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Resonance magnetoresistance of coupled quantum wells
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An in-plane magnetic field suppresses the quantum coupling between electrons in a double-
quantum-well structure. The microscopic theory of this effect is developed and confirmed exper-
imentally. We have shown that the decrease of the resistance resonance peak is sensitive to the
mutual orientation of the current and the in-plane magnetic field. The characteristic field required
for the suppression of the resonance depends on the elastic-small-angle and electron-electron scatter-
ing rates. The study of the characteristic field allows us to verify the temperature and Fermi-energy
dependence of the electron-electron scattering rate, providing another experimental tool for its de-

termination.

A physical phenomenon, called resistance resonance
(RR), in a double-quantum-well (QW) structure was re-
cently predicted and observed experimentally.! The key
point of this effect is the following. Let us consider two
tunneling coupled QW’s. The quantity of interest is the
lateral resistance of the structure (all the electrodes are
attached to both QW’s). If the tunneling between the
QW'’s is for some reason suppressed, each electron is lo-
calized in one of the wells. The resulting lateral resis-
tance is that of two conductors connected in parallel,
R.g ~ (T +7£)71, where 7}* is the transport mean-free
time in the 7th well. In the presence of tunneling, the
eigenfunctions form symmetric and antisymmetric sub-
bands, leading to delocalization of electrons between the
two wells. The corresponding scattering rate in each of
these subbands is (7%7)~! = (27§*)~1 + (274*)~! and the
resistance is given by Ries ~ (27%)~1. One notices that
if the mobilities of the two QW’s are different (7% # 75%),
then R.es > Rog. The reason is very simple: in the first
case of no coupling, the clean well shunts the dirty one,
making the resistance small. No such shunting occurs for
coupled wells.

The experimental realization of this idea'™® was based
on the displacement of the energy levels of the QW by
the gate voltage. The typical graph of the lateral re-
sistance versus gate voltage is plotted on the inset of
Fig. 1. The resonance occurs in the point where the
energy levels of the two wells coincide, facilitating the
tunneling. In the present letter we propose a different
realization of the RR. Namely, the RR (with maximum
value at zero magnetic field) is observed as a function of
the in-plane magnetic field (instead of the gate voltage).
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The suppression of tunneling between two QW’s in the
parallel magnetic field was already demonstrated in a dif-
ferent context in Ref. 4 for perpendicular transport and
in Ref. 5 for Shubnikov—de-Haas oscillations. The theo-
retical calculations of magnetization in the coupled QW'’s
in a tilted magnetic field relevant for the case studied in
Ref. 5 were published elsewhere.® We employ the nice in-
tuitive picture, developed in Refs. 4 and 5, to illustrate
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FIG. 1. The resonance resistance (RR) vs magnetic field
at 4.2 K: circles and asterisks, experimental data for the per-
pendicular and parallel orientations; solid and dashed lines,
theoretical curves. The inset, line shape of the RR vs top gate
voltage, Vg (Vag = 1.5 V).
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the results of our calculations. Below we present a mi-
croscopic description of the lateral magnetoresistance of
the coupled QW’s, which is verified by the experimental
data. The main points, following from our studies, are
(i) the in-plane magnetic field destroys the coupling be-
tween QW'’s, leading to the RR; the lateral resistance is
essentially anisotropic, implying that the shape of the RR
depends on the angle between the current and magnetic
field; (ii) the width (i.e., the characteristic magnetic field,
H,) of the RR is sensitive to the single electron scattering
time, providing a new method of measuring the small-
angle scattering time on the remote impurities; (iii) the
dependence of H. on temperature and on the Fermi en-
ergy suggests that the electron-electron scattering rate
(intralayer and interlayer) may be tested as well.

