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MULTI-ITEM REPLENISHMENT AND STORAGE PROBLEM 
(MIRSP): HEURISTICS AND BOUNDS 

SHOSHANA ANILY 
TelAviv University, TelAviv, Israel 

(Received November 1988; revisions received June, November 1989; accepted November 1989) 

Automated warehouses are often faced with the problem of smoothing their stock volume over time in order to minimize the 
cost due to space acquisition. In this paper, we consider an infinite-horizon, multi-item replenishment problem: In addition to 
the usual setup and holding costs incurred by each item, an extra charge proportional to the peak stock volume at the warehouse 
is due. This last cost raises the need for careful coordination while making decisions on the individual item order policies. We 
restrict ourselves to the class of policies that follows a stationary rule for each item separately. We derive a lower bound on the 
optimal average cost over all policies in this class. Then we investigate the worst case of the Rotation Cycle policy. We show 
that depending on the problem's parameters, the Rotation Cycle policy may yield an extremely good solution but in other 
settings this heuristic may generate an extremely poor policy. We also develop a new heuristic whose performance is at least as 
good as that of the Rotation Cycle procedure, and moreover, it is guaranteed to come, independently of the problem's 
parameters, within no more than 41 % of the optimal solution! 

In many distribution systems significant expenses are 
incurred by storage facilities, such as warehouses or 

depots. This cost rate, in the case of leasing the storage 
facility, usually depends on the room size required for 
holding the products. The well developed techniques of 
automated warehouses are based on a computerized sys- 
tem which controls both the storage and retrieval opera- 
tions. This modernization allows for an integrated room 
allocation, i.e., the space allocation is not determined for 
each item separately -instead, the items share a common 
space consisting of multipurpose storage bins; such bins 
can store different products at different points of time. 

In this paper, we consider a multi-item replenishment 
and storage problem (MIRSP) in the infinite horizon 
where all cost parameters and demand rates are constant, 
item-dependent but stationary over time. Backlogging is 
not allowed. The model is an extension of the EOQ 
model where, in addition to the traditional setup and 
inventory holding costs, a payment is incurred for the 
storage space required for holding the stock in the 
warehouse. The storage cost is assumed to be propor- 
tional to the maximum total stock volume held at the 
warehouse at one point in time, or equivalently, to the 
minimum warehouse size required for storing the items. 
This cost component ties the items together and raises 
the need for a careful coordination while making the 
decisions on the item-order quantities, on one hand, and 
the replenishment epochs phasing, on the other. The 
determination of the peak storage requirement may be 
extremely complicated even if each item follows an 

order policy which is characterized by a single constant 
order quantity. Therefore, we focus here on the deriva- 
tion of a tight lower bound on the optimal average cost 
as well as the development of heuristics with small worst 
case bounds. 

This problem has some similarity to the well known 
Economic Lot Scheduling Problem (ELSP) where n 
items are to be produced on a single machine; the 
machine can produce one item at a time. As in the EOQ 
model, the ELSP cost structure involves a setup cost and 
an inventory holding cost for each item separately. How- 
ever, the replenishments of different items should be 
coordinated simultaneously because of the feasibility 
constraints, i.e., each item is produced at a certain speed 
and the problem is to find an optimal feasible production 
schedule (minimizing the total average cost) such that all 
demands are met on time. 

The ELSP has received considerable attention. Many 
heuristics have been developed usually with little knowl- 
edge, if any, of their quality. A partial list of references 
includes Dobson (1986, 1987), Elmagraby (1978), Goyal 
(1975), Maxwell and Singh (1983) and Schweitzer and 
Silver (1983). Inman and Jones (1987) reported on a 
worst case analysis for the simplest of all heuristics 
called the Rotation Cycle (RC), where all items share a 
common replenishment interval. The authors compare 
the performance of the RC with the known lower bound 
on the optimal solution called the Independent Solution 
(IS). For each item i, i = 1, . . . , n let bi denote the ratio 
between the ith item cost components, namely the setup 
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cost/unit holding cost. Also define 6min and box to be 
the smallest and the greatest such ratios, respectively. 
The authors bound the gap between the RC and the IS 
solutions by a simple expression that depends solely on 
the ratio between 6max and bmin. Their analysis leads to 
the observation that in many cases the Rotation Cycle 
policy provides an almost optimal policy. For example, 
if bmax is less than two times bmin, then the RC is 
guaranteed to come within 4% of a lower bound on the 
optimal solution! Anily and Federgruen (199ib) consider 
the problem of multimachine ELSP where all machines 
are identical and work in parallel. They develop ex- 
tremely simple heuristics which are shown to provide 
nearly optimal schedules both by a worst case bound and 
an asymptotic analysis. 

The similarity between these problems arises from the 
fact that both of them are special versions of the multi- 
item EOQ model which contain an additional complex 
component requiring the coordination of the order epochs 
and order quantities of the different items. However, the 
source of complexity and therefore the solution methods 
of the two problems are very different. 

It is well known that for the multi-item replenishment 
problem, in which the cost structure is composed of 
setup costs and linear holding costs, the EOQ formula 
can be invoked for each item separately resulting in an 
optimal policy that satisfies the following properties: 

1. Zero Inventory Ordering (ZIO): an item is ordered 
only when its inventory is depleted (drops to zero). 

2. Stationarity Between Orders (SBO): all quantity or- 
ders for any single item are of equal size. 

In the sequel we show that the property of ZIO holds 
for the MIRSP as well. On the other hand, we construct 
a counterexample that demonstrates that the SBO prop- 
erty is not true in general. However, in view of the 
simplicity of implementing rules using constant order 
quantities for each item separately and the tremendous 
difficulty involved in the control of the peak storage 
requirement for general policies we limit ourselves a 
priori to policies satisfying the SBO property. 

