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Abstract. Electronic transport properties have been measured for 3500Å Al–Ge films with a
random microstructure. The room temperature resistivity exhibits a sharp discontinuous jump
at the metal–insulator transition, allowing for the direct determination of the critical metallic
fraction, φc = 8.8 vol% Al. A new procedure is described for extracting values for the
zero-temperature conductivityσ(0) from the low-temperature conductivity data. Whenσ(0)

is extrapolated to zero as a function of Al content, the value obtained for the critical aluminium
fraction φc is in excellent agreement with the value obtained from the room temperature data.
The films exhibit two transition regions below 1.2 K as the Al content is decreased—a transition
from the superconductivity state to the normal-metallic state, followed by a second transition
from the normal-metallic state to the insulating, variable-range-hopping state. Superconducting
fluctuation data taken above 1.2 K were well described using the 2D Aslamazov–Larkin and
Maki–Thompson formulae; the ‘resistive tails’ below 1.2 K are also discussed.

1. Introduction—earlier work on Al–Ge films

When Al and Ge are coevaporated upon glass substrates held at room temperature, one
obtains a granular structure composed of small 20Å to 200Å crystalline grains of Al coated
by a mantle of amorphous Ge [1]. Well above the critical Al volume fractionφc, where the
films are metallic in behaviour, the morphology is often described as a continuous Al metallic
matrix containing isolated inclusions of the amorphous insulating Ge. Below the metal–
insulator transition (MIT), where the insulating films display variable-range hopping in their
electronic transport properties, the structure is described as an insulating amorphous Ge
matrix containing isolated Al metallic inclusions. Since at room temperature the resistivity
does not display any discontinuity as the metal–insulator transition is crossed by varying
the Al volume fraction, it is not obvious where the value for the critical metallic fractionφc

lies [1]. Some special techniques have been proposed for determiningφc in this case [2].
However, one must surmise that the changeover from isolated Al grains in a Ge matrix to
isolated Ge grains in an Al matrix is continuous.

In the granular Al–Ge films, the Al grains exhibit superconductivity at enhanced
temperatures of 1.6 K, both in the metallic films and also in the insulating films [3]. In the
metallic films, the superconducting Al grains are connected by very thin metallic links. This
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is because a relatively large 1.5 T magnetic field is required to quench the superconductivity
which indicates the small-diameter grains and links. In the more insulating films, the
superconductivity in the isolated Al grains produces a spectacular rise in the resistivity
belowTc owing to the condensation of electrons into Cooper pairs, which limits the number
of quasiparticles available for intergrain tunnelling. This phenomenon is known as Adkins
hopping and leads to a large negative magnetoresistance [4]. For the insulating films located
very close to the MIT, Josephson junction tunnelling currents electrically short out the
intergrain (cluster) resistance as the temperature is decreased belowTc [3]. The current-
carrying capacity of the Josephson junction network can be quenched by the application of
a small 0.01 T field, resulting in a positive magnetoresistance. Thus owing to the unique
behaviour of these two types of superconducting junction with applied magnetic field and
temperature, one can experimentally separate out the metallic films from the insulating
films and uniquely determine the critical Al concentrationφc in these granular films;φc is
typically 55 to 60 vol% Al.

The transport properties of the ‘random’ Al–Ge films are very different. Early pioneering
work performed by Deutscher’s group demonstrated that the ‘random’ structure is obtained
by coevaporating Al and Ge onto heated glass substrates held at 180◦C rather than at room
temperature [5, 6]. Since the Al and Ge grains possessed similar shapes and diameters of
several hundred̊angstr̈oms, the Al grains could not be distinguished topographically from the
Ge grains in the electron microscope pictures, and this structure was described as ‘random’.
In a series of three important publications [1, 5, 6], this group showed that: (a) the random
morphology was composed both of grains of Al and of crystalline grains of Ge in contrast
to the amorphous Ge matrix in the granular structure; (b) the room temperature resistivity
exhibited a sharp discontinuity atφc; and (c) the critical metallic volume fractionφc for
their morphology was close to the 15 vol% value predicted by continuum percolation theory
for three-dimensional crystal and random lattices, composed of touching nearest-neighbour
spheres [7]. However, neither the superconducting properties nor the normal-state transport
properties at low temperatures of the random Al–Ge morphology were studied. The sharp
discontinuity of the room temperature resistivity at the MIT enables the critical metallic
volume fractionφc to be easily identified from the experimental room temperature resistance
data; this experimental value forφc can now be compared with the results obtained from
other techniques for predictingφc [2].