To develop a microscopic model of transport in two
QW'’s, we employ the basis of eigenstates of uncoupled
wells. In this basis the Hamiltonian of the system is a
2 x 2 matrix, the off-diagonal elements of which represent
the tunneling coupling between QW'’s,

} —_ 2m* 2
Hk,P = Jkp ( A (p—e/cA;)?
2

2m*

+ ( Ul(po— k) Uz(po_ o ) _ 1)

We treat here only the case of coinciding quantized (in
the z direction) energy levels of the two wells. In Eq.
(1), —k, p are two-dimensional (2D) momenta of the elec-
trons, A is the tunneling gap (we assume tunneling to be
momentum conserved), and A; is a vector potential of an
external field in the ith QW. The second matrix on the
right-hand side of Eq. (1) represents an elastic impurity
scattering inside each QW. We assume that (1) random
potentials U;(p — k) have a finite correlation length in a
plane of 2D gas, and that (2) there are no correlations
between scatterers in different wells. In this case the dis-
order potential in each well may be described” by the
single-particle (small-angle) mean-free time 7; and the
two-particle (transport) mean-free time, 7% > 7;.

In a uniform magnetic field H parallel to the plane of
the QW’s (say directed along the y direction) the cor-
responding vector potentials are A; = (Hz;,0), where
z; are the z coordinates of the effective centers of the
QW'’s. The Fermi surfaces of the two QW’s have a form
of two circles displaced along the z direction (see Fig.
2) on the relative distance eHb/c, where b = 2; — 23 is
the distance between the centers of the wave functions
in the two wells.*"5 Only the electrons, which occupy the
states in the vicinity of the (quasi)crossing points A and
B (see Fig. 2), have the same energy (er) and momen-
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FIG. 2. Fermi surfaces of two QW’s in the in-plane mag-
netic field.
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tum in both wells and hence participate in the tunnel-
ing. Several important conclusions follow immediately.
(i) The resistance approaches its off-resonance value (de-
creases) as the magnetic field is increased. (ii) The char-
acteristic scale of the magnetic field may be estimated
as vrpky ~ max{A,k/7} (see below). (iii) The lateral
resistance of the system in the in-plane magnetic field is
anisotropic.

Indeed, the transport in the z direction is dominated
by states with large k., which are practically decoupled
(cf. Fig. 2). As a result, the perpendicular (to the direc-
tion of the field) resistance is close to the off-resonance
value. On the other hand, the transport in the direction
of the field is mostly determined by the states situated
near the points A and B of Fig. 2. These states are
delocalized, making the parallel resistance closer to the
resonance value. In other words, the suppression of the
RR occurs in a different way depending on the angle be-
tween the magnetic field H and the current j used to
probe the resistance.

The detailed diagrammatic calculation based on the
Kubo formula® leads to the following dependence of the
resonance resistance on the in-plane magnetic field:

R™'(H) - Ryg = [R7'(0) - Rg|f(H/H.),  (2)

where
_2(\/1+w2—1) 1, H||j
f(CL') = -——T—‘ X { (1 +$2)—-1/2’ H1j,

®3)

and the characteristic field is given by
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with 2771 = 77! 4+ 7, . The above relations are valid

until H ~ Hp, where Hr = 2mhc/(e Apb); Ar is a
Fermi wavelength. Note also that H. <« Hp, when
erT/Fh > 1. In agreement with our expectation, the RR
is suppressed faster in the perpendicular configuration,
R™(H) — R; o< H™2, whereas in the parallel configu-
ration R~}(H) — Ry o« H}, for H. < H < HF.

The double QW structure was grown on a N* GaAs
substrate by molecular-beam epitaxy and consists of
two GaAs wells of 139 A width separated by a 40
& Aly 3Gag.7As barrier. The tunneling gap for this struc-
ture is estimated as A = 0.55 meV. The electrons were
provided by remote §-doped donor layers set back by 250-
A and 450-A spacer layers from the top and the bottom
well correspondingly. In order to obtain the difference
in the mobilities, an enhanced amount of impurities was
introduced at the upper edge of the top well (Si, 10 °
cm~2). The schematic cross section of the device may
be found in Ref. 1. Measurements were done on 10 ym
wide and 200 pm long channels with Au/Ge/Ni Ohmic
contacts. Top and bottom gates were patterned using
the standard photolithography fabrication method. The
top Schottky gate covered 150 pum of the channel. The
data were taken using a lock-in four terminal technique
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at f= 5.5 Hz. The voltage probes connected to the
gated segment of the channel were separated by 100 pm.
The complementary measurements of the resistance and
Hall coefficient lead to the following parameters of the
structure (as grown, ie., Vg = V3 = 0 and T = 4.2
K): g1 = 47000 cm?/Vsec, p2 = 390000 cm?/V sec,
ny = 4.7 x 10 cm ™2, ny = 2.5 x 10! cm—2. The values
of these parameters for each temperature and gate volt-
age were determined independently and used in the fits
(see below).

