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Suppression of Coulomb blockade peaks by electronic correlations in InAs nanowires
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We performed electronic transport measurements on one-dimensional InAs quantum wires. In sufficiently
disordered wires, transport is dominated by Coulomb blockade, and the conductance can be well described by
tunneling through a quantum dot embedded between two one-dimensional Luttinger liquid wires. In contrast to
previous experiments in other material systems, in our system the conductance difference between peak to valley
decreases with decreasing temperature for several consecutive peaks. This phenomenon is theoretically expected
to occur only for strongly interacting systems with small Luttinger interaction parameter g < 1/2; we find for
our InAs wires a value of g ≈ 0.4. Possible mechanisms leading to these strong correlations are discussed.
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I. INTRODUCTION

Extensive theoretical [1,2] and experimental [3–5] research
has been devoted to one-dimensional (1D) InAs and InSb
semiconductor nanowires (NWs) over the past few years.
Such NWs, when put in proximity to a superconductor, are
expected to host Majorana topological states due to strong
spin-orbit coupling. The lack of a Schottky barrier with the
metallic contact and the relatively large Landé factor make the
experimental conditions for observing these exotic topological
states quite feasible. Indeed, a zero bias peak as a signature of
Majorana states was reported in InSb [4,5] and InAs [3] NWs
in proximity to superconducting Nb and Al films, respectively.

One of the main features in such 1D wires is the existence
of ballistic helical states which are theoretically predicted [6]
to exhibit nonmonotonic (up and down) conductance steps
of size G0 = e2/h as the electron density is varied by the
gate voltage. Although many attempts have been made to
measure these conductance steps, they have not been observed
yet in either InAs or InSb NWs. This indicates that disorder
plays an essential role, preventing the motion of the electrons
between the contacts from being ballistic. It is well known that
1D electron-electron interactions, described by the Luttinger-
liquid (LL) model, amplify the role of disorder significantly,
causing the conductance to vanish at zero temperature even for
very weak disorder [7]. Experimentally, however, the effects
of the interactions in NWs with strong spin-orbit scattering
have not yet been reported.

In this paper we report on experimental studies of electronic
transport in disordered InAs NW at low temperatures over
a wide range of electron densities. At very low densities
we find the transport to be governed by Coulomb blockade
and at relatively high electron density by sequential tunneling
through a series of barriers present in the disordered NW. We
demonstrate that in both regimes the conductance is strongly
affected by electron-electron interactions. The analysis of the
temperature dependence of the conductance and of the line
shape of the resonant tunneling in the Coulomb blockade
regime within the framework of the existing theories [7] allows
us to deduce the corresponding LL parameter g. We show
that in our NWs the effective LL parameter reaches a value
less than 1/2, leading to a decrease in the Coulomb blockade
peak-to-valley difference as the temperature is reduced. To the
best of our knowledge, this phenomenon, predicted by the LL

model, has never been experimentally observed before: While
there were a number of experimental papers [8,9] in which the
Coulomb peaks decreased with decreasing temperature, this
behavior was sporadic; namely it did not occur for consecutive
peaks. Thus these previous results do not follow the predictions
of the LL theory but are rather consistent with stochastic
Coulomb blockade [10], while the opposite is true for our
results, as we discussed below.

II. SAMPLE PREPARATION AND MEASUREMENTS

InAs NWs approximately 2 μm long and 50 nm in diameter
were grown by Au-assisted vapor-liquid-solid molecular beam
epitaxy on a 2′′ SiO2/Si substrate. A ∼1-nm gold layer was
evaporated in situ in a chamber attached to the MBE growth
chamber after degasing of the substrate at 600 ◦C. The substrate
was heated to 550 ◦C after being transferred to the growth
chamber to form gold droplets, and then cooled down to
the growth temperature of 450 ◦C. Indium and As4 were
evaporated at a V/III ratio of 100. The NWs were studied
by scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) and were found to have a uniform
morphology with no tapering and a pure wurtzite structure
with a negligible number of stacking faults [11]. The NWs
were deposited randomly from an ethanol suspension onto
300-nm-thick SiO2 thermally grown on a p+-Si substrate, to
be used as a back gate. The NW were then mapped with
respect to alignment marks using optical microscopy. Ti/Al
(5 nm/100 nm) contact leads, separated by 650 nm, were
deposited on the NWs, using electron beam lithography and
electron beam evaporation, see Fig. 1. A short dip in an am-
monium polysulfide solution [12] was used for removing the
oxide from the InAs NWs surface prior to contacts deposition.

