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We have measured weak antilocalization effects, universal conductance fluctuations, and
Aharonov-Bohm oscillations in the two-dimensional electron gas formed in InGaAs/AlInAs het-
erostructures. This system possesses strong spin-orbit coupling and a high Landé factor. Phase-
coherence lengths of 2−4 µm at 1.5−4.2 K are extracted from the magnetoconductance measure-
ments. The analysis of the coherence-sensitive data reveals that the temperature dependence of the
decoherence rate complies with the dephasing mechanism originating from electron-electron inter-
actions in all three experiments. Distinct beating patterns superimposed on the Aharonov-Bohm
oscillations are observed over a wide range of magnetic fields, up to 0.7 Tesla at the relatively
high temperature of 1.5 K. The possibility that these beats are due to the interplay between the
Aharonov-Bohm phase and the Berry one, different for electrons of opposite spins in the presence
of strong spin-orbit and Zeeman interactions in ring geometries, is carefully investigated. It appears
that our data are not explained by this mechanism; rather, a few geometrically-different electronic
paths within the ring’s width can account for the oscillations’ modulations.

PACS numbers: 73.63.-b, 73.20.Jc, 71.70.Ej

I. INTRODUCTION

The electronic characteristic scale on which quantum
interference can occur in a mesoscopic sample is the
phase-coherence length Lφ. The study of decoherence
in quantum-mechanical systems has gained much inter-
est recently, because Lφ is relevant to spintronics, i.e.,
to spin-sensitive devices1–4 comprising materials with
strong spin-orbit interactions. The variation of Lφ with
the temperature T serves to indicate the main scattering
mechanism which limits phase coherence, be it electron-
electron, electron-phonon, or spin-dependent, scatter-
ing processes. At low temperatures, though, electron-
electron scattering is the dominant mechanism respon-
sible for dephasing. Theoretically, the dephasing rate,
1/τφ, due to this scattering vanishes linearly with T
as the temperature decreases towards zero, in agree-
ment with the prediction of Altshuler et al.5 To de-
termine experimentally the relevant dephasing mecha-
nism and to estimate the coherence length, quantum-
interference properties, such as weak localization and
antilocalization,6,7 universal conductance fluctuations,8

and Aharonov-Bohm oscillations,9–11 are measured and
analyzed. These quantum effects have different depen-
dencies on the coherence length; their combined study
provides a comprehensive picture of the processes lead-
ing to decoherence in weakly-disordered nanostructures.

Here we focus on nanostructures in which the elec-
trons are subjected to significant spin-orbit coupling,
and report on studies of weak antilocalization (WAL)
effects, universal conductance fluctuations (UCF), and
Aharonov-Bohm (AB) oscillations in the magnetoresis-
tance data of mesoscopic samples of InGaAs/AlInAs.
This material is well-known for its strong Rashba-type

spin-orbit interaction,12,13 characterized by the coupling
strength αso of about of 10−11eV m.14,15 This value cor-
responds to a spin-orbit energy16 ~ωso = (m∗vF/~)αso ≈
1.6 meV (the Fermi wave vector of our samples is ≈
1.58 × 106 cm−1). The Landé factor of our material is
about 15, and hence the Zeeman energy is ~ωZ ≈ 0.87×B
meV, where the magnetic field B is measured in Tesla.

The spin-orbit interaction, coupling the momentum
of the electron to its spin, in conjunction with a Zee-
man field gives rise to Berry phases.17 The simplest il-
lustration of a Berry phase occurs when a spin 1/2 fol-
lows adiabatically a magnetic field whose direction varies
in space.18,19 When that direction returns to its initial
orientation the spin wave function acquires a geometri-
cal phase factor. A spatially-inhomogeneous magnetic
field can be produced by the joint operation of spin-
orbit coupling and a Zeeman field.16 Because the Berry
phase may modify periodicities related to the Aharonov-
Bohm effect, it has been proposed that it can be detected
in persistent currents, magnetoconductance, and univer-
sal conductance fluctuations of strongly spin-orbit cou-
pled mesoscopic systems.16,19–21 Specifically, the Berry
phase is expected to manifest itself in additional oscilla-
tions superimposed on the conventional Aharonov-Bohm
ones, leading to peak-splitting in the power spectrum
of those oscillations,18 i.e., to a beating pattern. Beat-
ing magnetoconductance oscillations have been indeed
reported22–26 for AB rings fabricated in materials with
strong spin-orbit interactions at temperatures below 500
mK. In comparison, our samples show beating patterns
at much more elevated temperatures.