2. Film fabrication and characterization

Thin 3500Å granular Al–Ge films were fabricated on slices of microscope glass slides by
coevaporating Al and Ge simultaneously using two electron guns [3]. Typical evaporation
rates were 1.5̊A s−1 and 8Å s−1 for the Al and Ge sources. The evaporations were made
in vacua of 10−5 mm Hg or better, and the glass slices were held at room temperature in
order to obtain the granular structure.

The granular Al–Ge films were converted to the ‘random’ morphology by heating the
films to 390◦C in a vacuum of 10−6 mm Hg and allowing the films to slowly cool back
to room temperature over a period of one day. Above 150◦C, the amorphous Ge diffuses
away from the Al grains and crystallizes to form Ge clusters [8, 9, 10]. Since the thermal
cycling sequence greatly influenced the critical Al fractionφc at which the metal–insulator
transition occurs, all of the films in each new series were cycled simultaneously together in
a specially constructed stainless-steel vacuum cell sealed with a copper ‘O’ ring.

A similar procedure was followed for the samples studied in the transmission electron
microscope (TEM). Thin 1000̊A granular Al–Ge films were deposited onto photoresist-
coated slides; the thin films were lifted off the slide using acetone and floated onto fine
nickel grids used for mechanically supporting the fragile films in the TEM. These grids were
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transferred to the thermal-cycling cell where the films were heated to 390◦C in vacuum
and converted to the ‘random’ structure.

(a)

(b)

Figure 1. TEM micrographs taken for a 15 vol% Al film: (a) a dark-field image of the large
Ge clusters; (b) a dark-field image of the small Al grains.

Dark-field micrographs from the TEM show that the typical dimensions of the crystalline
Ge clusters are large and of the order of 15 000Å to 20 000Å for the film located just above
the MIT having 9.2 vol% Al. The typical diameters of the Al grains are very small and of
the order of 30Å or less, as no structure is observed in the dark-field Al images, and the
Al diffraction rings are not present. In contrast, for a more metallic film having 15 vol%
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Al, the typical Ge cluster dimension is smaller, about 5000Å, as seen in the dark-field
micrograph of figure 1(a). The Al grains are much larger and of the order of 500 to 2000Å
as illustrated in figure 1(b). Al diffraction rings are observed.

Our thermal-cycling procedure differs from that in the earlier studies in which lower
conversion temperatures of 180◦C were used, resulting in much smaller grains of Ge of
200 Å diameter [5, 6]. Because of this structure difference, our resistivity data and critical
metallic fractionsφc differ from earlier published results [5, 6].

Energy-dispersive x-ray analysis (EDAX) of the Al and Ge contents was performed
using a Link AN10000 EDS system attached to a JSM-840 SEM. The x-ray spectra were
collected from five different regions along the length of each film, each region being of
area 0.023 mm2. The analyses were carried out at 4.13 kV in order to contain most of
the analysis volume within the film and to avoid the Si peaks. Correction was made for
the typically 1% contribution from the substrate. The data were quantified using a bulk
correction routine (ZAF-4/FLS) using pure element standards. We believe that the absolute
concentrations are known, at worst, to an accuracy of±10%, for the case of films containing
less than 10% Al. However, the relative concentrations between different films are known
with much better accuracy, of±2%.

The Al fractions derived from the Link are given in units of atomic per cent, as the ratios
of the number of Al atoms to the total number of atoms present in the film. As percolation
and other theories refer to volume per cent rather than atomic per cent, the atomic fractions
were converted to volume fractionsφ using the expression

φ(Al vol .%) = 100/(1 + 1/y) (1)

y = {ρGeNAlx/100}/{ρAlNGe(1 − x/100)} = 0.73x/(100− x)

wherex represents the amount of Al in atomic per cent,ρ is the density, andN is the
atomic weight. The volume percentages are somewhat smaller than the atomic percentages.
Typical atomic Al fractions ranged between 30 and 3 at.% and these values correspond to
Al fractions of 24 to 2 vol%.

Indium tabs were pressed onto the films for electrical contacts. Measurements were
made in a3He refrigerator and/or in a4He cryostat, both equipped with 4 T magnets.

