expressions hold for 1/t2
ee.

In order that the integral overv will converge, the numerator of the integrand should vanish atv→0 at least as
O(v11d). For the intrasubband susceptibilitiesx i i (q,2v)52x i i (q,v), and therefore the productx i i (q,v)x l l (q,2v) is
necessarily even inv, leading to the desired convergence. The situation is more delicate for the intersubband part of the total
rate. In this case

x12~q,2v!52x21~q,v!, x12~q,0!Þ0. ~14!

Using this property, we can write thev integration in Eq.~13! in a symmetrized form

E
2`

`

dv(
q

x12~q,v!x21~q,2v!

sinh2~b\v/2!
1E

2`

`

dv(
q

x12~q,v!x12~q,2v!

sinh2~b\v/2!

52
1

2E2`

`

dv(
q

@x12~q,2v!2x12~q,v!#2

sinh2~b\v/2!
. ~15!

This integral has no singularities atv→0.
For the sake of comparison with the experimental data,

the rates 1/t1,2
ee have been evaluated numerically for various

values ofD andeF for temperatures ranging from 1 to 40 K
~see the discussion in the next section!. However, one can
also derive asymptotic formulas for the intrasubband and in-
tersubband scattering rates as functions ofeF , D, andT for
the actual experimental situations.

Under the experimental conditions, one usually has

eF@D,kBT. ~16!

For the lowest temperatures considered~1–10 K!, D@kBT.
At elevated temperatures,D and kBT become of the same
order so that at 30–40 K we may haveD<kBT. As we shall
see, the intersubband rate is strongly affected by the relative
magnitudes ofD and kBT whereas the intrasubband rate is
almost independent of it as long as~16! holds. This is quite
expected, since the intrasubband rate involves the intrasub-
band susceptibilitiesx11 and x22, which are to a good ap-
proximationD independent.

For the purposes of estimate we may put for the screened
Coulomb matrix elements

G l l 1l2l3
;1/2N0 . ~17!

Then the first sum overq in ~12!, to lowest order inv, gives

(
q

x11~q,v!x11~q,2v!;N0
2kF

2 H a1S \v

eF
D 2

2a2S \v

eF
D 2lnS 4eF

u\vu D J ,
~18!

wherekF is the Fermi vector of the lowest subband anda i
are positive numerical constants of order unity. Since
eF@D, it is clear that
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(
q

x11~q,v!x22~q,2v!'(
q

x11~q,v!x11~q,2v!.

~19!

Integrating overv we obtain

S \

t1
eeD intra;2A1

~kBT!2

eF
1A2

~kBT!2

eF
lnS 4eF

kBT
D , ~20!

where Ai are positive numerical constants of order unity.
This form for the relaxation rate in the intrasubband channel
is not unexpected. Due to the presence of the second sub-

band, the phase space for the intrasubband rate is roughly
twice that of the single-band one~i.e., the usual rate in the
case of 2DEG!. Also, the screening of the interaction is
roughly twice more effective~see the Appendix; note that
this factor is doubled in the expression for the relaxation
rate!. Thus, the resulting expression should be equal to the
expression for 2DEG within a factor of order unity.

Next we consider the intersubband rate in the limit
D.kBT. Using Eq.~15!, theq integration to lowest order in
v yields

(
q

@x12~q,v!2x12~q,2v!#2;N0
2kF

2 H 2g1S \v

eF
D 21g2S \v

eF
D 2lnS 4eF

D D1g3S \v

eF
D 2lnS D

u\vu D J , ~21!

whereg i are positive numerical constants withg2@g3. Inte-
grating over the frequency, we find

S \

t1
eeD inter;2B1

~kBT!2

eF
1B2

~kBT!2

eF
lnS 4eF

D D
1B3

~kBT!2

eF
lnS D

kBT
D . ~22!

HereBi are positive numerical constants withB2@B3. It is
not difficult to understand the physical meaning of this ex-
pression. WhenD@kBT, the average energy transfer in an
inelastic collision event is small compared toD. Energy con-
servation then imposes a restriction on the available phase
space. The cutoff of the momentum transfer is now
;(D/2eF)kF @instead of the value;(kBT/2eF)kF in the in-
trasubband case# so thatD replaceskBT in the logarithm.
The term containing ln(D/kBT) is a correction to the latter. At
higher temperatures~when D,kBT), the average energy
transfer is larger thanD. Then the cutoff value of the mo-
mentum transfer is again;(\v/2eF)kF and

x12~q,v!;x11~q,v!. ~23!