However, one should exercise caution when adopting
the interpretation based on the effect of Berry phases for
beating patterns superimposed on Aharonov-Bohm oscil-
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lations. First, the Aharonov-Bohm oscillations appear at
arbitrarily small magnetic fields, while the effect of the
Berry phase reaches its full extent only in the adiabatic
limit, realized when both ωZ and ωso are larger16,18,19

than the frequency of the electron rotation around the
ring. Second, the Berry geometrical phase is restricted to
the range {0, 2π}, limiting the corresponding geometrical
flux to the order of one flux quantum,19 which may make
it negligible as compared with the Aharonov-Bohm flux.
Third, there can be other causes for the appearance of
beating patterns: a recent experimental study27 carried
on InGaAs/InAlAs mesoscopic rings reports on beating
patterns in the magnetoresistance as a function of the
magnetic field, measured at temperatures up to 3 K. The
authors attribute these patterns to the interplay of a few,
geometrically-different, closed paths that are created in
a finite-width ring.28 We carry out below a thorough at-
tempt to fit our AB oscillations’ data to the theoretical
expressions predicting the beating patterns, in particular
the expressions given in Ref. 16. We find that the theo-
retical expression for the transmission of a strongly spin-
orbit coupled Aharonov-Bohm ring does show a beating
pattern. However, it seems to be due to the Zeeman in-
teraction alone; the reason being the confinement of the
Berry phase to the range {0, 2π} mentioned above. Our
conclusion is that, given the physical parameters of our
rings, the beating patterns we observe probably cannot
be attributed to the effects of the Berry phase.

The remaining part of the paper is organized as fol-
lows. Section II describes the samples’ preparation and
the measurements techniques. Section III includes the
results of the measurements of the antilocalization ef-
fects (Sec. III A), the universal conductance fluctuations
(Sec. III B), and the Aharonov-Bohm oscillations (Sec.
III C). In each subsection we list the values of the co-
herence length extracted from the data. In the last sub-
section there we combine the results of all measurements
to produce the dependence of the dephasing rate in our
samples on the temperature (Sec. III D), from which we
draw the conclusion that it is electron-electron scatter-
ing that dephases the interference in our InGaAs/AlInAs
heterostructures. Section IV presents our attempts to ex-
plain the beating pattern of the AB oscillations displayed
in Sec. III C. Our conclusions are summarized in Sec. V.

II. SAMPLES’ PREPARATION AND
MEASUREMENTS

Three types of samples were prepared, all compris-
ing a single basic material. The schematic drawing of
the layers in the InGaAs/AlInAs heterostructures used
in our studies is given in Fig. 1. This material was
grown by molecular-beam epitaxy, as described in detail
elsewhere.29,30 The geometrical shape of above-micron
devices was patterned by a conventional photolithogra-
phy, while that of the nanoscale ones were patterned
using e-beam lithography. About 1 micron deep mesa

FIG. 1. (Color online) Schematic structure of the sample
layers. The dashed (red) line in the spacer layer is the Si
δ−doping.

was etched with phosphoric acid (of concentration 1:8) to
prevent as much as possible parasitic conduction in the
structure below the quantum well. Vacuum deposition
of a Au-Ge conventional alloy was used to form Ohmic
contacts. Electron density of 4.55 ×1011 cm−2 and elec-
tron mobility of 1.8 ×105 cm2/(V sec) were deduced from
resistivity and Hall-effect measurements taken at 4.2 K.
These values were calculated for the samples which have a
significant contribution of the parallel conduction of low
mobility layers below the 2DEG in the quantum well,
and therefore are different from the actual values of the
mobility and carrier density of electrons in that quantum
well.

Measuring each of the coherence effects requires sam-
ples of different geometry. We have used a 110 µm long
(i.e., the distance between the voltage probes) and 10 µm
wide Hall bar for the weak-localization studies, a shorter
Hall bar of length 8 µm and width 0.2 µm for the UCF
measurements, and two identically-prepared rings (de-
noted below by “A” and “B”), of average radius 0.75
µm, and average width 0.2 µm for the AB measure-
ments, see Fig. 2. The resistance was measured by the
four-terminal method, exploiting a low-noise analog lock-
in amplifier (EG&GPR-124A) in perpendicularly-applied
magnetic fields up to 5 Tesla. The measurements were
performed in a 4He cryostat at temperatures in the range
of 1.4−4.2 K.