In contrast to the ELSP, the MIRSP has received 
much less attention by researchers in spite of its large 
applicability in automated warehouses, where one is 
often interested in smoothing the stock volume over 
time. For a description of the problem see Hodgson and 
Howe (1982). Park and Yun (1985) considered a discrete 
time scheduling of periodic tasks over an infinite horizon 
where the objective is to minimize the peak work load 
required. Hall (1988) proposed a simple heuristic for the 
MIRSP where all items share a common replenishment 
interval (similar to the ELSP's RC). For simplicity's 
sake we call the policy proposed by Hall the Rotation 

Cycle (RC) policy for the MIRSP. Hall provides, first, a 
detailed schedule of all the items-order epochs in a 
given order interval, and second, the order interval value 
that brings the overall average cost to a minimum. 
Hariga (1988), in his extensive work, provides some 
solution techniques for the same problem and some of its 
variants. The proposed solution methods, which are 
based both on exact formulations and heuristics, are not 
shown to exhibit any ex-ante bound on the optimality 
gap. 

This paper investigates the worst case behavior of the 
RC heuristic for the MIRSP. We show, similarly to the 
worst case bound obtained for the ELSP's RC (see 
Inman and Jones), that the worst case gap of the MIRSP's 
RC is also a function of the problem's parameters: If the 
products have similar characteristics, then the RC has a 
high potential of being a very good solution, possibly the 
optimal one. However, in the presence of a large vari- 
ability among the products' characteristics, the RC strat- 
egy may perform extremely poorly. Fortunately, we 
could derive an alternative heuristic, the Dynamic Rota- 
tion Cycle (DRC), for the MIRSP whose average cost is 
at least as low as that of the RC and in any event its 
worst case gap is bounded by the constant 2 = 141% 
independently of the problem parameters! 

We conclude this section with an overview of the 
paper. In Section 1, we provide some notation and 
preliminaries. In Section 2, we develop a lower bound 
for the average system-wide costs over all policies satis- 
fying the SBO property. This lower bound involves the 
derivation of a good lower bound on the peak stock 
volume for any given order policy in that class. In 
Section 3, we evaluate the effectiveness of the RC 
suggested by Hall by comparing its average cost to the 
lower bound proposed in Section 2. In Section 4, we 
propose the Dynamic Rotation Cycle (DRC) heuristic 
which performs, at least as well as the RC, and more- 
over, its worst case bound cannot exceed 2 = 1.41. 

1. NOTATION AND PRELIMINARIES 

Let 

n = the number of different items in the system; 
Ki= the setup cost for ordering item i; suppose that 

Ki > O for i = 1, ... , n; 
Di= the demand rate for item i; 
hi= the unit holding cost per unit of time of item i; and 

define Hi = hiDi; 
si= the volume in feet3 of item i; let 
Si = Disi and S = En 1Si. Si represents the consump- 

tion rate in feet3 of items i where S represents the 
total consumption rate in feet3; 
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w = the cost per unit of time for acquiring 1 foot3 as 
storage space at the warehouse. Without loss of 
generality we assume that w = 1. 

Let Ii(t) represent the number of units of items i that 
are stored at the warehouse at time t. 

As explained in the Introduction, the storage cost at 
the warehouse per unit of time grows linearly with the 
maximum stock volume held at the warehouse over time. 
Next, we show that there exists an optimal policy satisfy- 
ing the Zero Inventory Ordering (ZIO) property. 

Claim 1. For any MIRSP there exists an optimal 
replenishment policy which satisfies the ZIO prop- 
erty. Also, optimal SBO policies are ZIO. 

Proof. Assume by contradiction that the claim is false, 
that is, there exists an MIRSP instance for which all the 
optimal policies do not satisfy the ZIO property. Among 
all the optimal strategies choose an arbitrary policy Q. 
For each item i define the sequence of time epochs 2-] 

(j = 1, 2, . . . )zr < i < ... such that j = the jth time 
occurrence of an order for item i, according to policy 
Q, while its inventory has not been depleted yet (i.e., 

ii(,rj-) > ?). 
Define a new policy Q' which is obtained as follows: 

policy Q' is a copy of Q except that the orders for item i 
which are placed at t = Tr I, .2 . . , i,... will be de- 
layed to rTj+Ij(-T]-)/Dj, j= 1,29 . . i= 1,.. ., n. 
Once can easily check that Q' satisfies the ZIO property 
although all three cost components: setup costs, holding 
costs and storage requirement cost are not increased by 
this modification. The new policy obtained is thus also 
optimal, which contradicts our assumption. The second 
part of the claim regarding the SBO policies follows 
directly from this proof. 

The next example demonstrates that there does not nec- 
essarily exist an optimal policy which satisfies the (SBO) 
property. 

Example 1. Our example consists of two items I 1, 2} 
with K1 = 576, K2 = 0.2, h, = h2 = 0, SI = 4, S2 = 1. 
First we compute the best policy that satisfies the ZIO 
and the SBO properties. Let T1(T2) be the replenishment 
interval of item 1 (2). Let also V(T1, IT2) denote the 
optimal average cost of such a policy. The average setup 
and holding cost of the policy is therefore given by 

K1 K2 1 1 K1 K2 
-+ - +-HlTI +-H2T2 = + 
T1 T2 2 2 T1 T2 

since H1 = H2 = 0. 