InAs NWs are highly sensitive to surface impurities and
other imperfections (such as surface steps and dangling bonds)
since their conductance electrons are near the surface. Hence,
impurities resulting from sample fabrication and the external
environment, as well as the substrate on which the sample is
placed, induce potential barriers.

Conductance was measured by a pseudo-four-terminal
method using a low-noise analog lock-in amplifier (EG&G
PAR 124A). The current was passed between two probes (I+
and I− in Fig. 1), while the voltage was measured by two
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FIG. 1. (a) SEM image of a typical sample. The conductance
was measured by the pseudo-four-terminal method, in which the
current was passed between two probes (denoted as I+ and I−), while
the voltage was measured between two other probes (V+ and V−).
(b) SEM image of InAs NWs as grown on SiO2/Si substrate. (c) TEM
image of an InAs NW.

different probes (V+ and V− in Fig. 1). It should be noted
that I and V are connected to the NW at the same point, so
the contact resistance is always included in the conductance
measured. The measurements were done in a 4He cryogenic
system in a temperature range of 1.7 K–4.2 K.

III. RESULTS AND DISCUSSION

Figure 2 shows the measured conductance G as a function
of gate voltage, Vg , of an InAs NW over a wide range of gate
bias. The as-grown NWs are conducting and the gate voltage
bias required to pinch off the conductance is Vg = −0.35 V.
At low values of the gate voltage (left panel) a series of distinct
conductance peaks is clearly observed, with a typical spacing
of δVg ∼ 25 mV. At high gate voltage values (exceeding
0.5 V, right panel), the variation of the conductance is much
smoother, with an overall tendency to increase with increasing
gate voltage. At lower temperatures the conductance peaks
become sharper, but the value of the conductance at the peaks
is reduced.
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FIG. 2. Conductance of an InAs NW (diameter: 50 nm; length:
650 nm) as function of the gate voltage at 4.2 K (black curve) and
1.7 K (blue curve). The first conductance peak in denoted by #1 and
the tenth by #10.
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FIG. 3. The peak distance in mV. Its value at peak number n

indicates the distance between peak #n and peak #n+1 taken at
T = 1.7 K.

The behavior at low values of the gate voltage (left panel of
Fig. 2) indicates the occurrence of a Coulomb blockade, similar
to quantum dots. The peak spacing in our device is shown in
Fig. 3. It is well known that the conductance peaks in quantum
dots are equally spaced if the energy level spacing between
single electron states in the dot, �, is negligible relative to
the charging energy and could become irregularly spaced in
the opposite limit [13]. Since here the distance between peaks
varies by over 50%, the latter case is realized in our sample.
In this regime every peak corresponding to an odd number
of electrons in the dot should be separated from the previous
one by a roughly constant charging energy Ec, whereas the
next peak should be separated by Ec + � and thus vary from
level to level. Indeed, we see that every second peak of the
first 10 peaks has a gate voltage spacing of 25 mV (with the
exception of the distance between the fifth and sixth peaks
which is slightly lower, ≈21 mV). This value of δVg = 25 mV
should thus correspond to the charging energy and is related
to gate capacitance Cg via δVg = e/Cg , yielding a value of
Cg = 6.4 × 10−18 F.

Since the geometry of the sample and its dimensions are
known, we can estimate the size LQD of the quantum dot
from the expressions for the capacitance of a cylinder in the
vicinity of a conducting plate, Cg = 2πεLQD/ ln(4d/Dwire),
where ε is the dielectric constant, Dwire is the wire diameter,
and d is the SiO2thickness. Substituting the values of the
sample dimensions, the average dielectric constant of 4He and
SiO2(ε ≈ 2.5ε0), and the estimated value of the capacitance,
gives LQD ≈ 200 nm. We see that LQD is smaller than the NW
length (L = 2 μm) by an order of magnitude and smaller by
more than a factor of 3 compared to the separation between the
voltage leads (Lvp = 650 nm). Thus it is legitimate to assume
that the QD is formed as a puddle of 1D electrons separated
by two barriers on both its sides, somewhere in the segment
of the NW between the voltage leads. In addition, we see
that the segments of the NW to the right and left of the dot are
long enough sotheir single-particle level spacings and charging
energies are well below the temperatures reached in our
experiment, allowing us to describe them as infinite 1D leads.

