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We analyze a continuous-time, two-stage production/inventory system. In the first stage, a common intermediate product is 
produced in batches, and possibly stored. In the second phase, the intermediate product is fabricated into n distinct finished 
products. Several finished products may be included in a single production batch of limited capacity to exploit economies of 
scale. We propose a planning methodology to address the combined problem of joint setup costs and capacity limits (per setup). 
We restrict ourselves to a class of replenishment strategies with the following properties: a replenishment strategy specifies a 
collection of families (subsets of items) covering all end-items; if an item belongs to several families a specific fraction of its 
sales is assigned to each family. Each time the inventory of one item in a family is replenished, the inventories of all other items 
in the family are replenished as well. We derive a simple (roughly O(n log n)) algorithm that results in a strategy whose 
long-run average cost comes within a few percentage points of a lower bound for the minimum achievable cost (within the above 
class of strategies). 

Over the last couple of years, important progress has 
been made in the development of efficiently solv- 

able inventory planning models for deterministic multi- 
echelon systems with batch production runs and batch 
distribution activities; see e.g., Roundy (1985, 1986), 
Maxwell and Muckstadt (1985), Zheng (1987) and a 
recent survey by Muckstadt and Roundy (1988). The 
cost structure in these, as well as virtually all other, 
inventory models consists of: i) inventory carrying costs, 
assumed to be proportional with the inventory levels of 
all relevant work-in-process and finished goods items; 
ii) variable production costs, assumed to be proportional 

with the production (shipment) volumes of the individual 
items; and iii) a fixed cost structure reflecting the costs 
of setups of production runs or distribution activities. 

As is well known from the simplest of the above 
models (the well known single item Economic Order 
Quantity model), optimal replenishment frequencies, and 
hence, average inventory levels, depend critically on the 
assumed fixed cost parameters, and it is therefore of 
crucial importance that an adequate representation of the 
setup cost structure be employed. All of the above 
mentioned inventory models assume that a single setup 
suffices for the generation of an unlimited production 
run or analogously that a single fixed cost suffices for 
the shipment of an unlimited volume. This restriction 
applies both to existing models with a separable setup 
cost structure, in which it is assumed that all items are 
replenished on an individual basis, incurring a fixed 

(item specific) cost per setup as well as those with 
nonseparable joint cost structures (Roundy 1986, Zheng 
1987, Federgruen and Zheng 1988). Such joint cost 
structures reflect economies of scale that may be ex- 
ploited when different items are combined in the same 
production batch or by performing several operations or 
distribution activities together. 

For many practical production and distribution activi- 
ties, a single setup merely suffices to cover an activity 
volume up to a given capacity limit. In other words, the 
setup cost is a step function of the activity's volume 
instead of the conventional modeling assumption of a 
flat setup cost curve. This situation occurs, for example, 
in the following cases: 

i. Many a production or distribution activity is per- 
formed with equipment of limited physical capacity. 
Examples include production vessels or ovens of 
limited volume in which blending, drying or cooking 
operations are performed (e.g., chemical or phar- 
maceutical production processes), automatic guided 
vehicles (AGVs) used to transfer items from one 
production stage to the next, and limited capacity 
trucks used to ship items from one level in the 
distribution network to the next. In all these exam- 
ples, different items may often be combined into a 
single production run (or shipment). This is some- 
times achieved by compartmentalization of the ves- 
sels, ovens, AGVs or trucks. 

Subject classification: Inventory/production: multi-item, echelon stage: policies for two-stage capacitated multi-item models. 
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ii. Many production processes are interrupted after a 
given number of production hours or after a given 
number of units produced, so as to perform a main- 
tenance or cleaning job, to assess the quality of the 
units produced, to readjust the equipment or to re- 
place tools. Each interruption period represents a 
setup so that the total setup cost of a production run 
varies with the total production volume as a step 
function. 

iii. Production orders are often assigned to several 
parallel machines, production lines or employee pools 
to ensure that the entire order be completed within a 
specified lead-time limit. This lead-time limit trans- 
lates into a capacity limit for the volume that can be 
produced on a single production unit with a single 
setup. 

If all items are produced on an individual basis, i.e., 
if the setup cost structure is separable across the items, 
it is relatively easy to incorporate the above capacity 
limits into existing planning models; see e.g., Zheng 
(Chapter 6), where this objective is achieved for produc- 
tion/distribution networks of general topology represent- 
ing general bills of materials. It appears, however, that 
existing methodologies are incapable of incorporating 
capacity limits when different items may be combined 
into a single production run, i.e., when the setup cost 
structure fails to be separable among the items. 

In this paper, we propose a planning methodology to 
address the combined problem of joint setup costs and 
capacity limits (per setup) for a continuous-time, two- 
stage, multi-item production or distribution system. (To 
avoid repetitious statements of the analogies between 
production and distribution planning problems, we cast 
the remainder of our description entirely within the 
production sphere.) We first describe the assumptions of 
this model. 