Without loss of generality suppose that an order of item 
1 is placed at time 0 and let 7 > 0 be the first point of 
time that an order for item 2 is placed (7 < T2). Let also 
C(t) and C* denote the stock volume (in feet3) at time 
t and the storage space requirement, respectively, 
i.e., C* = supo<t<jC(t). Then C(0) = 4T1 + 7 and 
C(7) = 4T1 - 47 + T2. Note that min max{C(O), C(7)} 
is obtained for 7 = T2 /5 and, moreover, C(0) = 
C(T2 /5) = 4 T? + T2 /5. Obviously, C* > 4 T? + T2 /5, 
therefore 

V(T' T K1 K2T v(T1,T2)) + ? 4T1+ 5 

576 0.2 T2 
= ?-+ +4T1+ 5 

T1 T2 

The right-hand side of (1) is minimized by Tl = 
def 

576/4 = 12, T2 = /0.2/0.2= 1. Thus, V*= 

infT, T2 > OV(Tl, T2) > 96.4. Morover, we will show that 
V(12, 1) = 96.4. Suppose that the orders for item 1, 
each for 48 feet3, take place at t = 0, 12, 24, . . . and the 
orders for item 2, each for 1 feet3, take place at t = 

0.2, 1.2, 2.2, ... . The volume of the stock held at the 
warehouse does not exceed 48.2 feet3 and it reaches this 
level at t = 0, 0.2, 12, 12.2... . Thus, V(12, 1) < 576 

+ 0i2 + 48.2 = 96.4, which implies that 

V*= V(12, 1) = 96.4. 

Consider another policy that satisfies the ZIO but not 
the SBO property: order item 1 at t = 0, 12, 24, . . . each 
time for a quantity of 48 feet3. However, for item 2 we 
do not use an equidistant order policy. Instead, during a 
cycle of 12 units of time order 0.5 feet3 of item 2 at the 
two replenishment epochs occurring just after an order 
of item 1 is placed, and at all other replenishment epochs 
of item 2 let the order size be 1 foot3. More precisely, 
item 2 is ordered at t=0.1,0.6,1.6,2.6,. ..,10.6, 
11.6, 12.1, 12.6, 13.6,.... We note that during a cycle 
of 12 time units, item 2 is ordered 13 times. The peaks 
in the storage requirement occur at t = 0, 0.1, 12, 
12.1, . . . each for 48.1 feet3. Thus, the average cost of 
this policy, which does not satisfy the SBO property, is 

576/12 + 13.0 * 2/12 + 48.1 = 96.32 < 96.4 

showing in fact that no optimal policy satisfies the SBO 
property. 

For the reason stated in the Introduction we restrict 
ourselves to the class of policies satisfying the SBO 
property even though this class is not guaranteed to 
contain the optimal strategy (see Example 1). Let 4' = 

{all replenishment policies satisfying the SBO property}. 
Also, let Ti denote the replenishment interval of item i 
where Xi = S1Ti represents its order quantity in feet3. 



236 / ANILY 

We complete this section with the following lemma 
which was proved by Inman and Jones in the context of 
the ELSP. This lemma is used in the continuation to 
establish the worst case gaps of the heuristics discussed 
below. 

Lemma 1. Given a sequence {(ai, bi)} I ai> 0, 
bi> 0, i = ,..., n such that a, /bI < a2/b2 < 

(a,/bn then 

(i Eai E ) S E (aibi)l /2 ? (i + ) 

def 
where X = (a, /bl)l(an/bn). 

2. LOWER BOUND 

In this section, we derive a simple lower bound for the 
peak stock volume of a given policy in the class 4): We 
first derive the lower bound for a subclass of policies in 
4), namely the class (2 C 4) of power of two policies. 
Observe that the total inventory volume at the warehouse 
of policies in the class (2 follows a cyclic pattern, and 
thus is much simpler to control than that of general 
policies in (D. Later we show that the same lower bound 
remains valid for general policies in (D. The expression 
obtained is then used to calculate a simple lower bound 
on the optimal average system-wide costs for all policies 
in F. 

The following definitions will be used. 

Definition 1. The Inventory Level Graph (ILG) is a 
graph representing the total stock volume at the ware- 
house of a given order policy Q (not necessarily in 4) 
as a function of the time t. Let CQ(t) denote the 
corresponding function. 

One can easily verify that CQ(t) is a piecewise linear 
function, right continuous and decreasing at a constant 
rate of - S = _ E n= 1Si. The points of discontinuity 
correspond to the replenishment epochs at which the 
total inventory volume is raised by a certain amount. 

Definition 2. The Multi-Item Replenishment Graph 
(MIRG) for (T1, . . ., Tn) is an ILG for an order policy 
of the items {1, ... ., n} in the class 4) such that Xj = 
SjTj feet3 of item j are ordered at equidistant intervals 
of Tj time units. The sequence of order intervals 
(T1, 2,. . ., Tn) does not uniquely determine the MIRG. 
The form of the MIRG depends on the replenishment 
epochs phasing as well as the order quantities. 

For a given sequence of order intervals T1, T2, . . ., Tn 
def 

let P(T1. .. , Tn) = {all replenishment policies in 4) 
that order Xi= Si T feet3 of item i every Ti time units 

def 
1,... ., n} and Y(T1,..., Tn) = inf{peak stock vol- 

ume (in feet3) as encountered by policy 

Q QQEP(T1,. . ., T)} (2) 

Observe that Y(T1, . .. , T1) represents the lowest stor- 
age space requirement associated with the MIRGs corre- 
sponding to (T1, .* , Tn). 