Therefore, in this limit Eq.~13! would yield the expression
~20! for the intrasubband rate.

III. EXPERIMENT

Two sets of double QW structures were grown on a semi-
insulating GaAs substrate by molecular-beam epitaxy. They
consist of two GaAs wells of 139-Å width separated by
14-Å and 28-Å Al0.3Ga0.7As barriers. The electrons were
provided by remoted-doped donor layers set back from the
top and the bottom wells by spacer layers. In all our samples
the bottom well had lower mobility due to the rougher
GaAs/AlxGa12xAs interface for that well.

Measurements were done on 10-mm-wide and 200-
mm-long channels with Au/Ge/Ni Ohmic contacts. Top and
bottom gates were patterned using the standard photolithog-
raphy fabrication method. The top Schottky gate covered 150

mm of the channel. The data were taken using a lock-in
four-terminal technique atf5 37 Hz. The voltage probes
connected to the gated segment of the channel were sepa-
rated by 100mm.

The variation of the top gate voltage,Vg , allows one to
sweep the potential profile of the QW’s through the reso-
nance configuration. The resistance versus the top gate volt-
age for the sample with a 28-Å barrier atT54.2 K is plotted
in the inset of Fig. 2. The resistance resonance is clearly
observed atVg'0.28 V. A similar procedure allows one to
determine the resonance values ofVg for the structures with
a 14-Å barrier. We next fix the gate voltages at the values
corresponding to the exact resonance positions, and measure
the resistance as a function of the in-plane magnetic field
perpendicular to the direction of the current,H' j . Figure 2
shows the behavior of the RR for the two structures with
14-Å and 28-Å barriers.

The experimental data clearly demonstrate the suppres-
sion of the RR by the magnetic field, as well as the expected
broadening for the more strongly coupled structures: The re-
sistance decreases more slowly for the samples with the
smaller barrier width. According to Ref. 5, the dependence of
the resonance resistance onH is given by

R21~H !2Roff
215@R21~0!2Roff

21# f ~H/Hc!, ~24!

f ~x!5
2~A11x221!

x2A11x2
, ~25!

in which the characteristic fieldHc is given by

Hc5
\c

e

1

vFtb
A11S D

\ D 2 t1
tr1t2

tr

2
t. ~26!

Heret1,2
tr are the transport scattering times in the first and the

second QW, respectively,vF is the Fermi velocity, andb is
the distance between the centers of the QW’s. In the
calculation,5 1/t results from the imaginary part of the self-
energy correction.R(0) andRoff are the values of the resis-
tance atH50 and at saturation~at H@Hc), respectively.

The theoretical expression~24! fits perfectly the experi-
mental data shown in Fig. 3 witht being theonly fitting
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parameter~see below!. This fitting is carried out for several
values of the temperature, and hence allows the determina-
tion of t as function ofT. As the temperature is increased,
the experimental curves become broader and thereforet(T)
attains smaller values. The values of the scattering rate 1/t
are temperature independent~within the experimental reso-
lution! below 4.2 K for low-mobility samples and below 2.2
K for high-mobility samples. Hence it is plausible to assume
that

1

t~T!
5

1

t~0!
1

1

tee~T!
, ~27!

where 1/t(0) is the small-angle scattering rate that arises
from elastic scattering processes and is therefore assumed to
be temperature independent. The saturation values of the rate
@1/t(0)# are subtracted from 1/t(T) and the variation of

1/t(T)21/t(0) is plotted versus temperature for samples
with different barrier thicknesses~Fig. 4!.

In order to deduce the microscopic parameters employed
in the theoretical description we perform an analysis of
Shubnikov–de Haas~SdH! oscillations of the resistance, for
the samples with applied gate voltage corresponding to the
RR. Fig. 3 shows beats of the resistance, which are an indi-
cation of the existence of two subbands with different Fermi
wave vectors that are present at resonance.10 The measure-
ments of the SdH oscillations were performed atT50.28 K.
The distance between the nodes of the curve allows us to find
the separationD between the subbands. For the samples with
14- and 28-Å barriers we obtain forD the values 2.3 and 1.1
meV, respectively. The complementary measurements of the
Hall effect and the sample resistance versus gate voltage pro-
vide us with the rest of the parameters required for the defi-
nition of Hc , namely,t1,2

tr .

FIG. 3. Shubnikov–de Haas oscillations for
the sample with barrier thicknessd514 Å.