In the first stage, a common intermediate product is 
produced in batches and possibly stored. In the second 
phase, the intermediate product is fabricated into n 
distinct finished products; several finished products may 
be included in a single production batch to exploit 
economies of scale. In particular, assume that a fixed 
cost K] is incurred for any (second stage) production 
run. Likewise, a fixed cost Ko is incurred whenever a 
new production run for the intermediate product is 
initiated. 

We assume that customer demands for the end-items 
occur at constant, deterministic but item-specific rates. 
These demands must be filled from available inventories, 
i.e., backlogging is not allowed. While different items 
may be combined in a single production batch, the total 
production volume per batch cannot exceed a given 

capacity limit. As the above examples demonstrate, this 
capacity limit may be expressed, for example, as a 
restriction on the total volume, weight, (variable) pro- 
duction time or the number of packaging units (bottles, 
boxes) that can be assigned to a single production run. 

To simplify the notation, and without loss of general- 
ity, we express all demand rates in the same, common 
unit as is used to express the capacity restriction (gal- 
lons, pounds, hours, bottles, boxes, etc.). Let b denote 
the capacity limit (b < oo). (A similar capacity limit bo 
may be imposed on production runs for the intermediate 
product. Our analysis and conclusions are easily ex- 
tended for this case as long as the capacity ratio bo / b is 
a power-of-two value.) Simultaneous production of sev- 
eral batches is permitted; on the other hand, if each 
production run is to be performed on one of a limited 
number (say L) of machines or equipment pools, no 
more than L batches may be produced at any given point 
in time. 

Let di denote the demand rate for item i (i = 1, . . . , n) 
and assume that these rates are integer valued. Inventory 
carrying costs are incurred at a constant rate per unit of 
time, per unit stored. The cost rates for the intermediate 
product and the n end-items may all be distinct. 

We are interested in determining a production/inven- 
tory strategy minimizing long-run average costs. We 
assume that the variable production costs (in both stages) 
are linear in the production volumes; hence, these cost 
components may be ignored because their long-run aver- 
age value is identical for all relevant replenishment 
strategies, with long-run average production rates equal 
to the demand rates. 

Optimal policies may be very complex (even without 
joint setup costs or capacity limits per setup, see, e.g., 
Roundy 1985) and their complexity makes them difficult 
to implement even if they could be computed efficiently. 
As a consequence, we restrict ourselves to the following 
class of family-based replenishment strategies bF. A 
replenishment strategy in this class specifies a collection 
of families (subsets of items) covering all end items; if 
an item belongs to several families, a specific fraction of 
its sales is assigned to each family. Each time the 
inventory of one item in a family is replenished, the 
inventories of all other items in the family are replen- 
ished as well. 

Our restriction is similar to that applied in many other 
joint replenishment problems, see e.g., Chakravarty, 
Orlin and Rothblum (1982, 1985) and Barnes, Hoffman 
and Rothblum (1989), discussed below. Note that a large 
amount of flexibility is preserved within the class cJ by 
allowing items to be assigned to several families, i.e., by 
allowing families to overlap. 

The use of a fixed collection of families, all of whose 
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items are replenished simultaneously, allows one to as- 
sign these families to dedicated machine cells or work 
centers, as well as to specific (groups of) administrative, 
materials handling and sales force personnel. For these 
reasons, one would often impose an upper bound M* on 
the total (sales) volume which may be assigned to a 
single family. When the number of dedicated work cen- 
ters, or groups of administrative, materials handling and 
sales force personnel is fixed, one may wish to specify 
the number of families, L, or to impose a lower or 
upper bound on L. In other settings, L may be treated 
as an unconstrained variable. It is also relatively simple 
to extend our analysis to include bounds on the fre- 
quency with which families may be produced; see Anily 
(1987). 

We derive a simple algorithm which results in a 
replenishment strategy whose long-run average cost (UB) 
is guaranteed to come within a few percentage points 
of a lower bound (LB) for the minimum achievable cost 
under any strategy in (. For example, when 
L is variable, and the total sales volume N = En> I di 
is an integer multiple of M*, the optimality gap 
(= (UB-LB)/LB) is less than 6.1%. If M* fails to 
divide N the gap is bounded by 0.06 + 2M*/N, which 
for fixed M* quickly decreases to 0.06 as the number of 
items increases. Also when b = oo, i.e., in the absence 
of production capacity constraints, the gap can be re- 
duced to 2% regardless of any other considerations. The 
complexity of the algorithm is bounded by O(n log n + 

dmax n) where dmax = max i.. ndi is the demand rate 
of the largest item. 