3. Room temperature resistivity data

In figure 2, the room temperature resistivity is shown as a function of Al content in volume
per cent. For the granular structure, all of the films are strongly insulating, since the critical
volume fraction is above 50% Al. For the random structure, a spectacular jump in the
resistivity, by a factor of 360, occurs between the two films having Al contents of 8.3 vol%
and 9.2 vol% Al. Thus, the critical Al fraction at the metal–insulator transition (MIT) is
somewhere between these two values, or atφc = 8.8 vol% Al if one takes the mean value.
Different series will have different values forφc, depending on the details of the thermal-
cycling procedure. However, this material is unique in that the transition between metallic
and insulating films is so abrupt that the critical fractionφc can be uniquely identified for
each series, using simple room temperature resistance measurements.

The present value for the critical metallic volume fractionφc is much smaller that the
15% value based upon the random and lattice models having insulating and conducting
spheres of equal diameters [7]. Values ofφc below 15% can be accounted for by a number
of models. Kusy showed that, if the conducting grains are finer than the insulating grains
and if the conducting component coats the nonconducting ones with a percolating network,
then this model can lead toφc being less than 5%, if the ratio of the diameters is 30 or larger
[11]. Our morphology satisfies this criterion. McLachlan proposed a grain consolidation
growth model, where during the regrowth process the conducting material is deposited in
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Figure 2. Resistivity at room temperature versus Al volume fraction for granular and random
Al–Ge films. The granular films are all insulating. For the granular films, the MIT takes place
above 50 vol% Al. Note the sharp discontinuity at 8.8 vol% Al in the random films where the
metal–insulator transition takes place. The solid curves are predictions from the two percolation
equations.

small blobs and fine links between the larger insulating grains [12]. This too gave a lower
limit for φc of less than 5%. Another way of achieving a lowφc is if the conducting
particles are in the form of randomly oriented long rods or filaments [13]. An extreme case
of this is in porous rocks whereφc is taken to be zero [14].

Imry et al have suggested that the critical metal fractionφc in a percolating system
should depend upon the finite film thicknesst according to the power-law behaviour [15]

φc(t) = φc(3D) + (t0/t)1/υ (2)

where the 3D critical exponentυ = 0.9 [16, 17, 18] andt0 = d, whered is the typical Al
crystallite size. According to Kapitulnik and Deutscher,t0 is 170+ 90 Å (see [5, 6]), close
to the values observed in the present samples just on the metallic side ofφc. If one uses
t0 = 170Å and the measured film thickness oft = 3500Å, then the corrected 3D value for
φc for a thick film drops to 5.3 vol% Al. This value is consistent with the lower theoretical
limits for φc [11, 12].

Percolation theory (see [19] and [20] and the references therein) predicts that the
conductivity in the normal state should be given byσ(φ) = σI [(φc − φ)/φc]−s below
φc andσ(φ) = σC [(φ − φc)/(1 − φc)]t aboveφc. HereσI andσC are the conductivities of
the more insulating (Ge) and more conducting (Al) components respectively, ands andt are
exponents. These equations hold only ifσC � σI and are not valid in the interval nearφc of
1φ = |φ − φc|1/(t+s). In this interval the general-effective-medium (GEM) equation, which
reduces to the percolation equations in the limit whereσI /σC → 0, provided a successful
fit over the entire composition range for the granular Al–Ge system [19, 20]. The GEM
equation is

(1 − φ)(σ
1/s

I − σ
1/s

M )/(σ
1/s

I + Aσ
1/s

M ) + φ(σ
1/t

C − σ
1/t

M )/(σ
1/t

C + Aσ
1/t

M ) = 0

whereσM is the conductivity of the composite material andA = (1 − φc)/φc.
The data for the random Al–Ge system were fitted both to the percolation equations

and to the GEM equation. The parameters obtained were almost the same and well
within the statistical errors. Figure 2 shows the fitted percolation equations withφc =
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0.0877±0.002, t = 1.80±0.05, s = 1.26±0.35, ρC = 7.7 µ� cm andρI = 100±20� cm.
To get physically realistic values for all the parameters,ρC had to be fixed at the
experimentally determined value of 7.7µ� cm, known from measurements on thin pure Al
films. The value ofφc and the one obtained from the GEM equation are almost identical to
the arithmetic mean value of 0.088. The value fort is close to the universal value of 1.9
predicted from 3D percolation theory [21] but is considerably greater than the value of 1.3
derived from the 2D percolation theory [22]. Further details of these fits and discussions of
the parameters are given in [23] and [24].