FIG. 2. The resonance resistance~RR! vs
magnetic field at 4.2 K. The solid lines are com-
puted from Eq.~24!. The inset shows the line
shape of the RR vs the top gate voltage.
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In Fig. 4 we also present the curves of the inelastic scat-
tering rate 1/t1

ee for the actual values ofeF andD, calculated
from Eq.~10!. It is clear that as long aseF@D, the two rates
1/t1,2

ee are almost equal. Numerical calculations show that for
the values ofeF and D under consideration, this equality
holds within few percent.

The agreement between the experimental points and the
theoretical curves is quite remarkable for the sample with the
14-Å barrier. For the samples with 28- and 40-Å barriers, the
deviations of the experimental values from the theoretical
ones are relatively large~the data for the 40-Å barrier sample
is taken from Ref. 5!. This is not surprising since the two-
band model is applicable only when\/D is the shortest time
scale in the problem. Otherwise, the bands are not well de-
fined and a good agreement is not expected. For instance,
even for the extremely clean samples, for which the main
level broadening would have come from the interaction be-
tween the electrons, the two-band picture is not adequate for

1

t~T!
.

1

tee
;

D

\
. ~28!

For example, for the 14-Å barrier thickness (D52.3 meV!
this happens atT;60 K. For more weakly coupled structures
for which D.0.521 meV, the range of validity of the
present theory, using the criterion~28!, is

T<25240 K. ~29!

When impurities are present, this range is further decreased.
For instance, in the samples with 14-, 28-, and 40-Å barriers,
1/t(0) was found to be 0.6, 0.84, and 1.85 meV, respectively.
Thus, the sample with the 14-Å barrier is expected to follow
the present theory up toT'40 K. In the sample with the
28-Å barrier thickness, the two bands are poorly defined
aboveT'15 K. The 40-Å barrier sample clearlycannotbe
described by the present theory. Another well-known effect
of the impurities is to increase the electron-electron scatter-
ing rate.11 This increase results from the loss of momentum
conservation, which in turn leads to a larger available phase
space.

In order to verify other aspects of our calculation, e.g., the
dependence of 1/tee on D and eF , it is insufficient to use
only the heterostructures discussed here. It is possible~see
Ref. 5! to produce samples with variableeF—this option is
included by fabricating samples with two~top and bottom!
gates. Unfortunately, the only way to study theD depen-
dence of the rate is to grow samples with various values of
barrier thickness.

Finally, we note that, strictly speaking, the calculation that
yields expression~24! takes into consideration only elastic
scattering processes. The perfect agreement of the experi-
mental data with~24! at elevated temperatures, where inelas-
tic processes are important, suggests that the latter can be
incorporated by writing 1/t(T) in the form~27!. However, a
rigorous calculation of the resonant magnetoresistance that
would take into account the electron-electron interaction has
not yet been performed.

IV. CONCLUSIONS

We have calculated the electron-electron scattering rate in
a system of two coupled QW’s in second-order perturbation
theory. We find that there exist two main contributions to the
total rate: The intrasubband and the intersubband rates. It is
shown that the intrasubband and intersubband interactions
are screened with different dielectric functions that depend
on the distance between the centers of the wells. The intra-
subband rate exhibits the well-knownT2lnT temperature de-
pendence whereas the leading term in the expression for the
intersubband rate is of the formT2lnD. This is due to the
different values of the momentum transfer cutoff in the two
scattering channels.

We have performed resonant magnetoresistance measure-
ments on a set of GaAs/AlxGa12xAs heterostructures with
various values of barrier thickness. The temperature-
dependent part of 1/t scales with temperature asT2 and ex-
hibits a good agreement with the theoretically calculated
curve for the strongly coupled structure (d514 Å, D52.3
meV!. For more weakly coupled wells (d540 Å, D50.55
meV andd528 Å, D51.1 meV!, the deviations of the ex-

FIG. 4. The electron-electron scattering rate
vs temperature. The solid line is computed from
Eq. ~10! for D52.3 meV,eF57.6 meV ~barrier
thickness, 14 Å!. The dotted line corresponds to
D51.1 meV,eF57.5 meV~barrier thickness, 28
Å !, the dashed line toD50.6 meV, eF510.9
meV ~barrier thickness, 40 Å!.
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perimental values of 1/tee from the corresponding theoretical
ones are relatively large. This is attributed mainly to elastic
scattering. The latter reduces the range of validity of our
basic assumptions. Elastic scattering also increases the
electron-electron scattering rate by relaxing the momentum
conservation condition. This may partially explain the sys-
tematic positive deviations of the measured values of 1/tee

from the theoretical curves.
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APPENDIX: SCREENING OF THE COULOMB
INTERACTIONS

Here we obtain the screened matrix elements of the Cou-
lomb interactions within the random-phase approximation.
Disregarding the exchange effects, the dynamically screened
matrix elementsG l1l2l3l4

(q,v) are given by the Dyson equa-
tion

G l1l2l3l4
~q,v!5Vl1l2l3l4

~q!