The proposed strategy specifies a collection of fami- 
lies, each of which is replenished at constant intervals. 
Production runs of the intermediate product are con- 
ducted at constant intervals as well. All replenishment 
intervals are powers-of-two times the smallest such inter- 
val; this strategy is thus easy to implement. Such policies 
are referred to as power-of-two policies. Note that the 
replenishment epochs of any given product are equidis- 
tant as well, even though a product may belong to more 
than one family. This follows immediately from the 
power-of-two property of the replenishment intervals. 
The inventories of any given family of items are, at each 
production run, replenished by constant amounts, but 
consecutive production volumes of the intermediate 
product may vary, according to a simple periodic 
pattern. 

Note that under a power-of-two policy, production 
runs for a family with the lowest replenishment fre- 
quency, coincide with production runs for all other 
families. (Assume, for example, that three families are 
employed. A power-of-two policy may prescribe, for 
example, that the first family be replenished on a daily 

basis, the second family every other day and the third 
one, once per eight days. Assuming that at time zero we 
start with an empty system, three simultaneous produc- 
tion runs are required at times t = 8, 16, 24, . . . etc., 
one for each family.) Thus, if each production run is to 
be performed on one of a limited number of machines or 
equipment pools, it is required that L, the number of 
families, be bounded by the number of machines. 

The assumption that all demand rates are constant and 
deterministically known, although common to all of the 
above mentioned planning models, represents a serious 
restriction. This assumption may be valid when applying 
the model to the production of components by assembly 
plants (e.g., in the automobile, chemical and pharmaceu- 
tical industries; these plants often operate under deter- 
ministic regular schedules for their end items). In many 
other settings, however, sales volumes are subject to a 
considerable degree of uncertainty or nonstationarity. 
We believe that our model continues to be useful in such 
settings when applied in a hierarchical planning mode, 
for the purpose of determining optimal replenishment 
frequencies for the intermediate product and each end- 
item. With these parameters fixed, inventory rules could 
be determined on the basis of some of the available 
two-stage stochastic inventory models, see e.g., Eppen 
and Schrage (1981) and Federgruen and Zipkin 
(1984a, b, c and 1988). This would, for example, allow 
for an adequate determination of safety stocks. 

We complete this Introduction with a review of related 
inventory planning models and an outline of the remain- 
der of the paper. In our review, we restrict ourselves to 
models addressing single-stage or two-stage production 
or distribution systems. We refer to Maxwell and 
Muckstadt (1985), Roundy (1986), Zheng (1987) 
and Muckstadt and Roundy (1988) for a discussion of 
more general network topologies. 

One of the most extensively studied inventory replen- 
ishment problems with joint setup costs is the so-called 
Joint Replenishment Problem; see Brown (1967), Goyal 
(1973, 1974a, b), Goyal and Belton (1979), Graves 
(1979), Nocturne (1972), Schweitzer and Silver (1983), 
Shu (1971), Silver (1976), and Jackson, Maxwell and 
Muckstadt (1985). The Joint Replenishment Problem 
may be viewed as a special case of the previously 
described model, in which no inventories of the interme- 
diate product may be kept (i.e., the distinction between 
the two production stages vanishes) and in which no 
restrictions need to be addressed regarding the number 
of items or the total volume produced in a single batch 
(i.e., with M*= oo and b= oo). On the other hand, a 
somewhat more general joint setup cost structure may be 
handled: as in the above described model, there is a 
fixed setup cost for each production batch, independent 
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of which items are produced; in addition, however, item 
specific setup costs may be incurred for each item in- 
cluded in the batch. Jackson, Maxwell and Muckstadt 
(1985) derive an O(n log n) algorithm that generates a 
power-of-two policy whose long-run average cost comes 
within 6% of the Joint Replenishment Problem's mini- 
mum average cost per unit time. (Even for this relatively 
simple model no algorithm is known to result in an 
exactly optimal solution.) 

Chakravarty, Orlin and Rothblum (1985) building on 
earlier work (Chakravarty, Orlin and Rothblum 1982) 
restrict themselves to strategies that employ a fixed 
partition of items into families: Each time the inventory 
of a given item is replenished, it is replenished jointly 
with the other members of the family and the setup cost 
of that family is incurred. (This class of strategies bears 
similarity to the class 41 considered here.) Federgruen 
and Zheng address general joint setup cost structures in 
which the setup cost is given by a general (set) function 
of the collection of items to be jointly replenished. (This 
setup cost function is required merely to reflect 
economies of scale, in the sense of submodularity, see 
ibid.) As in all previous references, it is assumed that an 
unlimited production volume may be generated at the 
expense of a single setup. 