III. RESULTS

A. Weak antilocalization

Weak-localization corrections to the average conduc-
tivity arise from interference between pairs of time-
reversed paths that return to their origin. Application
of a magnetic field that destroys time-reversal symmetry
suppresses the interference and thus increases the con-
ductivity. Antilocalization appears in systems in which
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FIG. 2. (Color online) High-resolution scanning-electron
microscope image of one of the measured Aharonov-Bohm
rings.

FIG. 3. (Color online) The magnetoconductivity as a function
of a magnetic field normal to the sample plane, at 1.6 K (a)
and 4.2 K (b), for the WAL sample. The dotted (blue) lines
are the data; the solid (red) curves represent the theoretical
magnetoconductivity, calculated from Eq. (1).

the electrons are subjected to (rather strong) spin-orbit
coupling. Then, the interference-induced correction to
the conductivity is reduced, because the contribution of
time-reversed paths corresponding to wave functions of
opposite spins’ projections is negative, while that of the
equal spin-direction time-reversed paths remains posi-
tive. The reason is that upon following a certain closed
path, the electron’s spin is rotated by π, while for the
time-reversed path with the opposite spin projection it
is rotated by −π. These two phases add up to give a
total rotation of 2π, leading to a Berry’s phase factor
of −1. This results in a higher net conductivity, and
the positive magnetoconductivity caused by localization
is turned into a negative one at low magnetic fields.

Measuring the magnetoconductivity as a function of

the magnetic field allows for an accurate estimate of the
phase-breaking length Lφ. The dotted curves in Fig. 3
are the magnetoconductivity ∆σ(B) of the longer Hall
bar as a function of a magnetic field B directed nor-
mal to the sample. Upon increasing the magnetic-field
strength from zero, one observes a decreasing conductiv-
ity originating from the suppression of antilocalization,
followed by an increase due to the destruction of local-
ization. Indeed, the line shapes at small magnetic fields
measured at 1.4 K and 4.2 K, are nicely fitted to the
curves calculated from the theoretical expression derived
in Refs. 6 and 7. As found there, the magnetoconduc-
tivity of a two-dimensional electron gas, in the presence
of a perpendicular magnetic field, is

∆σ(B) ≡ σ(B)− σ(0)

= −e
2Nvα

2π~2
[Ψ(x1)− 3

2
Ψ(x2) +

1

2
Ψ(x3)] , (1)

where

Ψ(x) = ln(x) + ψ([1/2] + [1/x]) , (2)

ψ being the digamma function. In Eq. (1), Nvα is the
valley degeneracy, and

x1 =
B

B0 +Bso

, x2 =
B

Bφ + 4
3Bso

, x3 =
B

Bφ
. (3)

These parameters comprise Bφ = ~/(4eL2
φ), the “phase-

coherence” magnetic field, roughly the field required to
destroy phase coherence, Bso = ~/(4eL2

so) that represents
the spin-orbit coupling, with Lso ≈ vF/ωso, and B0 =
~/(4e`2), where ` is the mean-free path.

The comparison of the data with Eq. (1) has yielded
Lso = 0.87 ± 0.09 µm for the spin-orbit characteristic
length, Lφ = 3.9 ± 0.9 µm at 1.6 K, and Lφ = 1.7 ±
0.3 µm at 4.2 K for the phase-coherence length. The
relatively large error bars do not arise from the fitting
procedure; these are due to the scattering of the fitting
values obtained for different samples.

As seen in Fig. 3, the curves of the data-points deviate
from the theoretical ones for magnetic fields exceeding
B = 0.01 Tesla. We believe that at these fields there ap-
pear other quantum corrections, e.g., interaction effects,
and contributions arising from the parasitic conductances
of the layers below the quantum well.