The variation of the top gate voltage V, (for a fixed
bottom gate voltage V;4) allows one to sweep the poten-
tial profile of the QW’s through the resonant configura-
tion. The resistance vs top gate voltage (Vpg = 1.5 V;
T = 4.2 K) is plotted in the inset of Fig. 1. The re-
sistance resonance is clearly observed at V, ~ —0.2 V.
The value of the resistance in resonance is R = 65 (,
whereas the off-resonance value is estimated as R.g =
32 @ (cf. Fig. 1, inset). Next we fix the gate voltages,
corresponding to the exact resonance position, and mea-
sure the resistance as a function of the in-plane magnetic
field. Figure 1 shows the behavior of the RR for the two
orientations of the magnetic field with respect to the di-
rection of the current (H ||j and H L j). The experimen-
tal data clearly demonstrate the suppression of the RR
by the magnetic field, as well as the expected anisotropy.
In the perpendicular orientation the resistance decreases
faster than in the parallel one. The theoretical curves,
using Egs. (2) and (3) with H, = 0.44 T (this is the only
fitting parameter) are shown on the same plot. For the
perpendicular configuration, we obtained a perfect fit for
the magnetic fields up to H = 3 T (note that Hr ~ 4.2
T for ep = 15 meV).

The situation is markedly different for the parallel con-
figuration. The fit to the data is obtained only in the
narrow range of fields up to H.; at high magnetic fields
the resistance does not approach the value R.g = 32 Q.
Moreover, a positive magnetoresistance contribution is
well resolved. Large positive magnetoresistance (o< H?)
in the parallel configuration was also observed for the
one QW (the second well was totally depleted by a large
negative voltage on the top gate). We tend to attribute
this positive contribution to some normal component of
the magnetic field to the plane of QW’s, which is due
to a nonperfect flatness of our structure in one direction.
In the following, we thus restrict ourselves mostly on the
perpendicular (H L j) orientation.

We now employ Eq. (4) and the extracted value of
the characteristic field, H. = 0.44 T, to establish the
small-angle scattering time 7 [note that all other param-
eters entering Eq. (4) are known, see above]. As a result,
one has £/7=1.7 meV at T=4.2 K, which implies the ra-
tio between the transport and the small-angle scattering
times to be equal to =~ 3.2. Measurements of this ratio
for different values of the Fermi energy (see below) re-
sult in a slow decrease from 3.2 at ez = 15 meV to 2.5
at e = 7 meV. These data are in good agreement with
those measured using Shubnikov—de-Haas oscillations in
the 2D gas with a similar mobility.® It becomes evident
now why one should complicate the theory to account for
the long-range nature of scatterers. The simpler theory
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with short-range scatterers only (7f* = ;) fails to ex-
plain quantitatively the observed width of the RR. Thus
we conclude that the suppression of the RR in the mag-
netic field gives rise to a new and relatively simple way
of measuring the small-angle scattering time.

We now repeat the same procedure for the perpendic-
ular orientation at different temperatures in the range
between 4.2-40 K using H, as the only fitting parameter
and then extracting 7. The experimental data and a set
of theoretical curves are presented in Fig. 3. The width
of the curves increases with temperature indicating the
increase of H,.. The same type of data was obtained for a
different set of voltages applied to the top and the bottom
gates corresponding to the resonant conditions at differ-
ent Fermi energies. The values of the Fermi energy are
in the range 7-15 meV. These data were also analyzed
in the same fashion and the values of 7(T,er) were de-
termined. We stress again that all relevant parameters,
besides 7, were established independently for each value
of T and ep.