For a given collection of families, and in the absence 
of production capacity constraints, i.e., when b= oo 
the remaining problem reduces to identifying an optimal 
inventory replenishment strategy in the one-warehouse, 
multiple retailer lot sizing model analyzed by Roundy 
(1985), where the intermediate product plays the role of 
the warehouse and each family plays the role of a single 
retailer. (As before, Roundy's model allows for the fixed 
procurement cost to be retailer dependent.) Roundy 
(1985) has identified a simple O(n log n) procedure for 
this "one-warehouse-multiple-retailer" model which re- 
sults in a power-of-two-policy whose cost is guaranteed 
to come within 2% of the minimal cost, as achievable 
under any strategy! (Here, n represents the number of 
retailers.) Queyranne (1987) has shown that this algo- 
rithm can be implemented in 0(n) time. Muckstadt and 
Roundy (1987) consider a related one-warehouse, multi- 
ple retailer, multiple item model with a fixed order cost 
at each retailer which is independent of the specific items 
ordered. In this paper, the class of policies is restricted 
to nested power-of-two policies. The nestedness condi- 
tion means that every time a shipment of an item is 
received at the warehouse, a shipment of the item is 
made to each retailer as well. (Roundy 1985 explains 
that this restriction may lead to a serious loss in optimal- 
ity.) With N representing the number of retailer/item 
combinations, the proposed algorithm requires 
O(N log N) operations and results in a nested power-of- 

two policy which comes within 6% of an optimal such 
policy. If nonnested policies are to be considered as 
well, the 0(N4) general algorithm in Roundy (1986) 
may be invoked. 

As just indicated, ours appears to be the first continu- 
ous-time, multistage inventory replenishment model with 
an explicit capacity constraint on the total production 
volume per batch. (Aggregate capacity constraints on the 
total number of production runs per unit of time have 
been handled within the context of the above discussed 
Joint Replenishment Problem and the one-warehouse, 
multiple retailer model; see Jackson, Maxwell and 
Muckstadt (1988) and Muckstadt (1985).) Finite hori- 
zon, discrete-time planning models with similar produc- 
tion capacity constraints have been treated by Florian 
and Klein (1971), Florian, Lenstra and Rinnooy Kan 
(1980), Baker et al. (1978), Bitran and Yanasse (1982) 
and Barany, Van Roy and Wolsey (1984); see 
Federgruen and Zipkin (1986a, b) and Wijngaard 
(1972) for a treatment of stochastic, single-item, infinite 
horizon models with similar capacity constraints. 

In Section 1, we derive some preliminaries and sum- 
marize the analysis. In Section 2, we show how a lower 
bound for the minimum system-wide costs (within the 
class 4b) may be computed efficiently. In Section 3, we 
describe a simple procedure that results in a feasible 
replenishment strategy of the above described structure; 
we show that its long-run average cost comes within 
a few percentage points of the lower bound, obtained 
in Section 2. These results are obtained with the help 
of efficient algorithms for a general class of struc- 
tured partitioning problems addressed in Anily and 
Federgruen (1990). 

1. PRELIMINARIES AND SUMMARY OF ANALYSIS 

Assume that inventories of the intermediate product in- 
cur carrying costs at a rate ho per unit and per unit of 
time while inventories of end-item i are charged at a rate 
hti, i,= 1, .. . ,n. Let hi= ht -ho (i= 1, .. . ,n) denote 
the echelon holding cost rate and assume that hi > 0 
(i = 1,. . ., n). Since holding cost rates usually increase 
with the (cumulative) value added, this assumption is 
almost always satisfied. 

Recall that the demand rates of all items are assumed 
to be integer-valued, or more generally, that they are 
integer multiples of some common quantity d, i.e., 
di= kid, i- 1, . . ., n with ki an integer between 1 and 
K for some K > 1; for notational simplicity, and with- 
out loss of generality, we assume that d - 1. We define 
a demand-item as an item with a demand rate of d = 1. 
Each end-item i (i = 1, . . . , n) can thus be viewed as 
consisting of di independent demand-items, each with 
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unit demand rate and all with the same holding cost 
rate h,. 

We restrict ourselves to 4, the class of strategies 
which employ a fixed partition of the set of demand- 
items: Each time the inventory of one item in a family is 
replenished, the inventories of all other items in the 
family are replenished as well. Let X {X17 X * * , XN} 

be the collection of all demand-items (with N = En di) 
numbered in ascending order of their incremental hold- 
ing cost rates, i.e., h, h2 <. ... < hN. 

We use X = XI, . .., XL} to denote a partition of 
X. For any given partition X of X, let U(x) denote the 
minimal long-run average cost under the best replenish- 
ment strategy employing the collection of families X. 

For a given feasible partition X = { X1, . . ., XL}, a 
power-of-two policy is characterized by a vector of 
replenishment intervals T = (TO, T1,. .. TL) where 

To= the (constant) replenishment interval of the inter- 
mediate product; 

T= the (constant) replenishment interval of family 1, 
1= 1,...L. 