Equation (1) derived in Refs. 6 and 7 emphasizes
the contribution to the conductivity resulting from the
impurity-induced spin-orbit interaction or from the cu-
bic (in-the-momentum) Dresselhaus coupling. The the-
ory of Iordanskii et al.31 accounts for the linear-in-the-
momentum Rashba interaction, which is rather signifi-
cant in InGaAs.32 As shown in Ref. 31, this linear inter-
action adds another characteristic spin-orbit field in ad-
dition to Bso, representing the linear-in-the-momentum
Rashba interaction. This additional field is denoted B′so.
Indeed, our data can be also fitted to Eq. (13) of Ref. 31;
we have found though, that due to the larger number of
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fitting parameters [as compared to Eq. (1)] multiple sets
of the fitting parameters Bso and B′so can produce the
same quality of fit as obtained for Eq. (1), with the same
values of Bφ as used in the latter. In order to distinguish
between the sets of fitting parameters the range of mag-
netic fields should be much larger and the quality of the
data, limited mostly by universal conductance fluctua-
tion, should be much better. Unfortunately, out data do
not meet these restrictions. As the focus of the present
study is on dephasing mechanism, and since both theo-
ries produce the same values of Bφ, we present in Fig. 3
the fitting curve of Eq. (1).

Finally we note that for R� = 220 Ω and carrier den-
sity of 4 × 1011 cm−2, the mean-free path is about 0.3
µm, which gives B0 ≈ 2 × 10−3 Tesla. We have found
that Lφ is not very sensitive to the value of B0.

B. Universal conductance fluctuations

Like weak localization and weak antilocalization ef-
fects, the universal conductance fluctuations of a meso-
scopic system result from interference of the electronic
wave functions corresponding to pairs of time-reversed
paths. As such, these fluctuations are dominated by the
phase-coherence length Lφ. The UCF are expressed by
the ensemble-average autocorrelation function of the di-
mensionless conductance, g = G/(e2/h),8

F (∆B) = 〈δg(B)δg(B + ∆B)〉 , (4)

where δg(B) = g(B)− 〈g(B)〉. The angular brackets de-
note the ensemble average. Theoretically, the average is
over an ensemble of mesoscopic systems of various im-
purity configurations; the experiment is carried out on a
single sample and the average is accomplished by ramp-
ing a magnetic field over the range ∆B (∆B was in the
range 10−3−1 Tesla). This can generate sample-specific,
random-looking but reproducible fluctuations in the con-
ductance.

The phase-coherence length is derived from the mag-
netic correlation field Bc, i.e., the field corresponding to
the half width at half height of F . This magnetic corre-
lation field is found from the correlation function using
the condition

F (∆B = Bc) =
1

2
F (∆B = 0) , (5)

where F (∆B = 0) is the root-mean-square (rms) of the
conductance fluctuations, ∆g,

∆g =
Nvα

β

(Lφ
L

)3/2
, (6)

(L is the length of the specimen).33 The coefficient β
represents the effect of the spin-orbit coupling on the
magnitude of the fluctuations. The correlation field is
given by

Bc =
h/e

WLφ
, (7)

FIG. 4. (Color online) (a) The resistance as a function of the
magnetic field of a UCF sample at 1.52 K and at 4.2 K. (b)
The deviation of the magnetoconductance from the average
background average.

where W is the sample’s width.
The resistance of the shorter Hall bar, measured at 1.52

K and at 4.2 K, is shown in Fig. 4(a). The reproducible
conductance fluctuations are displayed in Fig. 4(b); the
curve there is obtained by subtracting the slowly-varying
background of the average conductance from the mea-
sured one. Taking β = 2 (corresponding to strong spin-
orbit coupling33,34) in Eq. (6) yields that the coherence
length of our short Hall bar is Lφ = 3.03±0.8 µm at 1.52
K and is 1.56±0.8 µm at 4.2 K; Eq. (7) yields the values
Lφ = 2.3±1.2 µm at 1.52 K and 1.65±0.25 µm at 4.2 K.

C. The frequency and the amplitude of the
Aharonov-Bohm oscillations

Perhaps the most conspicuous manifestation of the
Aharonov-Bohm effect9 in condensed matter are the pe-
riodic oscillations of the magnetoconductance of a meso-
scopic ring as a function of the magnetic flux penetrat-
ing it, whose periodicity is the flux quantum Φ0 = h/e.
These oscillations are utilized to probe the sensitivity of
the electronic wave functions to magnetic fluxes. Their
amplitudes, i.e., their “visibility” is the hallmark of quan-
tum coherence.