4. Low-temperature conductivity data for the metallic films

A common procedure for determining the critical metallic fractionφc is to measure low-
temperature conductivity data for the metallic films. Note that it is important to use ‘normal-
state’ conductivity data, where all superconductivity phenomena have been suppressed by
a sufficiently large magnetic field. Values for the zero-temperature conductivityσ(0) can
then be obtained by extrapolating the data. Then from a plot ofσ(0) versusφ, the critical
Al fraction φc can be estimated by observing whereσ(0) vanishes.

We assume that at sufficiently low temperatures, the conductivity can be described by
the general expression

σ(T ) = σ(0) + CT x (3)

where C is a prefactor andx is the exponent of the temperature power law. Equation
(3) approximates the conductivity contributions from the 3D weak-localization theory [25,
26] and the 3D electron–electron interaction theory [27, 28]. Note that in our procedure
x is a free fitting parameter and is not set to the value of 1/2 as predicted in the 3D
electron–electron interaction theory [27, 28].

There are two procedures for determining the exponentx [2]. If three values of the
conductivity are known at temperaturesT1, T2, andT3, then the following equality must be
satisfied:

[σ(T1) − σ(T2)]/[σ(T2) − σ(T3)] = [T x
1 − T x

2 ]/[T x
2 − T x

3 ]. (4)

By guessing an appropriate value forx, the equality can be satisfied, and afterwards the
other two parameters,C andσ(0), can easily be found.

Our second new procedure for determining the exponentx is similar to that suggested by
Hill and by Zabrodskii and Zinov’eva for insulating films [29, 30]. We begin by calculating
values ofω(T ) from the resistivity data on the metallic films in the normal state, where

ω(T ) = −d lnρ/d lnT . (5)

When substituting equation (3) into equation (5) and usingρ(T ) = 1/σ(T ), we find that

ω(T ) = xCT x/σ(T ) = ρ(T )xCT x. (6)

By taking logarithms on both sides of equation (6), and transposing, we obtain

ln ω(T ) − ln ρ(T ) = ln(xC) + x ln T . (7)

Equation (7) is that of a straight line of the formz = I0 + Sy; in fitting a linear regression
fit through the lnω − ln ρ versus lnT data, the slopeS is equal to the exponentx and
the interceptI0 is related to the prefactorC through the expressionC = (exp I0)/x. This
procedure predicts values forx within 10% of those obtained from the above interpolation
method using equation (4). Note that both methods predict unbiased values for the exponent
x; and hence both methods yield the most accurate, but model-independent, values for the
zero-temperature conductivityσ(0). It should also be noted that both methods work only on
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Figure 3. Resistivity versus temperature for the first metallic film located just above the metal–
insulator transition (9.2 vol% Al). Observe that the zero-field data display no signatures of
superconductivity. The solid line through the 3.45 T data is a power-law fit according to
σ = 1/ρ = 103.7 + 0.270T 1.20 in units of �−1 cm−1.

Figure 4. Resistivity versus temperature for a very metallic film (21.7 vol% Al). Observe the
‘rounding’ of the zero-field resistivity above 1.2 K due to superconducting fluctuations in the
Al grains and notice the small ‘resistive tail’ below 1.2 K arising from Josephson junction links
between the Al grains. The solid line through the normal-state data is a power-law fit according
to σ = 1/ρ = 2540+ 1.32T 0.97 in units of �−1 cm−1.

resistivity data that increase with decreasing temperature. Figure 3 shows a fit obtained using
equation (3) to a metallic film very close to the MIT (9.2% Al) and figure 4 demonstrates a
fit to a very metallic film (21.7% Al); the two straight lines appearing in figures 3 and 4 are
ρ(� cm) = (103.7 + 0.270T 1.20)−1 and ρ(� cm) = (2540+ 1.32T 0.97)−1. Experimental
values for the exponentx are shown in figure 5 and are twice as large as the accepted
theoretical prediction [27, 28]. Values of the zero-temperature conductivityσ(0) versusφ
from the various metallic films are plotted in figure 6. The critical Al volume fractionφc

whereσ(0) vanishes is approximately 9.0±0.4 vol% Al, consistent with the 8.8 vol% value
obtained from the room temperature resistivity data. Thus, the low-temperature resistivity



1736 J Shoshany et al

Figure 5. The exponentx of the temperature power-law term as a function of Al content; the
measured values are considerably greater than the value of 1/2 predicted from the electron–
electron interaction theory.