Suppose that the sequence (T1, . . . , Tn) is a power of 
two sequence, i.e., Ti = 122ki, kieZ (Z = the set of 
integers) and ( > 0. Also let T* =max1<i:n~i. 
Clearly, the total inventory volume under a policy using 
the order intervals (T1, . . . , Tn) follows a periodic pat- 
tern with a cycle length TV. Moreover, the area below 
the MIRG for a time interval [t, t + T*), for any t > 0, 
equals T*_i =Il Xi /2. Let mi = T*/ Ti denote the num- 
ber of orders for item i placed during [0, T*). First we 
wish to bound from below the value Y(T1, .. ., Tn) 
namely, the minimum storage space required by a policy 
in P(T1, . . . , Tn). In order to do that we consider a 
broader set of policies - P'(T1, ... , Tn), which contains 
P(T1, . . . , Tn) as a subset: P'(T1, .. . , Tn) consists of 
all the periodic policies with a cycle length T* for which 
the inventory level at the warehouse is not allowed to 
drop below zero, but the inventory level of each item 
separately can be negative. Moreover, we require that 
the area below the ILG during one cycle equals 
T* _i = IXi /2 and exactly mi orders of item i are 
placed during a cycle; each is for Xi feet3, i = 1, . , n. 
The inventory level graphs associated with 
the policies in P' do not necessarily use equal order 
intervals for each item; however, they satisfy these 
properties: 

1. they are positive piecewise linear decreasing at a 
constant slope - S; 

2. they follow a cyclic pattern with a cycle length of 
T*; 

3. the area under the curve during one full cycle is 
T*i= IXi /2; 

4. the accumulated jump size (total increment) of the 
graph during one cycle of T* time units equal to 
57n miXi feet3. 

We also define Y(T1, . . . , Tn) = inf{peak stock volume 
(in feet3) of policy Q I QeP'(TI, . . . , Tn)} . Obviously, 
Y(T1,. . . , Tn) < Y(T1, . . , Tn). We say that an ILG 
corresponding to policy Q*, Q* EP'(T1, . . . , Tn) is op- 

def 
timal if C` supt > OCQ*(t) = inf{sup, >OCQ(t) 
P'(T1,,. . , Tn)} ' 

Next we analyze the form of the optimal ILGs corre- 
sponding to policies in P', i.e., the graphs that bring the 
peak stock volume to a minimum: The next claim shows 
that these are the ones that smooth the total stock volume 
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over time. In other words, any local maxima of the ILG 
is also a global maxima. 

Claim 2. Let QeP'(T1,. .., T,,) correspond to an 
optimal ILG for the power of two sequence 
(T1,...,Tn), that is 

Q max CQ(t) = Y(T, ., Tn) 

Then: 

a. each order point of the policy Q corresponds to an 
order of a single item 1, 1 ? 1 < n for a quantity of 
XI feet3; 

b. the total stock volume at the warehouse according 
to policy Q reaches the same level at all replenish- 
ment epochs. 

Proof. Suppose by contradiction that there exists at 
least one optimal ILG associated with policy Qe 
P'(T1,. . . , Tn) which does not satisfy the claim. We 
need to distinguish between two cases: 1) According to 
Q at time tk, tk < T* at least two orders take place; one 
order is for XI feet3 of item 1 and the other is for Xk 
feet3 of item k. In that case define t1 = tk. 2) According 
to Q, suppose that at tk ( T*, the function of CQ(.) 
reaches a global maxima and, moreover, the local max- 
ima preceding the one at tk is not a global maxima. Let 
ti, t1 < tk be the occurrence time of the order preceding 
the one at tk, thus CQ(t) < CQ(tk). Similar to the 
previous case, assume that Xk feet3 of item k are 
ordered at tk. 

In both cases, consider the modification of the policy 
Q: first, delay the orders for item k that occur at t = tk 

modulo (T*) to t = (tk + A) modulo (T*) and second, 
advance the orders for item 1 that occur at t = tj modulo 
(T*) to t = t1 - 6 modulo (T*) for E = XkA /XI. 
Moreover, choose A small enough such that 

a. according to Q, no orders take place in [t- , 
t) U (tk, tk + A], and 

b. A < Xi / S - (tk - t) X1 / Xk. (It is easily 
verified that the right-hand side of the last inequality is 
positive in both cases.) 

Let Q' be the new policy. The choice of A and E 
ensures that the area under CQ,(t) over a full cycle T* 
is unchanged by the modification (see Figure 1). Also 

CQ(t) = CQ,(t) 

for any to [ tj - E, tj) U [ tk, tk + A) (modulo T*) . 

If CQ,( ) obtains a local maxima at tj or tk, then 
obviously its value is smaller than CQ(tk). The two new 
peaks in the total stock volume of Q' during one full 

Inventory Level 
feett) 

1X. \~~X 

time 

tL-- t k tk to+A 

Figure 1. The bold lines denote the total stock volume 
according to Q where the dotted lines show 
the change in that quantity according to Q'. 
(Suppose that at tl(tk) a single order takes 
place. A similar graph also holds for the 
general case.) 

cycle occur at t1 - E and tk + A; however 

CQ'(tk + A) = CQ(tk) -SA < CQ(tk) 

CQ'(tl-E) = CQ'(tk) + (tk- tl+ c)S 

< CQ'(tk) + Xk = CQ(tk) 

where the strict inequality follows from & = XkA /XI 
and the choice of A. It is also easy to check that the total 
area under the graph during a cycle of T* time units is 
not affected by this modification. 

If the new policy Q' does not contradict our assump- 
tion that Q is optimal by requiring a smaller stock 
volume peak than Q', then the same procedure can be 
repeated on Q' until a contradiction is obtained. 

We can proceed with the exact specification of the 
optimal ILGs associated with policies in P'(T1, .. ., Tn). 
For that purpose we define Ai = Xi /S and recall that 
mi = T*/ Ti. 

Theorem 1. Given a power of two sequence 
(T1, - . *, Tn) 

a. Eni mjA V=T*. 
b. Let Q be an optimal policy, with respect to the 

storage space requirement, in P'(T1,. . . , Tn) and 
suppose that tl < t2 are two consecutive order 
points of Q such that an order for X, feet3 of 
item I is placed at t2. Then t2- tI =Xl/S= AI . 