The average area of the two rings we measured (see
Sec. II and Fig. 2) is ≈ 1.8 µm2; the periodicity of the
AB oscillations with respect to the magnetic field is thus
expected to be ≈ 400 Tesla−1. The magnetoresistance of
our ring A as a function of the magnetic field measured
at 1.5 K is portrayed in Fig. 5. Panel (a) there depicts
the raw data, and panel (b) magnifies the low-field part of
the data. Once the low-frequency data points are filtered
out [see panels (a) and (b) in Fig. 6], one can indeed
observe fast oscillations with a frequency of about 400
Tesla−1, consistent with the estimated periodicity for the
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FIG. 5. (Color online) (a): The magnetoresistance of an
Aharonov-Bohm ring at 1.5 K, as a function of the magnetic
field, up to B =0.7 Tesla. (b) The magnified data in the low-
field region, showing the tiny oscillations superimposed on the
Aharonov-Bohm ones.

AB oscillations. On top of these, one sees beats, with a
frequency of about 40 Tesla−1. These observations are
consistent with the Fourier transform of the resistance,
shown in Fig. 7. Panel (a) there, (at magnetic fields in
the range 0.1−0.15 Tesla) is peaked around the expected
AB frequency ≈ 390 Tesla−1. Panel (b), based on data
points from the range 0.65−0.7 Tesla, has two peaks, at
≈ 390 Tesla−1 and at ≈ 330 Tesla−1. Analysis of data
between these ranges shows a gradual decrease of the
(average) AB frequency and a gradual increase of the
splitting between the two peaks. Although the coherence
length of our rings is of the order of the ring circumference
(see below), Fig. 7(b) also shows small peaks around
≈ 700 Tesla−1, probably corresponding to the second
harmonic of the AB oscillations.

The splitting of the main peak in the power spectrum
is the hallmark of the beating pattern,18 expected to re-
sult from the joint effect of the strong spin-orbit coupling
and the Zeeman interaction.16,24 The appearance of the
beating patterns, and their comparison with theoretical
expectations, are discussed in Sec. IV.

The Fourier transforms of the magnetoresistance of our
sample B are similar to those shown in Fig. 7 for sample
A. The amplitude of the AB oscillations (the “visibil-
ity”), and therefore also the heights of the leading peak
in the Fourier transforms of the magnetoresistance, de-
crease with increasing temperature, because of the de-
crease of the coherence length. To deduce this length, we
used measurements on our sample B, at magnetic fields
below 0.05 Tesla, taken at 1.54 K, 1.78 K and 2.3 K. The
narrow range of magnetic fields has been chosen because
it contains mainly an amplitude of only a “single” har-
monic. According to Ref. 11, the amplitude of the h/e

FIG. 6. (Color online) (a) and (b) The data shown in Figs.
5(a) and 5(b), once the low-frequency data points are filtered
out.

oscillation in the conductance, ∆GAB, is

∆GAB =
e2

h

√
~D

r2kBT
exp[−πr/Lφ] , (8)

where r is the radius of the ring and D is the diffusion
coefficient.

D. The dephasing rate

The dephasing rate τ−1φ of electrons due to electron-

electron interactions was calculated by Altshuler et al.;35

it is linearly proportional to the temperature and to the
sheet resistance R� of the sample,

1

τφ
=
kBT

~
e2R�

h
ln
( h

e2R�

)
. (9)

The dephasing rate is related to the coherence length by

τ−1φ = D/L2
φ . (10)

Using the known value of the two-dimensional density
of states, N (E) = 0.2 × 1011 cm−2 meV−1 for our In-
GaAs quantum well (with an effective mass of m∗ =
0.05m), and the Einstein relation R� = 1/[e2N (E)D],
together with the experimentally-determined value of de-
phasing length Lφ = 3.8 µm, gives us self-consistency
with Eq. (9), with a diffusion coefficient of D = 0.13
m2/sec, and R� = 220 Ω for the samples exploited in
the WAL measurements. For the samples with the nar-
row etched mesa on which the UCF and the AB oscilla-
tions are measured, we estimate D = 0.06 m2/sec, and
R� = 450 Ω. The latter values are consistent with the
change of the sheet resistance due to diffusive bound-
ary scattering in two dimensions.36 The symbols in Fig.
8 mark the values of the “normalized dephasing rate”,
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FIG. 7. (Color online) (a) The Fourier transform of the mag-
netoresistance for magnetic fields in the range 0.1−0.15 Tesla;
the main peak is at ≈ 390 Tesla−1. (b) The Fourier trans-
form of the magnetoresistance for magnetic fields in the range
0.65−0.7 Tesla, where the peaks are at ≈ 330 Tesla−1 and ≈
390 Tesla−1.