Figure 6. The zero-temperature conductivityσ(0) as a function of Al content. Values forσ(0)

were obtained using a new fitting technique described in the text. The Al fractionφ, where the
conductivity vanishes, defines the critical volume fractionφc at the metal–insulator transition.
In this case,φc = 9.0 ± 0.4 vol% Al. The solid line is a linear regression fit through the data.

data can provide another good estimation ofφc. Theσ(0) data can be fitted to the expression
σ(0) = σ0(φ − φc)

t whereσ0 = 189 �−1 cm−1 and t = 1.02, somewhat smaller than the
2D percolation value oft = 1.3 [22].

5. Properties of the insulating films

The insulating films below the MIT exhibited such strong activated hopping in the resistivity
that the resistivity measurements were restricted to between 100 K to 425 K. As shown in
figure 7, the resistivity of the 2.3 vol% Al film follows a Mott variable-range-hopping law
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Figure 7. Resistivity versus temperature for the most insulating film (2.3 vol% Al). The solid
line represents a Mott variable-range-hopping fit to the data.

Figure 8. Superconducting fluctuation conductivity versus temperature in zero field for a
21.2 vol% Al film. The solid line includes contributions from the zero-field 2D Aslamazov–
Larkin and Maki–Thompson theories with the single fitting parameter,Tc chosen to be 1.19 K,
the superconducting transition temperature for bulk Al.

ρ(T ) = ρ0 exp(TMott /T )1/4 with TMott = 2.6 × 108 K and ρ0 = 3.51× 10−12 � cm. The
transition region was so sharp that it was not possible to obtain values for the effective
temperatureTeff as a function ofφ just below the MIT; thus, it was not possible to
extrapolateTeff to zero in order to obtain an additional estimation for the critical volume
fraction φc from the insulating side, as was done for granular Al–Ge [3]. It is interesting
to note that for the more insulating random Al–Ge films, one obtains the Mott exponent of
1/4; in contrast, for the more insulating granular Al–Ge films, the hopping exponent is the
Efros–Shklovskii value of 1/2. Why the microstructure of the granular material involves
Coulomb interactions and that of the random material does not remains an open question.
Additional experimental work is needed to characterize the insulating films.
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6. Superconducting fluctuation measurements

Superconducting fluctuations are responsible for the ‘rounding’ of the resistance curves
above the superconducting temperatureTc. The transition temperatureTc generally refers
to the bulk transition of the entire film. The superconducting fluctuation (SCF) conductivity
σSCF , also known as paraconductivity or excess conductivity, can often be observed at
temperatures as high as 4Tc. Above 4.2 K, the superconducting fluctuation conductivity is
negligible in our ‘random’ Al–Ge films, when compared to the antilocalization conductivity
σWL arising from spin–orbit scattering and to the electron–electron interaction conductivity,
σEEI . In order to obtain accurate values for the zero-field SCF conductivity, it is important
to extend the zero-field measurements up to 20 K and then to extrapolate the data taken
between 5 K and 20 K down to 1 K. The difference between the zero-field data taken below
4.2 K and this extrapolated ‘normal-state’ conductivity line represents the SCF conductivity
contribution. Alternatively, we have quenched the superconducting fluctuations by applying
a small 1 T field and then calculated values forσSCF by taking differences between data
measured in zero field and data measured in the field. Typical zero-field SCF data for a
14.3% random Al–Ge film havingR� = 12 �/� are shown in figure 8. The magnitudes
for σSCF are small above 2 K but increase significantly at around 1.2 K. Details on the
theoretical SCF expressions can be found in [31]. Using the 2D Aslamazov–Larkin and the
2D Maki–Thompson conductivity expressions, a reasonably good fit to the data (the solid
line in figure 8) can be obtained only if the single fitting parameterTc is chosen equal to
1.19 K; this temperature coincides with the transition temperature of bulk Al. The reason that
the 2D SCF theories were selected is that the Ginzburg–Landau superconducting coherence
length ξGL(T ) is considerably greater than the typical Al grain and cluster dimension and
is somewhat greater than the film thickness. Values for the pair-breaking parameterδ(T )

that appears in the Maki–Thompson expression were calculated from the scattering time
expressions that appear in [31].