C. Y( To n 2 Ein= 1Si+2 1i Ti IS. 

d. Y(Ti .. Tn) X (TO Tn). 

Proof 
n n T* Xi T* n S.T 

a.ZmjAj= Z .i T* 
i=1 i=1 Ti S S i=1 Ti 
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b. In view of Claim 2, CQ(tl) = CQ(t2), but 
CQ(t2) = CQ(tU) - (t2 - t1)S + Xi which imply that 
t - t = X, /s =-A, 

c. In view of parts a and b, optimal policies in P' are 
obtained by dividing [0, T*) into _ i=mi subintervals; 
mi of them are of length Ai. (According to part a the 
collection of these subintervals covers [0, T*).) At each 
right end-point of an interval Ai, an order is placed for 
Xi feet3 of item i. The area under the corresponding set 
of ILGs during [0, T*) is obtained by subtracting the 
areas of the >n 1mi triangles, mi of them with base A 
and height Xi, i = 1,.. , n, from the area of the rectan- 
gle with height Y= Y(T1,. , Tn) and base T*, (see 
Figure 2). 

Therefore 
n n 

YT* miAiXi/2=T* Xi/2 
i=1 i=1 

which implies that 

1 n T* X2 n 
YT* - = T*SXI/2 

2 i=1 Ti s i=1 

or equivalently 

Y=- EX,+ - EXISi/S 2 2i=1 

1 n 1in 
-ESiTi++-ES2Ti/S. 

2 i=1 2 j=1 

d. This follows directly from the fact that P c P' and 
Y(Y) is the lowest storage requirement for the policies 
in P(P'), thus Y(T1, . . ., T) >, Y(T1, . . ., T1) . 

The extension of the lower bound on the storage space 
requirement for general policies satisfying the ZIO and 
SBO properties, but not necessarily powers of two, 
requires a more careful analysis because of the complica- 
tions involved in the control of the peak stock volume 
which may be acyclic and may not reach a maximum 
level. 

Inventory Level 

Y'< 

A, A2 A4 A1 A2 A -3 
| I - 4 w - w - | .. *. time 

T' 

Figure 2. An optimal ILG in P'(T,, T2, T3, T4) where 
Ai=XiIS, mI=m2=2, m3=m4= 1. 

Theorem 2. The peak stock volume (= storage 
requirement) over the infinite horizon of any policy 
in 4) that follows the sequence of order intervals 
(T,... ., Tn) is bounded from below by 

I n I n 

X( Tl *, TO = =-E Si Ti + -E S2 Til/s - 
2 i=1 2 i-l 

Proof. Suppose that Q is an optimal policy that satis- 
fies the conditions stated in the theorem. Let U= 
Supt >OCQ(t). (For simplicity we write C() instead of 
CQ(-).) Without loss of generality we can assume that 
U - 6 < C(O) < U for a given E > 0. Moreover, be- 
cause of the optimality of Q, any policy that is obtained 
from Q by truncation of an initial part must require a 
storage space of U feet3. Thus, we can find an infinite 
sequence of replenishment epochs 0 = -0 < ij < -. 

such that U - E < C(r) < U and C(rA_1) < C(-r'), 
i= 1,2... 

Define a new sequence of epochs: 

C( T') - C(O) 
-ro = T, j=T'r+ 

- i= 1,2,... 

then 7+ < Ti + c/S. 
By choosing E < min l < in Xi /2 we guarantee that if 

Ti > T', then no order is placed in the intervals (Ti', ri]. 
Therefore 

C(T^) = C(T,) -S(Tri- Tr') =C(O) i = O, 1 . 

Let mi(t) = the number of orders for item i placed in 
[0, t]. Clearly 

mi(t) >- WTJ (3 

and 
n 

C(t) = C(0) + E mi(t)Xi- St 
i=l 

which implies that for t = Tk, k = 1, 2, . . ., 0 = C(Tk) 
- C(0) = En lmi(k)Xi - Szk, or equivalently, that 
n n 

Emi( Tk)Xi/S= Zmi(Tk) Ai=Tk* (4) 
i=l i-l 

(The result in (4) is the analog to the one in Theorem 1, 
part a for power of two policies.) Let A(t) denote the 
area under the given MIRG during [0, t]. Observe that 
there are at least [t/ T7J full cycles of length T, each, 
for item i's stock during [0, t]. Thus 

i n 1 t 
A (t) - E [ t / Tj Xi T - ZI-- iITm 

2 i 2 21 n t n in 
- XI ST- - Z SIT2 2 i1 ' 2 ij, 5 
= E SiT -E SiTt2. (5) 
2 i~i 2 i-l 
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In light of (3), (4) and (5) we derive a lower bound 
Xrk(T . ... , T1) on the peak stock volume during 
[0, Tk] k = 1, 2,. ., for all policies in 41 using the cycle 
sequence (T1, .T. , 1n). The overall lower bound on the 
peak stock volume during [0, oo) will then be obtained by 
calculating limk+X~k(TT1,. ., T1,). 

In view of (4) the total demand in [0, Tk] equals the 
total order volume during the same period. A similar 
trick as for the power of two policies is also used here: 
Instead of finding a lower bound on the storage space 
required by the MIRG corresponding to policy Q, we 
consider a larger set of graphs, namely all the ILGs that: 
1) have exactly mi(rk) jumps each for Xi feet3 of item 
i during [0, Tk], i= 1, . . ., n, and 2) the area below the 
graph during [0, Tk] equals A(rk). Following the same 
argument as the ones in the proofs of Claim 2 and 
Theorem 1, we write 

in 
YT Tk - E m i(Tk)XiAi=A(Tk) 

which implies together with (3) and (5) that 

Ik ( 2 mi(Tk)XiAi+A(Tk)) 

'TkTk"2 n 
Tk 2 2 1 (Ti 2 

( k E 1 SiT\ 2 i1 2 

'T | 1r 2n 2 

_ ZS Sfl+- ESST. 