Under a power-of-two policy, all T1's are powers-of- 
two times the smallest such interval. Let m = XI 
(1 = 1, . . . , L). One easily verifies (Roundy 1985) that 
the long-run average cost under this policy is given by 

K0 L K IK 
Cx(T)= - + I+ -HIT, T 1T, 2 

I-1 ~~~1 

+ -2 m ihomax(To; TI) (1) 

where H, - Eief x hi, I = 1,.. ., L. Note that at each 
production run for family 1, m,T, units need to be 
produced. A power-of-two policy T is thus feasible if 
and only if T, < b/m, (1= 1, .. . , L). An optimal 
power-of-two policy for partition X is therefore obtained 
from the minimization problem 

UH(x) = inf{Cx(T): 0 < To; 0 < T,<, b1m,; 

TI/TO =2", n,integer(1l.,L} 

Let U(X) represent the value of the continuous relax- 
ation of this minimization problem in which the power- 
of-two ratio requirements are relaxed 

X)def 
H(x) - inf{Cx(T): 0 To; 

? < T, < bl/m, (I = 1, * * * , L)} (2) 
The following lemma shows that U(x) provides a lower 
bound for U( X) even though U( X) represents the mini- 
mal cost under any replenishment strategy which em- 
ploys the collection of families X, even though no 
power-of-two policy needs to be optimal, and even though 

Cx(T) may fail to represent the average cost for vectors 
T which are not power-of-two. The proof of this lemma 
is given in the Appendix and extends that of Theorem 1 
in Roundy (1985) for uncapacitated models. 

Lemma 1. U(X) < U(X) for every partition X. 

Thus, a lower bound for V*, the minimal long-run 
average cost among all strategies in 4, is obtained as 

def 
V * >V = min {U(X): x is a feasible partition}. 

To express V differently, let the function C(A.) for 
any T> 0, be defined by 

CT(H, m) - inf 
O?.,dO<b/m (3) 

* { Kp- V +-HV +-hOm max(T; ) } 

and note from (1)-(3) and by an interchange of infimum 
operators that 

V = inf ~K0 T,; '?min 
To >0 

L 

EcT,(H,, ml): X= {X],*** XL} 

partitions X and m M*, I = 1. L}. (4) 

Below we show with the help of the results in Anily 
and Federgruen (1990) that the following partition X* 
achieves the minimum in (4) for all values of To > 0! 

If L is variable: Xl = {Xi, * . *, Xr}, 

Xi { Xr+(1-2)M*+ 1 ' * Xr+(l-1)M*} 

1 2,.. . [ NIM*1 

where r = M* if N is a multiple of M* and 

r = N (modulo M*) 

= N - [ N/M*j M* otherwise. (5a) 

If L is fixed: (Without loss of generality, [ N/M*j < 
L A N. Indeed, if L < N/M*J, then LM* < 
([N/M*] - 1)M* <N, i.e., no feasible partition ex- 
ists.) There exists an index 

def ( LM* N) 
I*=[({M* -1) I such that X* { x,} (5b) 

for 1= 1,. . . ,1* and {x,*+1,. XN} is partitioned as 
in the case where L is variable. 

Note that when L is variable, x* employs the lowest 
possible number of families L = r N/M*]. For L fixed, 
the 1 demand items with the lowest (incremental) hold- 
ing cost rates each form a family by itself (i.e., are 
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replenished by themselves) while the remaining demand 
items are partitioned as in the case where L is variable. 
Let I be the number of families which are not filled to 
capacity (i.e., m,<M*). Note that 1? 1 if L is vari- 
able and l* < k< 1 + 1 if L is fixed. 

The partition x* is obtained by an exceedingly simple, 
linear time algorithm. We also identify a simple linear 
time algorithm that results in a vector of replenishment 
intervals T* such that the system-wide lower bound 
V= CX*(T*). Since the vector T* may fail to be a 
power-of-two, the corresponding replenishment strategy 
may fail to be feasible. However, we exhibit a simple 
rounding procedure which transforms the vector T* into 
a power-of-two vector TH; the average cost of this 
policy, implemented with the collection of families X*, 
is shown to come within a few percentage points of the 
lower bound V. (See the Introduction and the discussion 
below for a more precise statement of the optimality 
gap.) 

2. EVALUATION OF THE LOWER BOUND V 

We first show that the functions CT(,) may be evalu- 
ated in closed form. Let 

T'(H, m) = [2K, /(H+ mho)] 1/2 

and (6) 

T(H, m) = [2K1 /H] / 

be the order intervals obtained by the EOQ formula with 
a fixed cost of K1, a demand rate of one and holding 
cost rates of (H + mho) and H, respectively. 