In Fig. 4 we plot ex[i/7(T) — k/7(0)] versus tempera-
ture on a logarithmical scale for three different values of
the Fermi energy. The values of the small-angle scatter-
ing rate %/7(0) are as follows: 1.74 meV, 1.86 meV, and
3.36 meV for Fermi energies ex 15 meV, 11 meV, and 7
meV, respectively.

At small enough temperature (kgT < €ep) all experi-
mental points collapse to the same line. The slope of this
line implies the quadratic temperature dependence of the
displayed quantity. In this way the following relation is
established:

h h (kBT)?
LA AN il 5
T 10" er ®)
Equation (5) suggests that the single-particle scattering
rate 7-1(T) consists of two parts: the small-angle scat-
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FIG. 3. The resistance vs magnetic field in the perpen-
dicular configuration at different temperatures: circles, ex-
periment; solid lines, theory (Vg = 15 V; Vg = —0.2 V,
corresponding to er = 15 meV).
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FIG. 4. Normalized scattering rate: ﬁ‘xeTev( 7 -r(o))
vs temperature for different Fermi energies. The solid line is
-].l_nl":e_V 7o-» Where /7. is given by Eq. (6) with £ = 0.5.

tering rate on the remote impurities, 771(0), and the
electron-electron (e-e) scattering rate, 7..'. This is in
contrast to the transport (two particle) scattering rate,
1/7%, which is practically not affected (in the clean limit,
see below) by the e-e scattering (due to the momentum
conserved nature of the latest). To verify this idea quan-
titatively we use the result!? for the e-e scattering rate
in a clean 2D gas [the criterion is A/7(0) < kBT < €,

which is fulfilled in our case]:
kgT
1 (kBT) (1+ln2+ln)‘—F B P ) ,
AtF €p
(6)

where App = 276 A is the Thomas-Fermi screening length
in the GaAs. We have introduced in Eq. (6) an additional
factor (1 + £), which intends to simulate intralayer and
interlayer contributions to the e-e scattering. In the orig-

=1+

ee

inal theory'? only one 2D gas was considered, thus £ = 0.
In the case of two closely spaced QW'’s, one expects that
0 < £ < 1, depending on the ratio between the screen-
ing length Arg and the mean distance between the wells
b. This is indeed the case; the best fit (the solid line in
Fig. 4) to our data is achieved with £ = 0.5 in Eq. (6).
We conclude that in our structure the interlayer e-e scat-
tering rate is 0.5 of the corresponding intralayer value.
This seems to be reasonable since the distance between
the wells is of the order of the screening length. Equa-
tion (6) is valid only in the limit kgT < ep. Therefore,
the deviations of the experimental points from the the-
ory at high temperatures (especially for the smallest ex)
are not surprising. Our results may be considered as an-
other confirmation of the theory (apart from £ = 0.5)
(Ref. 10) in the range of relatively large temperatures.
In a low temperature regime the theory!® was excellently
confirmed in the interference experiment.!! A theory of
e-e interactions in two tunneling coupled QW’s would be
desirable.

The central point is that the resistance of the cou-
pled QW'’s is sensitive not only to the transport scatter-
ing time but also to the single-particle scattering time.
This enables us to determine the small-angle scatter-
ing time, 7(0) [from the low temperature measurements,
kBT < h/7(0)] as well as the e-e scattering time, 7e
[from the measurements at kgT > %/7(0)]. The compar-
ison with the theory leads to the reasonable estimation
of the ratio between intrawell and interwell e-e scattering
rates. Thus we believe that the RR in two coupled QW’s
with different mobilities provides a powerful and rela-
tively simple method of measuring of the small-angle and
e-e scattering rates. Some unresolved questions raised in
the present letter require further theoretical and experi-
mental investigation of this phenomenon.
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