2S il 2Si 

2T k(kzs ) 

+ E SiTi- - Si T. 
2 i 2 l 

Therefore, we conclude that 

i n 

lim+ Y (T, T) -E SiTi + ST/ 

k-~oo 2 i=1 2 il 

which implies that the right-hand side of the last inequal- 
ity is a lower bound on the peak stock volume over the 
infinite horizon for all policies 41 corresponding to 
(T1,... , Tn). Thus we define 

defi 2 1n / 

2 2j~ 

It is worth noting that if T1= T2= = T.,= T*, 
then our lower bound Y on the peak stock volume 
coincides with the optimal storage requirement derived 
by Hall for that special case. Moreover, if the set of 
items consists of a single commodity Y = Si Ti which is 
again tight with the storage requirement needed by that 
item when using an order interval of Ti time units. 

We are ready to proceed with the derivation of the 
lower bound on the optimal average cost of all policies in 
4). Define V* = the optimal average cost of all policies 
in 4); and V*(T1, .. , T1) = the optimal average cost of 
all policies in 4 which order item i every Ti time units 
i= 1i ... . n. Thus 

n 

V*(TI ... ., Tn) =EKilTi 

in 

2i1 n +-E h-T, + Y( TI, * Tnl) 2 i=1 

where Y is given in (2). Therefore 
n 1 

V* T , Tn) Ki / Ti +-E HiTi 
i~1 2 

+ Y(Tj , .. * * Tnl 
n 1 n 

=Ki K/T +-ZHIT, 
i~~l 2 i=1 

n n 

+-Z~sT1+-ES32Tj/S (6) 
2i~1 2 1= 

and 

V*= inf V*(T19...,Tn) 
T, T" 

{ n 1 n 
min KiI/TI + - ( Hi+ Si)T 

1 n 
+ - S3Ti /S 2 ') 

= >3 (2 Ki ((Hi + Si) + S2 /S)) V. 
i=l1 

We conclude with the following theorem. 

Theorem 3. The average system-wide cost of any 
policy in 4) is bounded from below by 

n12 
V= [2Kj(hi+Si+sI/S)]'/ 

i.e., V*)V. 

3. WORST CASE ANALYSIS FOR THE RC POLICY 

In this section we provide a worst case analysis for the 
RC heuristic proposed by Hall by comparing its per- 
formance to V-the lower bound on the average 
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system-wide costs obtained in the previous section. Let 
VRC(T) denote the average cost of a RC that uses a 
cycle length of T. Hall shows that 

n 1 
VRC(T)= KiI/ T+ - (Hi+ Sj)T i~~l 2 j=1 

in 
+- ZS T/S. 2 j=1 

Therefore, the optimal RC is obtained by setting the 
order interval to 

n //n n 1/2 
TRC= (2?Ki (?(Hi+Si) + ??S1S 2 

and 

VRCdef VRC(TRC) 

n n n 1/2 

2 2fKi K( (Hi+Si) + S/S)) 

Clearly, VRC , V V. Below we bound the gap be- 
tween VRC and V. 

For each item i, 1 < E < n, define ai = Ki and bi= 
(Hi + S) + Si /S. Without loss of generality we can 
assume that the items are numbered in ascending order 
of the ratios ai / bi, i = 1, . . ., n. Define also X = 
(a1 /bj)/(an/bn); then by invoking Lemma 1 we 
conclude with the next theorem. 

Theorem 4. Given a group of items { 1,.. ., n} 
numbered in ascending order of the ratios aa / bi where 
ai = K, bi =Hi +Si +S2IS, i- l,..n, then 

(R x72 
1/2de 

V 1 + ) - (7) 
V - ~ 2X 

where X- (a, / b 1)/(a, / b,). 

Inman and Jones develop a similar bound for the 
ELSP; moreover, they analyze the behavior of the func- 
tion f(X) as X varies. Their main observation is that the 
function f changes at an extremely slow rate when X is 
close to one. For example, if X = 1, i.e., all ratios ai / bi 
are identical, f(l) = 1 which means that VRC = V 
namely, the RC is the optimal solution. This fact is 
intuitively true as the value TRC coincides with the 
optimal Ti minimizing (6), i = 1,.. ., n. More surpris- 
ing is the fact that f(O.75) = 1.006 or f(O.5) = 1.042, 
i.e., VRC comes within 0.6% (4%) of the lower bound 
V for X=0.75 (X= 0.5). However, if X=0.1, then the 
RC policy can only be guaranteed to come within 82% 
of the lower bound. Thus, for values of X that are close 
to one practitioners should not hesitate when using the 

simple RC policy proposed by Hall. However, for small 
values of X (say, X < 0.2) the performance of other 
heuristics should be verified as alternatives to the RC 
policy. In the next section, we propose a new heuristic 
which, we believe, may provide a significantly better 
solution, especially for small values of X. 

4. THE DYNAMIC ROTATION CYCLE (DRC) 

In this section, we propose a new heuristic called the 
Dynamic Rotation Cycle Policy (DRC) which is shown 
to perform at least as well as the RC. Moreover, we 
show below that the worst case gap of that heuristic is 
bounded by min{f(X), /2} where X and f( X) are 
defined in (7). It is worth noting that the RC policy may 
yield an extremely poor solution when XO as 
limX1of(X) = oo; thus, the worst case gap of the RC 
heuristic can be made arbitrarily large for values of X 
which are sufficiently small. The worst case gap of the 
DRC, on the other hand, is uniformly bounded by the 
constant +/2, in addition to the bound of f( X), whichever 
is smaller, i.e., the DRC policy is guaranteed to come 
within 41 % of the optimal solution independently of the 
X-value. 