Lemma 2 
a. If T b/m, then 

CT(H, m) 

mK1 /b + 1/2(H+ mho) b/m, b/m < T' (7a) 

=[2K,(H+mho)] /2 T<T' <b/m (7b) 

K1 / T+'1/2(H+ mho)T, ' < T< T (7c) 

[2K1H]'/2+/ 2mh0T, T < T. (7d) 

b. If b/m? T, then 

CT(H, m) 

mKl/b +'/2Hb/m +1/2mh0T, = b/m < T (8a) 

[2K1H] 1/2 +'/2mhoT, <, b/m. (8b) 

Proof 
a. Let 

K11?' I/ 2 H d9?'/2mnhod, 7J) _T 
DT(O), H, m) = K1Y ?'/2HW ?'/2rh0T, X< T 

AK19-l +'/ 2H7 + 112mhOT, 7)< T. 

If T,< b / m observe that in cases (7b), (7c) and (7d) 
inf , > ODT(9, H, m) is achieved at a point that is smaller 
than or equal to b/m (T', T and T, respectively). Thus, 

infO <: i S b/mDT(t,, H, m) is achieved in the same val- 
ues as well. In case (6a), where T < b / m < i', 

inf{DT(t9, H, m): T, X} < b/m} is achieved at t = 
b/rm, while for t < T < T' < T the function 
DT(O, H, m) = KIV-1 + '72Ht +? '2 mhoT is nonin- 
creasing. Thus, t = b/m represents the best possible 
value, in this case. 

b. If T>b/rm, only values of i9 with i T are 
feasible. Since T is the unconstrained minimum (over d) 
of the function {K19- ?+I/2H?+1/21mh0T}, it fol- 
lows that the function DTQ9, H, m) achieves its mini- 
mum over (0, b/rm] in min(b/rm; T). 

Note that the inner minimization in (4) 

(L 

min { cT(H, ml): X ={Xl,. XL} 

partitions Xand mr M*, I= 1,...,L} (9) 

represents a partitioning problem in which the N de- 
mand items are to be assigned to L families to minimize 
the sum of all family costs where the cost of a single 
family merely depends on the total value of the (incre- 
mental) holding cost rates as well as the number of 
demand items in the family, in accordance with the 
CT(.,) function. These partitioning problems are NP- 
complete for general group cost functions y(H, m); see 
Chakravarty, Orlin and Rothblum (1982) and Anily and 
Federgruen (1990). However, the properties of the group 
cost function CT(, ), identified in Lemma 3, guarantee 
that an optimal partition X* is easily identified and of an 
extremely simple structure. 

A function g(x, y) of two real-valued variables is 
said to have antitone differences, if 

g(x2, YI)-g(xI, YI) >g(x2, Y2) - g(xX, Y2) 

forall x,<X2, Y1<Y2. (10) 

(See Anily and Federgruen for an extensive discussion of 
this property.) 

Lemma 3 
def 

a. For any T > 0, the function fT(h, m) = 

CT(mh, m) is concave in both arguments. 
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b. The function CT(,) has antitone differences 
for any T> O. 

Proof 
a. Fix T> 0. Treating m as a continuous variable, 

it is easily verified from (7) and (8) that a2fT/ah2 
and a2fT/am2 exist and are nonpositive almost ev- 
erywhere. It thus suffices to show that 
(afT/ah)(afT/am) exists and is continuous in h(m) 
everywhere. As in Lemma 2, we distinguish between 
the following two cases. 

Case I. T < b / m: It suffices to verify the existence and 
continuity of (afT/ah)(afT/am) in points (h, m) 
where: (i) b/m = [2K1/lm(h + ho)]05, (ii) T = 

[2KI /m(h + ho)]05, and, (iii) T= [2K1 /mh]05. For 
(i), a+fT/ah = ['/2K1m/(h + ho)]05 = b/2 = 
a-fT/ah; for (ii) a-fT/ah = [1/2K1m/(h + 
ho)]0 5 = 1/2mT= a+fTl/a h, and for (iii) a +fT/ah = 

[1/2mK, /h]05 - 1/2rmT = a-fT/ah. Similarly, for 

(i) a-fT/aM = [K,(h + ho)/(2m)]05 = K1/b = 
a+fT/am; for (ii) a+fT/m = [KI(h + ho)/(2m)]05 
= T(h + ho) = a+fT/am, and for (iii) a-fT/am= 

[K1h/(2m)]05 + hoT= T(h + ho) = a+fT/am. 