A. Luttinger liquid model

In such a case it is reasonable to carry out our data analysis in
the framework of the theory of tunneling between two 1D NWs
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FIG. 4. (a) Fit of the first three peaks in Fig. 2 to Eq. (1) at 4.2 K,
3.3 K, and 1.7 K. (b) The experimental conductance peak heights as
a function of temperature and fits to Eq. (2) for the first three peaks
of Fig. 2.

through a quantum dot. Resonant and sequential tunneling
were well studied theoretically and experimentally in the past
for both interacting and noninteracting 1D electrons, see, e.g.,
Ref. [7] and references therein. In our system the peak widths
are found to scale linearly with the temperature T . We thus
try to explain our results using Furusaki’s expression [14] for
the conductance due to sequential electron tunneling in a QD
connected to LL leads. The line shape of a single conductance
peak as a function of the energy E (distance from the peak) is
then:

G(E,T ) = AG0
γ (T )

T cosh
(

E
2kBT

)
∣∣∣∣�

(
1

2g
+ i

E

2πkBT

)∣∣∣∣
2

, (1)

where A is a constant related to the asymmetry and height of the
barriers defining the dot, the factor γ (T ) = T 1/g−1 accounts
for the renormalization of the tunneling rates by the LL effects,
and �(z) is the gamma function. Note that the temperature
variation of G at the peak is then

Gmax(T ) ∝ T 1/g−2. (2)

In all the above expressions g is the effective LL interaction
parameter; g = 1 for a noninteracting NW and decreases
(g < 1) with increasing repulsive interactions. It is a com-
bination of the charge and spin interaction parameters, as
we discuss below. Let us note that while Furusaki’s work
assumed clean wires, Luttinger liquid theory predicts that
the main effect of additional disorder in the wires would
be to renormalize the Luttinger liquid parameter, keeping the
qualitative behavior unaltered [7].

The experimental data in Fig. 2 shows that both the
height and the width of the conductance peaks decrease as
temperature is reduced. Thus the interaction parameter g

should be smaller than 1/2. Our experimental data [Fig. 4(b)]
shows that indeed the temperature dependence of the height
of each peak can be well described by the power law, Eq. (2),
from which we can deduce the value of g for each peak. For
the first two peaks we find g = 0.38 ± 0.03.

In order to verify that the line shape of the Coulomb
blockade peaks as a function of the gate voltage can be
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FIG. 5. (a) Fit of peaks #16– #18 in Fig. 2 to Eq. (1) with α = 0.08
and g = 0.5 at 4.2 K and 1.7 K. (b) The maximum conductance of
peak #17 versus temperature, as was extracted from the fitting to
Eq. (1). The peak height is almost constant as function of temperature,
indicating g ≈ 0.5 [cf. Eq. (2)].

described by expression (1), we fit the gate voltage dependence
of our data to a sum of terms (one for each peak) of the form
of Eq. (1), with E = −eα(Vg − V0), where V0 is the gate
voltage value at the peak and α is the ratio between the gate
capacitance and the total capacitance of the dot. α and the
amplitude A are used as fitting parameters, and for g we plug in
the value extracted from the data analysis presented in
Fig. 4(b). The result for the first 3 peaks is shown in Fig. 4(a).
We find that, as expected, α = 0.1 ± 0.005 does not vary
between the peaks and/or as function of temperature indicating
that Eq. (1) indeed gives a consistent description of our data
set.

We have performed a similar fit procedure for other peaks,
and in Fig. 5 we show the results for peaks #16– #18. Since the
Fermi energy is larger, the value of g is expected to be higher
for these peaks, and we indeed find g ≈ 0.5.

We now turn to the analysis of the data at high gate
voltages (right panel of Fig. 2), where the Coulomb blockade
oscillations are no longer observed. The conductance at this
range of gate voltages also exhibits a power-law decrease as the
temperature is decreased. Figure 6 shows the experimental data
for the temperature variation of the conductance at Vg = 3.5V ,
together with a power-law fit. One can argue that in this regime
the electronic conductance can be described by a model of a LL
with strong disorder, in which the conductance is given by [7]:

G(T ) ∝ T 1/g−1. (3)

From the fit we find that at high gate voltages g ≈ 0.74, higher
than the values extracted within Coulomb blockade regime
for a much lower gate voltage. It is indeed expected that the
interaction constant should increase as the Fermi energy is
increased, since g depends on the ratio between the Coulomb
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FIG. 6. Fit to Eq. (3) (solid blue curve) to the conductance vs
temperature at Vg = 3.5V .

energy U and the Fermi energy EF in the NW. Moreover, we
might have more than one conducting channel in the NW at
such high gate voltage, which could also lead to the increase
in the value of g.