Recall that according to the RC policy all items share 
a common replenishment interval TRC and the total 
inventory volume at the warehouse reaches the same 
level at all order epochs. Thus, by using the RC policy 
we may enjoy the benefit of smoothing the inventory at 
the warehouse at the expense of high average setup and 
holding costs for those items for which their EOQ order 
intervals deviate too much from TRC_ the actual order 
interval used by the RC strategy. According to the DRC 
policy the set of items { 1, ... , n} is partitioned into 
groups, such that items with similar cost parameters fall 
into the same group. In each group separately, we use an 
RC policy that smoothes the inventory volume associ- 
ated with the items of that group. Recall that the RC 
policy is extremely effective when implemented on a set 
of similar items (X is close to one). These RC policies 
are then combined together to obtain the DRC heuristic. 
We observe that the task of combining the rotation cycles 
of the groups is, in general, much easier than combining 
n different order intervals because the number of sets is 
usually much smaller than the number of items. This 
task may be further simplified by rounding the order 
intervals into powers of two. In the following, we sug- 
gest a method for partitioning the items into groups. 

Let X = {W1, , WL} be a partition of the set of 
items W = {1, .. , n), i.e., U=1 W = W and W n wV 
= 0, 1 < i<j j L. Define C(X) to be the optimal 
average cost of a strategy using the RC policy in each 
set W,, / = 1, . . . , L, separately. Recall that the order 
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interval of the set WI is given by 

TRC(WI)= (2 E Ki E (Hi+Si) 

1/2 

?_ Es, zs! )) 
iEw WI ic-WI 

The items in WI are scheduled in cycles of TRC( 1) 
time units according to the RC policy proposed by Hall. 
Therefore, the peak stock volume of the items in W, 
equals 

Y ( E Si+ E S? 2 Si)T r ( ). 
is- WI is WI is a, 

Assuming that this space is acquired by the warehouse 
for storing the items in WI and ignoring the fact that in 
automated warehouses the total space requirement for all 
items may be less than _ij=1Yl, we write the average 
cost due to the items in WI as 

1/2 
(2 E Ki (E (Hi+ Si) + s E Si)) 

is WI is- WI is- WI is WI 

Therefore 

C(x)< E(2 EKiE (Hi+Si+S2 E Si)) 
I =1 is- WI is- WI is I 

= C'(x) (8) 

We also define problem P. 

Problem P 

Minimizes { C( x) I X is a partition of W}. It is easily 
verified that for 

i. X= {W}: C(x)= C(x) = VRC, and for 
ii. X = {{1}, 2, * , {n}}: C'(x) = 

En 
1(2Ki 

(Hi + 2 Si))? / 

Case ii is similar to the Independent Solution (IS) in 
the ELSP context: Each item is scheduled on the ma- 
chine in equidistant intervals where for each item sepa- 
rately the interval is determined by invoking the EOQ 
formula with the setup and holding costs of that item. Of 
course, in the ELSP there is no guarantee that the IS is a 
feasible schedule. However, it provides a lower bound 
on the average cost of all feasible policies. In the MIRSP, 
allocating space in the warehouse for each item sepa- 
rately means, as previously mentioned, that SiTi feet3 
should be reserved for item i. Therefore, the optimal 
cycle time for the group of items consisting of a single 
item i equals (2Ki/(Hi+2Si))1/2, i= I, ... ., n, and 
the average cost due to the group {I{ i} } is given by 

(2 Kj(Hi + 2 Si))1/2. However, note that implementing 
such a policy for each item in W= 1, ... , n} may 
result in a total average cost which is smaller than the 
expression in (9) because in automated warehouses dif- 
ferent items may share a common space. For simplicity 
we use the name the Independent Solution (IS) for this 
heuristic as well and denote the respective partition by 
XIS, i.e., XIS = {{1},. . .,{n}} and 

n 

C(XIS) <c/(XIS) = E (2Ki(Hi + 2Si)) 
i=1 

The exact evaluation of C(x) for an arbitrary partition 
X of W involves the hard task of the determination of 
the peak stock volume at the warehouse over the infinite 
horizon. Therefore, instead of solving P we will focus 
on the solution of the RHS of (8) which we denote by P'. 

Problem P' 

Minimize { C'(x): X is a partition of W}. Alternatively, 
P' can be written as 

Lf -T~~(T ~ s )1/2 
min lE (2 E Ki E(Hi + Si + S12/ Si)) 

m =1 iEwn i K?Wi ic eW, 

I X = { W,. .., WL} is a partition of W}. 

Both P and P' are partitioning problems, i.e., a set of 
elements is to be partitioned into groups such that a 
certain cost function is optimized. General partitioning 
problems are known to be NP-hard; see Karp (1972). 
Efficient (polynomial) algorithms exist for very special 
forms of the cost function; see Chakravarty, Orlin and 
Rothblum (1982, 1985) and Anily and Federgruen 
(199la). Barnes, Hoffman and Rothblum (1989) forms 
of cost functions; they obtain some nice characterizations 
of the geometrical aspects of the optimal partition; how- 
ever, these are not sufficient yet for the development of 
efficient algorithms except for the cases discussed in 
Chakravarty, Orlin and Rothblum (1985). 

Note that the group cost function in P' is separable in 
groups; however, the partitioning problem associated 
with it cannot be cast in any of the special structural 
partitioning problems which are known to be polynomi- 
ally solvable. One cost function considered by 
Chakravarty, Orlin and Rothblum (1985) is similar to the 
one in P'; they consider the following partitioning 
problem (PC) described below. 