FIG. 8. (Color online) The “normalized” dephasing rate ex-
tracted from all three experiments, as a function of the tem-
perature. The solid line is kBT/~, see Eq. (9).

h/(τφe
2R�){ln[h/e2R�)]}−1 as extracted from our ex-

periments. Ideally, these should fall on the straight line
kBT/~, and indeed, within the experimental error bars,
they mostly do, regardless of the coherence phenomenon
from which they are deduced. In particular, at T =1.5 K,
where the experimental data are most reliable, all data
points coincide with the theoretically-predicted value.

IV. THE BEATING PATTERNS IN THE
MAGNETOCONDUCTANCE OF THE RINGS

The combined effect of strong spin-orbit and Zeeman
interactions, in the adiabatic limit, is expected to induce
a Berry phase on the spin part of the electronic wave
function. The possibility that this geometrical phase can
be detected in power spectra of the magnetoconductance
oscillations of mesoscopic rings has been pursued quite
actively, both theoretically and experimentally (see Sec.
I for a brief survey). An interesting (theoretical) observa-
tion has been made in Ref. 18. Carrying out numerically
a rather complicate calculation of the AB oscillations and
the corresponding power spectrum (computed by zero-
padding the data before applying the Fourier transform
code), the authors found that the peak splitting in dif-
fusive rings depends strongly on the different dephasing
sources, and that for small dephasing the splitting is to-
tally masked.

Our data are not sufficient to examine this observation.
We have therefore analyzed the simpler expression given
in Ref. 16 for the transmission T of a clean Aharonov-
Bohm ring37 subjected to strong spin-orbit and Zeeman
interactions,

T =
[
1 +

tan2(Φ+
t /2)

4 sin2(Φ+
S /2)

]−1
+
[
1 +

tan2(Φ−t /2)

4 sin2(Φ−S /2)

]−1
.

(11)

This expression is valid in the adiabatic limit, pertaining
to the case where, as mentioned in Sec. I, both ωso and
ωZ are larger than the rotation frequency around the ring,
Ω.16 This condition is fulfilled by our rings, whether the
rotation frequency is calculated in the clean limit, Ω =
vF/(2πr), leading to ~Ω ≈ 0.33 meV, or in the diffusive
limit, Ω = D/[(2πr)2], in which case ~Ω ≈ 0.001 meV.
The transmission T is given in terms of two phases, each
of which is different for the two spin orientations. The
phase Φ±t comprises the Aharonov-Bohm phase and the
Berry phase, ΦB,

Φ±t = Φ±B − 2π
Φ

Φ0

, Φ±B = ±π
(

1− ωZ√
ω2
so + ω2

Z

)
, (12)

where Φ is the magnetic flux through the ring. With
our experimental parameters, Φ/Φ0 ≈ 400×B, where B
is measured Tesla. The other phase, Φ±S (termed “stan-
dard” in Ref. 16), is in fact the optical path along the
ring perimeter; it is different for each spin direction since
the Zeeman energy modifies the Fermi energy of each
spin. This phase is given by

Φ±S = 2πrk±0 , (13)

where k±0 are the solutions of

EF =
(~k±0 )2

2m∗
± ~
√
ω2
Z + (ωsok

±
0 /kF)2 . (14)
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FIG. 9. (Color online) The transmission, Eq. (11), as a func-
tion of the magnetic field over a wider range of fields (a) and
over a restricted range (b). The parameters are given in Secs.
I and IV.

The effective electron mass m∗ in our samples is ≈ 0.05
times the free-electron mass, and the Fermi energy EF ≈
19.6 meV. Solving Eq. (14) yields

[k±0 ]2 = k2F

[
1 +

1

2

(~ωso

EF

)2]
∓ 1

EF

√
(~ωZ)2 + (~ωso)2

[
1 +

1

4

(~ωso

EF

)2]
. (15)

For our samples’ parameters EF ≈ 12.3× ~ωso, while ωZ

becomes comparable to ωso at about B = 2 Tesla. The
transmission as a function of the magnetic field as derived
from Eq. (11) is illustrated in Figs. 9 (the parameters
use are those quoted in Sec. I and above).