Figure 9. Magnetoconductance data versus magnetic field taken slightly aboveTc = 1.19 K.
The theories of Redi for the 2D Aslamazov–Larkin contribution and of Lopes dos Santos and
Abrahams for the 2D Maki–Thompson contribution were used. The only fitting parameter was
Tc, chosen to be 1.19 K.

The magnetoconductance data1σSCF could be fitted nicely incorporating the important
Maki–Thompson MC expression of Lopes dos Santos and Abrahams and the Aslamazov–
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Larkin MC expression of Redi (see [32, 33]). Refer to [31] for the appropriate expressions.
The fitting results are shown in figure 9 where the only fitting parameter wasTc, fixed at
1.19 K. The diffusion constantD was required to evaluate the Lopes dos Santos–Abrahams
expression and was known to be 1.8 cm2 s−1 from critical field measurements made below
1.19 K in very metallic films [31].

Figure 10. A summary of the low-temperature, zero-field, resistivity data for metallic films
located above the metal–insulator transition. Notice the transition from the superconducting
state to the normal-metallic state at 0.5 K as the Al content is reduced. The ‘resistive tails’ are
clearly seen in the more metallic films below 1.2 K.

According to the SCF theories, metallic regions that display SCFs well aboveTc should
make transitions to zero resistivity atTc. Had both the Al grains and the links between
the grains exhibited SCFs, the films would have had a zero resistivity atTc = 1.19 K.
Yet, inspection of the zero-field resistivity curves atT = 1.19 K in figure 10 reveals that
the resistivity of most of the films has decreased only by 10% or less from the normal-
state resistivity. This behaviour suggests that only the Al grains make the superconducting
transition at 1.19 K and that the links which connect the grains remain normal at 1.19 K.
The observation of the ‘resistive tails’ below 1.19 K in figure 10 suggests the presence of
two different types of link between the large Al clusters or blobs: (a) thick discontinuous
links that form Josephson tunnelling junctions; and (b) thin continuous normal-metallic links
which never go superconducting. As the temperature is decreased below 1.19 K, more and
more of the Josephson tunnelling junctions will go superconducting as the characteristic
energyEJ of each junction exceedskBT . These junctions will short out the normal links
that are in parallel with them, thus giving rise to the ‘resistive tail’ behaviour.

7. The phase diagram for random Al–Ge films

Figure 10 shows the zero-field resistivity data as a function of temperature for six samples
between 9.2 and 21.7 vol% Al. In the cases where the Josephson tunnelling junctions
couple the Al clusters, the resistivity will decrease belowTc. In the very metallic films
havingφ > 35 vol% Al, superconducting fluctuations are present above 1.19 K, producing
a pronounced ‘rounding’ of the resistance curves, followed by sharp superconducting
transitions to zero resistivity at 1.19 K, the bulk transition temperature for Al (not shown in
figure 10). Both the Al grains and the links participate in this sharp transition. As the Al
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content is decreased below 25 vol% Al, the superconducting fluctuations are still present
in the Al grains above 1.19 K while ‘resistive tails’ or rapid broadening of the resistance
transition curves occurs below 1.19 K, owing to the presence of the Josephson tunnelling
junctions in parallel with normal-metallic links. The two films located just above the MIT
(9.2% and 11.0%) exhibit only normal-metallic-state transport properties, characterized by
weak 1% rises in the resistivity per temperature decade. The increase in the resistivity
arises primarily from electron–electron interaction effects and antilocalization effects in the
nonsuperconducting links. Either the clusters do not go superconducting or the transition is
masked by the high resistances of the links.

Figure 11. The schematic phase dia-
gram for random Al–Ge films. Values
for critical metallic fractions and super-
conducting transition temperatures will
vary somewhat from series to series de-
pending upon the thermal-cycling proce-
dure.

The zero-field resistivity data of figure 10 are summarized in the phase diagram shown
in figure 11. Deutscher has suggested that a transition from the superconducting state to
the normal state occurs when the 3D percolation lengthξ3D = t0/(φ − φc)

υ exceeds the
film thicknesst , producing a transition from 3D to 2D as the Al contentφ is reduced to
φc. The fluctuations in the superconducting order parameter are considerably greater in 2D
than in 3D. Thus, superconductivity can be quenched if the film is in the 2D region. This
normal-state region should then extend over the Al content width(φ −φc) = (t0/t)1/υ . For
films with t = 3500Å consisting of 170Å (t0) grains, the width is approximately 3 vol% Al,
in agreement with the 3 vol% width observed in figure 11. Similar behaviours have been
observed in amorphous niobium–silicon films [42], amorphous molybdenum–germanium
films [43], and amorphous gold–silicon films [44].