1(
mn

Vl1nl3m
~q!Pnm~q,v!Gml2nl4

~q,v!,

~A1!

wherePnm(q,v) is the generalized polarization part given
by ~8!. Inserting in~A1! the bare Coulomb matrix elements
~5!, one finds that the screened intrasubband elements,
G11115G1 ,G22225G2 ,G12125G21215G3 are given in terms
of V1 ,V2 , andV3 alone,

G1~q,v!5
V1~q!1P22~q,v!@V3

2~q!2V1~q!V2~q!#

D1~q,v!
,

~A2!

G2~q,v!5
V2~q!1P11~q,v!@V3

2~q!2V1~q!V2~q!#

D1~q,v!
,

~A3!

G3~q,v!5
V3~q!

D1~q,v!
, ~A4!

where

D1~q,v!5@12P11~q,v!V1~q!#@12P22~q,v!V2~q!#

2P11~q,v!P22~q,v!V3
2~q!. ~A5!

These involve the intrasubband polarizationsP11 andP22.
Similarly, the screened intersubband elementsG1122 and
G1221 are given byV4 andV5 , and the intersubband polar-
izationsP12 andP21,

G1122~q,v!5
V4~q!

D2~q,v!
, ~A6!

G1221~q,v!5
V5~q!2P12~q,v!@V4

2~q!2V5
2~q!#

D2~q,v!
,

~A7!

with

D2~q,v!5@12P12~q,v!V5~q!#@12P21~q,v!V5~q!#

2P12~q,v!P21~q,v!V4
2~q!. ~A8!

Since in our caseV45V5 , it follows that G11225G1221
[G4 .

The evaluation of the screened matrix elements necessi-
tates the calculation of the polarization parts. We find~at zero
temperature!

Re@P l l 8~q,v!#5
2

~2p!2
E d2k

f l~k2q!2 f l 8~k!

\v1e l~k2q!2e l 8~k!

52N0H 12
sgn~q/22n l l 8/2q!

q
QS un l l 82q2u

2qkFl
21DAS n l l 82q2

2q D 22kFl
2

2
sgn~q/21n l l 8/2q!

q
QS un l l 81q2u

2qkFl 8
21DAS n l l 81q2

2q D 22kFl 8
2 J , ~A9!

where
n l l 852m* ~\v1El2El 8!/\

2. ~A10!

We have used here the dispersion relation~2!. The Fermi wave vector of thel th subband is denotedkFl . The imaginary part
of the polarizabiliy Im@P l l 8(q,v)#5x l l 8(q,v) is given by

x l l 8~q,v!52
2p

~2p!2
E d2k@ f l~k2q!2 f l 8~k!#d@\v1e l~k2q!2e l 8~k!#

52
N0

q S QS 12U n l l 8
2qkFl

2
q

2kFl
U D H kFl2 2Fn l l 82q

2
q

2G2J 1/2
2QS 12U n l l 8

2qkFl 8
1

q

2kFl 8
U D H kFl 82

2Fn l l 82q
1
q

2G2J 1/2D . ~A11!
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The bare Coulomb matrix elements~5! can be safely ap-
proximated by

V1, 2, 3~q!.
pe2

q«
~11exp@2bq# !,

V4, 5~q!.
pe2

q«
~12exp@2bq# !, ~A12!

whereb is the distance between the centers of the QW’s.
This yields that the intrasubband elements are screened with
the dielectric function

D1~q,v!.12
pe2

q«
@P11~q,v!1P22~q,v!#

3~11exp@2bq# !, ~A13!

whereas the intersubband elements are screened with the di-
electric function

D2~q,v!512
pe2

q«
@P12~q,v!1P21~q,v!#

3~12exp@2bq# !. ~A14!

Here we exploit the fact thatV45V5 .
Using the results obtained above for the real and imagi-

nary parts of the polarization, we find that the dielectric func-
tions can be approximated by theirstatic limits

D1~q!.11
2pe2N0

q«
~11exp@2bq# !, ~A15!

D2~q!.11
2pe2N0

q«
~12exp@2bq# !, ~A16!

with small imaginary corrections of orderkF\v/2qeF ,
which appear only forq.m*v/\kF . In these estimates it is
sufficient to assumekF1;kF2;kF .
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