The two panels in Fig. 9 display the transmission for
two different ranges of the magnetic field. Both show
an envelope of the AB oscillations, which varies slowly.
Figure 9(a) clearly exhibits beats, superimposed on fast
AB oscillations. From Eq. (12), the Berry phase is of
order π, and the AB phase is of order 2π×400×B (B in
Tesla). Therefore, the Berry phase affects the results only
for B < 0.002 Tesla, and it is practically irrelevant for
the interpretation of our data. Equation (11) shows that
the modulations of the AB oscillations, which result from

the factors tan2(Φ±t /2) ≈ tan2(πΦ/Φ0), are modified by
the prefactors sin2(Φ±S /2), which create beats due to the

dependence of Φ±S on B. At ~ωso = 0, Eqs. (13)-(15)

yield Φ±S /(2π) = 118 ×
√

1∓ ~ωZ/EF ≈ 118 ∓ 2.7 × B
(B in Tesla). Then the transmission given in Eq. (11)
should exhibit beats at a very small frequency of order 2.7
Tesla−1. In our samples ~ωso ≈ 1.6 meV, and then the
two functions Φ±S are approximately parabolic in B (for
small B), with slopes that increase with B. Specifically,
one has Φ+

S /(2π) ≈ 114−0.14(B−0.1)+O[(B−0.1)2] and

Φ−S /(2π) ≈ 123 + 0.14(B− 0.1) +O[(B− 0.1)2] near B =

0.1 Tesla, while Φ+
S /(2π) ≈ 113−0.98(B−0.7) +O[(B−

0.7)2] and Φ−S /(2π) ≈ 124+0.89(B−0.7)+O[(B−0.7)2]
near B = 0.7 Tesla. The corresponding beats have even
smaller frequencies, of order 0.14 Tesla−1 and 1 Tesla−1,
respectively. These frequencies seem consistent with the
envelopes of the fast oscillations in Fig. 9. Although the
theory exhibits a slow decrease of the average frequency,
and a gradual increase of the beating frequencies, similar
to the experimental observations, all of these theoreti-
cal beat frequencies are much smaller than those seen
in the experiments. Fourier transforms of the data in
Fig. 9 (with or without zero-padding) indeed yield single
peaks at the first harmonic of the AB oscillations, some-
what broadened by the Zeeman contributions. Higher
harmonics do show small splittings of the peaks.

V. SUMMARY

We have measured weak antilocalization effects, uni-
versal conductance fluctuations, and Aharonov-Bohm os-
cillations in the two-dimensional electron gas formed
in InGaAs/AlInAs heterostructures. This system pos-
sesses strong spin-orbit coupling and a high Landé fac-
tor. Phase-coherence lengths of 2−4 µm at 1.5−4.2 K
were extracted from the magnetoconductance measure-
ments. The analysis of the coherence-sensitive data re-
veals that the temperature dependence of the decoher-
ence rate complies with the dephasing mechanism origi-
nating from electron-electron interactions in all three ex-
periments.

Distinct beating patterns superimposed on the
Aharonov-Bohm oscillations are observed over a wide
range of magnetic fields, up to 0.7 Tesla at the rela-
tively high temperature of 1.5 K. The Berry phase is
much smaller than the AB phase, and therefore cannot
be responsible for these beats. Qualitatively, the theory
of Aronov and Lyanda-Geller16 does exhibit beats due
to the interplay between the Zeeman and the spin-orbit
interactions. However, the beating frequencies found in
this theory are much smaller than those observed exper-
imentally. It thus seems that the source of the beating
pattern in the magnetoconductance of our rings are the
different electronic paths through the ring, each pene-
trated by a slightly different magnetic flux.28 For exam-
ple, since the AB frequencies are proportional to the area
encompassed by the electronic paths, the measured ratio
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of the two frequencies in Fig. 7(b), i.e., 390/330 ≈ 1.2,
implies a radii ratio of about 1.1. The width of our rings
(see Fig. 2) can easily accommodate two paths with such
a radii ratio, and hence may explain the beating pattern.
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