Kusy has predicted that the resistivity of the first metallic film located just above the
MIT should have its resistivity enhanced by a factor of 100%/φc over the resistivity of the
very metallic films [11]. Inspection of figures 2 and 10 reveals that the enhancement is of
the order of 23, in nice agreement with Kusy’s prediction of 25.

We observe that the superconducting transition temperature in the random Al–Ge films
is not enhanced over the 1.19 K transition temperature for bulk Al as it is in the granular
Al–Ge films [3]. As both systems nearφc are made up of clusters consisting of small Al
grains, one concludes that the amorphous Ge coatings around the Al grains in the granular
morphology are partially responsible for the enhancement ofTc.

8. The ‘resistive tails’ below Tc

The more metallic films have ‘resistive tails’ belowTc = 1.19 K, or exhibit broad transitions
to zero resistivity as can be seen in figure 10. Note the shape of the tails—they are
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hyperbolic or convex-lens-like in shape. The common theoretical explanation for the tail
is the Kosterlitz–Thouless transition atTKT , where the spontaneously generated current
vortices coalesce to form bound pairs. The existence of a KT transition gives rise to a
temperature-dependent resistance that follows the relation [34]

R/RN = A exp
(−2(bτmf /τ)1/2

)
(8)

whereτmf = (Tmf − TKF )/TKF , t = (T − TKF )/TKF andTmf is the mean-field transition
temperature ofTc = 1.19 K. The Kosterlitz–Thouless transition temperatureTKF is treated
as a fitting parameter. The mathematical reason for which equation (8) successfully fits
many of the ‘tail’ data is the square-root dependence that appears in the exponent [35].
However, for this model to apply, the metallic grains must be large enough to support
vortices. The size of the vortex core is typically the superconducting coherence length,
which for Al is of the order of 16 000̊A—much larger than the typical Al grain dimension
in our films. Thus, this model does not apply to individual small grains but may apply
to large granular clusters. Also it is not obvious how one can introduce a magnetic field
dependence into equation (8) to explain the dependence of the MC data taken below 1.19 K
upon the applied field.

We propose an alternative model to explain the resistive tails, first proposed by Deutscher
et al [36]. Some of the metallic links connecting the grains are continuous but too thin
to support superconductivity. Other links between the same grains contain sufficient Al to
form superconducting Josephson tunnelling junctions and weak links. When the thermal
energyET = kBT is reduced below the Josephson coupling energy,EJ (T ) [37],

EJ (T ) = (πh̄/4e2RN) 1BCS(T ) tanh[1BCS(T )/2kBT ] (9)

by cooling the junction sufficiently belowTc, the junction will short out the parallel
normal-metallic link and connect the two superconducting Al grains with a zero-resistivity
path. In equation (9),1BCS(T ) is the temperature-dependent BCS energy gap, tabulated
by Muhlschlegel [38], andRN is the normal-state resistance of the junction, taken as a
fitting parameter. For example, a Josephson junction having a normal-state resistance of
RN = 4900� will have a transition temperature ofT = 0.85 K. The percolation problem of
coupled Josephson junctions has been partially solved by Simanek who predicts in figure 2
of [39] the resistance dependence of Josephson connected bonds upon temperature. The
difficulty with his prediction is that the temperature dependence of the resistivity takes on
the form of a parabolic or concave-lens-like shape, which is not observed experimentally.
However, Simanek did not consider normal-state bonds in parallel with the Josephson
connected bonds [39]. If one includes these ‘two parallel resistors’ in the model, computer
modelling suggests that the resistance versus temperature curve will take on a hyperbolic
or convex-lens-like shape, in agreement with the experimental data. We are not qualified
to produce a rigorous theory. Moreover, one should try to incorporate the BCS energy gap
into the theory, since there are several predictions for the depression of the BCS energy gap
with applied magnetic field, which would allow one to also predict the dependence of the
negative magnetoconductance data upon applied magnetic field observed belowT = 1.19 K
[40, 41]. More theoretical work is needed on this problem.
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