Coming back to the low-gate-voltage regime, another
interesting feature is the nonmonotonic variation of the average
conductance (the background of the Coulomb oscillations):
While the average conductance is generally increasing along
almost the entire range of the gate bias, a local minimum
around Vg ≈ 0.2V is clearly observed. The monotonic in-
crease of the average conductance is expected, since the
transmission of the potential barriers should increase with
energy, and, moreover, electrons start to populate additional
bands at higher gate bias. It is the well-pronounced minimum
of the average conductance which is surprising. One could
speculate that it might be related to the opening of an energy
gap in the higher bands due to disorder and strong spin-
orbit coupling, as was recently predicted theoretically [15].
However, we cannot verify this scenario quantitatively.

B. Ruling out other scenarios

As we pointed out earlier, the reduction of the conductance
peaks at low temperatures has been observed in previous
experiments [8,9], but their results markedly differ from ours.
In these previous experiments, the decrease was sporadic,
occurring only for nonconsecutive peaks, and thus cannot
be accounted for by the LL picture but rather indicates
the occurrence of two (or more) dots in series, leading
to a stochastic Coulomb blockade [10]. In contrast, in our
system the peak reduction occurs in a similar way for several
consecutive peaks. (Let us remark that at relatively high
temperatures the conductance of a few consecutive peaks in
Ref. [8] does decrease as the temperature is decreased, but the
peak-to-valley difference increases, as opposed to our results,
cf. Fig. 7.)

The stochastic Coulomb blockade effect stems from the fact
that consecutive Coulomb blockade peaks of two quantum
dots in series generically (if the dot capacitances are not
commensurate) have different temperature dependence, which
changes in a stochastic manner from one peak to the next, as
seen, e.g., by Ref. [8] in the low-temperature regime. If the dot
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FIG. 7. The difference between the peak and the subsequent
valley conductance as function of temperature for the first peak in
Fig. 2.

capacitances happen to be commensurate, then consecutive
peaks would still exhibit different temperature dependence,
but the variation between the peaks would be periodic rather
than stochastic. In our system, however, consecutive peaks
show similar temperature dependence. To obtain such behavior
from a system of two dots would require fine tuning of the
capacitances and the gate offset between the dots, which is
highly improbable in a disordered system such as ours.

In order to verify that the stochastic picture (two or more
dots of different size) cannot account for our data we performed
numeric simulation of the conductance of our 200-nm quantum
dot in series to 283-nm quantum dot [Fig. 8(a)] and 513-nm
quantum dot [Fig. 8(b)] as function of gate voltage at 4.2 K,
3.3 K, 1.7 K, and 0.3 K. As we anticipated, the results are
completely inconsistent with our data.

One may also try to suggest that the behavior we observe
might also stem from a dynamical Coulomb blockade (DCB)
in the junctions between the wire and the leads, due to the finite
resistance R of the leads connected to the wire [16]. In this case,
the linear-response conductance we measure could have been

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

V
g
 (V)

G
 (

e2 /h
)

4.2K
3.3K
1.7K
0.3K

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

V
g
 (V)

G
 (

e2 /h
)

4.2K
3.3K
1.7K
0.3K

(b)

FIG. 8. Numeric simulation of the conductance as function of
gate voltage, at 4.2 K, 3.3 K, 1.7 K, and 0.3 K of (a) 200-nm and
283-nm quantum dots in series; (b) 200-nm and 513-nm quantum
dots in series.
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FIG. 9. Fit of the first three peaks in Fig. 2 to Eq. (1) (LL model,
as in Fig. 4) and to the DCB model at 4.2 K, 3.3 K, and 1.7 K.

described by adding in series the conductance of a quantum
dot connected to a noninteracting NW, and the conductance
of the NW-lead junctions affected by DCB, for which G ∝
T β , where the exponent β depends on the impedance of the
junctions’ environment in units of the quantum resistance. We
fit our data for the first three Coulomb blockade peaks to the
DCB model and compare the best DCB fit to the LL model,
cf. Fig. 9. As Fig. 9 clearly shows, the DCB model cannot fit
our data (especially at the lower temperatures), while our LL
model does so very well.