Case II. T ) b / m: It suffices to verify the existence 
and continuity of (afT/a'h)(afT/am) in the points 
(h,m), where b/m=12K1/mh]05. But a+fT/ah= 
[1/2K1m/h]0.5 = b/2 = a-fT/ah and a-fT/am = 

[K1 h /(2 m)]0?5 + hoT= K1 / b + hoT = a fT/am. 
b. Fix T> 0. As in Part a, we treat m as a real- 

valued variable. We first observe that acTl/H exists 
everywhere and is continuous in m. The former follows 
from afT/ah existing everywhere, invoking the chain 
rule. The latter is easily verified investigating all of the 
cases in Part a. Now fix H1 <H2. Since aCTIaH 
exists everywhere, we have cT(H2, m) - CT(HI, m) = 
/H2 acT(H, m)/aHdH. The fact that the above expres- 
sion is nonincreasing in m, i.e., the fact that CT(,) 

has antitone differences (see (10)) now follows from the 
function aCTIaH being continuous in m (see above) 
and its derivative (a2CTIaHam) being nonpositive al- 
most everywhere. 

To address the partitioning problem (9), we first need 
to distinguish between the following types of partitions. 
Recall that the demand items in X are numbered in 
ascending order of their holding cost rates. In any given 
partition X = (X1, . . , XL) we number the families in 
ascending order of their cardinalities, i.e., m1 ?< m2 ?< 

... < mL. In a given ordered partition, let 1(i) denote 
the index of the family to which demand item i is 
assigned. We refer to the index function 1(*) as the 

family index function. An ordered partition is mono- 
tone if the group index function is nondecreasing. (For 
example, X = (XI, X2) = ({1, 2}; {3, 4, 5}) is a mono- 
tone partition of X = {xl., X5} but X = 

({4, 5}; {1, 2, 3}) is not because 1(5) < 1(1). In a mono- 
tone partition, a high holding cost item is not assigned to 
a set of lower cardinality than a low holding cost item.) 
A partitioning problem is called extremal if a monotone 
optimal partition exists and the cost of any monotone 
partition X = { XI, . . ., XL} does not increase by shift- 
ing the highest indexed demand item in any of its 
families to the next family (i.e., by transferring the 
highest indexed demand item of some family X, to 

XI +I, I1< SI <L). 
Theorem 5 in Anily and Federgruen establishes that 

the partitioning problems in (9) are extremal indeed 
because the fT(w,) function is concave in both argu- 
ments and the CT(., ) function has antitone differences; 
see Lemma 3. (Concavity of fT(h, m) in h and CT(, ) 
having antitone differences guarantees that a monotone 
optimal partition exists. The additional concavity prop- 
erty of fT(s) with respect to m establishes the ex- 
tremality of the partitioning problem.) The importance of 
this characterization follows from the fact that the parti- 
tion X* = (Xl, . XL**) defined by (5) is optimal 
whenever a partitioning problem is extremal (see 
Theorem 1 in Anily and Federgruen). 

We conclude with the next lemma. 

Lemma 4. The partition X* defined by (10) achieves 
the minimum in (9) and hence in (4) for all To > 0! 

Let 

HI*= > hi; ml = fXf; XI* T'(H, m 

T, = T( HI ,ml) (1 =1,.,L*). 

In view of Lemma 4, (4) simplifies to 

V= inf Ko/To+ cTo(H*, 'M) 

It remains to be shown that there exists a unique value 
To* achieving the minimum in (11) and that this value 
can be computed easily. The optimal corresponding re- 
plenishment intervals T*, . . , TL follow easily; see the 
definition of the function cT(-,- ) and Lemma 2. Both 
results follow from a simple generalization of the corre- 
sponding results in Roundy (1985) and Queyranne (1987) 
for systems without production capacity constraints. 
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One easily verifies from (11) and Lemma 2 that V 
may be written in the form 

L* 

V= inf K0/T0?+ cE cl((To)/To 

+?f3(To) + ?Y(To)To} 

with ce,(), 3(), y,() piecewise constant functions 
(1= 1, . L*) and that the functions [cu (T)/T+ 
131(T) + y,(T)T] (1 = 1, . . ., L*) are convex and differ- 
entiable everywhere with the possible exception of the 
point T = b / m rn. 

Thus, V is the infimum (over T> 0) of a strictly 
convex function U( T) which is differentiable every- 
where with the possible exception of the (at most L*) 
points in {b/m: I= 1, L*} and with limTIOU 
(T) = limT >,.U(T) = oo. Moreover, U(*) is of the form 
[u4T)/T+?:(T)?+y(T)T] with ca(T),/:(T), y(T) 
piecewise constant, changing values only when T crosses 

def 
one of the at most (2L* + 3) values in Z = {i, Il 
1. , L*} U {: I = 1, . , L*} U {b/m*: I= 
1, . . ., L*} . We conclude that the infimum in (1 1) is 
achieved for a unique value To* which may be obtained 
by the following procedure. 

To*-Finder 

Step 1. Rank the (at most (2 L* + 3)) values in Z in 
increasing order. 