Suppose that a set of elements W= {1, ... , n} is to 
be partitioned into groups. Each element i is character- 
ized by two attributes ai and bi ai ) 0, bi) 0, i = 

1,...,n. Let X=(W1, . . ., WL} be an arbitrary parti- 
tion of W. Assume also that the group-cost function is a 
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real valued function of the variables >icwai and 
E - w, bi. Problem PC is given as follows. 

Problem PC 

Minimize 

{Eg ( ai, E biWI) x WI W 
1=I is WI is- WI 

is a partition of W. } 

Lemma 2 provides some conditions under which PC can 
be solved in polynomial time. First we need the follow- 
ing definitions. 

Definition 3. A set W, C W is said to be consecutive 
if the indices of its elements are consecutive integers, 
e.g., the set {2,4, 5} is not consecutive but {2, 3,4, 5} is 
consecutive. 

Definition 4. A partition X = I{W ,..., WL} is con- 
secutive if W, is consecutive / = 1, . . . , L. 

Lemma 2. (Chakravarty, Orlin and Rothblum 1985) 
Suppose that the group cost function g(, * ) is jointly 
concave in both of its arguments. Then there exists an 
optimal consecutive partition for PC. 

The computation of an optimal consecutive partition 
can be accomplished by solving a shortest path algorithm 
in complexity 0(n2). 

Shortest Path Algorithm (SPA) 

Let G(n) = 0 and 

G(i) min g E ak, E bk +G(j) 
i+ 1 Sj~n k=i+1 k=i+1 

i=n- 1,...,0. 

The optimal cost of a partition given by G(O), as well as 
the optimal partition associated with it, can be obtained 
by solving recursively the above equations. 

Unfortunately, P' does not satisfy all of the conditions 
in Lemma 2. The cost function in (8) appears to be 
separable in the groups and, moreover, the group cost 
function is jointly concave in the group-sum of two 
attributes: 

1. Ki; 
2. (Hi + Si + S1/ie~wSi). 

But the second attribute is not independent of the parti- 

tion used. Thus, Lemma 2 cannot be implemented 
directly. However, based on Lemma 2 we will construct 
the DRC heuristic for the MIRSP which generates a 
good partition, although not necessarily the optimal one 
for P'. 

The Dynamic Rotation Cycle (DRC) Algorithm 

Step 0. Number the items in ascending order of the 
ratios K/i (Hj + 2Si), i.e., K1 /(H1 + 2S1) < K2/ 

(H2 + 2S2) <* .- 

Step 1. (Solve the SPA) 
G(n) = O; 
i=n- 1; 
while i ) 0 do 
begin 
G(i) = mini+ 1 j <f{(2Ej=i+lKk I Kl(Hk Sk? 

Sk /jm=i+ ism))1/2 + G(j)}; 
i= i-1; 
end. 

Clearly, during the execution of Step 1 one can also 
store the corresponding path, so that the optimal parti- 
tion can be recovered. The optimal average cost of the 
partition generated by the DRC algorithm according to 
the cost function C' is given by G(O). Let x DRC denote 
the generated partition. Then 

C(XDRC) < G(0) =C/(XDRC). 

It is also easily verified that both the partition associated 
with the IS and the one associated with the RC are 
feasible for the DRC algorithm. Therefore 

C( xDRC) ? min{C'(XRC), C(XIS)} 

- min VRC CC(X IS) }. 

In the next theorem we investigate the worst case gap of 
the DRC algorithm. 

Theorem 5 

c(XDRC) < min{ 2,f(X)} 
V 

where X andf(X) are defined in (7). 

Proof. In view of Theorem 4 and the fact that 
C'( xD~c < VRC we obtain the inequality 

C' ( XDRC) VRC 
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In addition, C1(xDRC) i C'(X IS) = El=1(2 Kj(Hi + 
2Si))1/2 which implies that 

C/ (X DRC) C/ (Xs) 

V V 

z=1(2Ki(Hi+ 2Si)) 12 

Enz=1(2Ki(Hi + Si + S3 / 

z71(2Kj(2H +2Sj)) 1/2 

En J 2 Ki ( Hi + Si) )' 

< 2= 1.41. 

Note that for X= 0.18, f(X) = 2. Therefore, we 
can write the worst case gap of the DRC algorithm as 

C/ (x DRCX)f(X) X) 0.18 
V (2- X < 0.18. 

It is also worth noting that the worst case analysis was 
conducted on the basis of the two extreme heuristics, 
namely the IS and the RC. We can expect that in 
practice the DRC heuristic will provide a much better 
solution than these two. Moreover, we observe that the 
calculation of the function C'( x) for a given partition X 
of W assumes that the sets' order intervals are combined 
arbitrarily thus leading to a worst case storage space 
requirement (i.e., the sum of the sets' peak stock vol- 
ume). In practice, if the optimal partition does not 
consist of a single set, the least sophisticated methods 
that one may use while combining the sets' order inter- 
vals will result in a space requirement that is smaller 
than the conservative one used by the function C'(-). 

Given the optimal partition X*, the task of efficiently 
combining the sets' order intervals may be greatly sim- 
plified by rounding off these quantities into powers of 
two as described, for example, by Maxwell and Singh 
(1983) and Roundy (1985). They propose a rounding 
procedure of the sets' order intervals such that the new 
cost of each set is within 2% (!) of the original one. This 
minor increase in the cost may be offset later by the 
opportunity of saving on the space requirement at the 
warehouse: An ILG of a power of two policy follows a 
cyclic pattern and, therefore, it is sufficient to focus on a 
single cycle while combining the sets' order intervals 
into a policy. 
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