C. Possible origins of the small effective
Luttinger liquid parameter

Now we address the question of why in our InAs NWs
the effective LL parameter g is smaller than 1/2 at low
filling (so Gmax decreases with decreasing temperature), while
other experimental studies of 1D quantum wires, e.g., carbon
nanotubes [17], GaAs wires formed at the cleaved edge
overgrowth of a GaAs/AlGaAs heterostructure [18], or at
the bottom of a V-grooved GaAs growth [19], all exhibit
effective LL parameters higher than 1/2 (so Gmax increases
with decreasing temperature). We believe that there are two
main reasons which contribute to the lower value of the LL
parameter in our InAs NWs.

The first is related to the environment of the quantum wires.
Both types of GaAs wires reported in the literature [18,19]
were created within 2DEG structures embedded well inside
a semiconductor material with a large dielectric constant
(AlGaAs and GaAs). In contrast, while the InAs NWs
have a similar dielectric constant to GaAs, they are placed
on SiO2surface, so the surrounding materials, namely 4He
and SiO2, possess much smaller dielectric constants. These
reduced dielectric constants enhance the effect of Coulomb
interaction in our system as compared to the GaAs wires
reported before. Carbon nanotubes could have even lower

dielectric constant (especially when suspended), but, as we
now discuss, their high channel symmetry is responsible for
enhancing the effective g.

The second reason for observing a smaller LL parameter
in our system is related to an inherent property of InAs,
which possesses strong spin-orbit coupling that breaks the
spin rotation symmetry. It should be noted that the effective
LL parameter g is related to the interaction parameters in the
charge and spin channels (gc and gs , respectively) by [14]

1

g
= 1

2gc

+ 1

2gs

. (4)

In GaAs spin-orbit coupling is very small, therefore spin-
rotation symmetry dictates that gs = 1. Thus, g < 1/2 can
only be obtained if the interaction in the charge sector is
extremely strong, gc < 1/4. In carbon nanotubes the additional
valley degeneracy results in 1/g = 1/(4gc) + 3/4, so g < 1/2
results in an even stricter condition, gc < 1/5. On the other
hand, in InAs spin rotation symmetry is broken, allowing for
gs < 1 and making it easier to reach g < 1/2.

Another possibility to explain to the observed low value of
g originates in the DCB. Let us remind the reader that in the
previous section we have ruled out the possibility of a DCB
occurring in the junctions between the wire and the leads.
However, when the DCB occurs in the junctions defining the
dot itself, theory shows that the effects of DCB are exactly
equivalent to those of Luttinger liquid wires [20], and this
prediction has recently been demonstrated in experiment [21].
One can straightforwardly extend this previous analysis to the
more general case of Luttinger liquid wires with Luttinger
liquid parameter g, which also support electromagnetic modes
with high impedance R. This case is equivalent to Luttinger
liquid wires with no DCB but modified Luttinger liquid
parameter, given by

geff = g

1 + gR/(2RQ)
, (5)

where RQ = h/e2 is the resistance quantum. Thus, Eq. (1) for
the conductance and the subsequent analysis in our manuscript
still holds in this case as is, with g replaced by geff . In particular,
our conclusion that our experiment is novel in being the first
to give geff < 1/2 is not modified (in Ref. [21] mentioned
above geff > 1/2). While we think that it is unlikely that the
environment of our dot features a very high impedance R, it
might be that the combination of Luttinger liquid physics and
DCB is part of the reason for the unusually low value of geff

we observe.

IV. SUMMARY

Our gate- and temperature-dependence data are of high-
enough quality to clearly distinguish between the LL model
and alternatives models. We believe that the combination of
a lack of orbital degeneracy due to strong spin-orbit coupling
and of the low effective dielectric constant makes our InAs NW
a unique system where strong effective interactions, g < 1/2,
can be achieved, and thus a decrease in Coulomb blockade
peak heights with decreasing temperature can be observed.
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Finally, our experiment concentrated on the sequential
tunneling regime: At lower temperature we expect resonant
tunneling to become dominant near the Coulomb blockade
peaks and the Kondo effect to show up in odd charge valleys,
as recently found in measurements carried out on short InAs
NWs (where LL effects are absent) [22].
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