Step 2. Proceeding in this order, compute for each 
point in Z first the left and then the right derivative of 
U( ) until for some z+ E Z a nonnegative (derivative) 
value is found. Let z be the preceding value in Z for 
which the left or right derivative was evaluated. (The 
very first left derivative can easily be shown to be 
negative.) If z = z+, then To = z = z+; otherwise To* 
(of/')'2 ELZ, Z+], where a and -y represent the con- 
stant values of a(-) and Py(*) on the interval [z, z+]. 

Note that Step 1 requires O(L*log L*) operations; 
Step 2 involves at most (2L* + 3) elementary evalua- 
tions. Queyranne has pointed out that the values in Z do 
not need to be ranked up front. He shows that To* may 
be found in O( L*) operations only, by employing a 
linear-time median finding algorithm. 

3. OBTAINING A FEASIBLE POWER-OF-TWO 
POLICY 

As pointed out, the vector T* of replenishment intervals 
may fail to be a power-of-two vector and may thus fail to 
be implementable. Below we exhibit a simple rounding 

procedure that transforms TP into a power-of-two vector 
TH, such that CX*(TH) exceeds V by a few percentage 
points only. First, partition the index set {1, . . ., L*} 
into the following five sets: 

G = {l|1 I< L*, To* <T ?b/m7} 

E = ( 1|1 < I < L, To* < b/m and Tr < To* < T} 

S = {1|1 < < L*L , , < To and l <, b / ml} 

Il - {~K1 <? L*, To < b/m* and b/m* < -rl 

I2= 11 <1 L*, To >b/m7 and b/m7 <-,}. 

Thus, if family le G, E or S then the optimal replenish- 
ment interval T,* is given by <' (strictly bigger than To* 
but no larger than b/mr), To (strictly smaller than 
b/m*), and Tl (strictly smaller than To and no larger 
than b/m*), respectively; see Lemma 2. Similarly, if 
IC-1 or I2, then the optimal replenishment interval T7* is 
equal to its upper bound (b/m*) and larger and strictly 
smaller than To* respectively. (Note that if b= 0o, 

II - I2 0 .) 
The following rounding procedure generates a feasible 

power-of-two vector of replenishment intervals TH 
which is order-preserving with respect to T* in all but at 
most one component, i.e., the elements in the triples 
(TIH, ToH, b /lml) are ranked exactly like the elements 
in (T,*, To, b/m*) for all but at most one value of 

1, . . .L, P. (See the Appendix for a more precise 
definition of order-preserving vectors.) These order- 
preserving characteristics help us to establish that the 
average cost of this policy, implemented with the collec- 
tion of families X*, comes within a few percentage 
points of V. 

Rounding Procedure 

Step 0. X := b/M*. 
Step 1. For / = 0, . . . , L*, determine the unique inte- 

ger t such that T* cX[2 t 1/2,2 tl/2) TH t (Note 
t 

=[ 1og2 T, -1g2 (v2 4X) I .) 
Step 2. For I = 1, . . . if TiH> b/m7^, then 

H T1 :=0.5T,H. 
(Step 2 is required because for I < 1, (b / ml) may fail to 
be a power-of-two times X.) 

Theorem 1 

a. The Rounding Procedure generates a feasible 
power-of-two policy TH. 

b. Cx*(TH)/ V X ? CX*(TH)/ V ? 1.061 + 
2 iM*/N. 
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Proof 

a. TH is clearly a power-of-two vector. For 1>1, 
b/m*=b/M*=X; thus, since Tl*,<b/m*, Tj'HS 

b/mm*, and hence, is feasible as well. For 1 < 1, let TH' 

be the value assigned to T,H in Step 1 and note that 
T,H' < -2 TI* < 2 b/m*. Thus for 1 < 1, feasibility is 
preserved by Step 2. 

b. Assume that 1 ) 1. In case / = 0, the proof simpli- 
fies in an obvious way. Note that the components of TH 

are order-preserving (with respect to T*) with the possi- 
ble exception of the first / components. Also, in view of 
Step 1, 1/ V2 T,H/T,* < 2 for all 1>1. Since the 
test in Step 2 is only satisfied if T,H/ T,* > 1, we have 
0.5 < T,H/ T,* < 2 for l < l. 

To prove the optimality gap, we first derive a (crude) 
bound for the cost term of the first I families in 

CX*(T*) = V. 
It follows from Lemma 2 that cT*(H, m) is non- 

decreasing in (H/m) and m. Since X* is monotone, 
we have Hl*/m* H2*1/m m * . <HL**/m* and, 
of course, m* .< . . < m*. Thus, since L* > 

N/M* 
I/* / L* 

cT*(Hl*, ml) < L* E C1(Hi ml) 
1= L* cT11 

,, 

IIM*\ 
= - V< li V. (12) 

L* \ 
<1 

Nf- 

It follows from Lemma A1 that numbers 0, Al 
(1YE) may be computed such that for any fully order- 

preserving policy T 

x *(T) 2 (* To* To*) 

x~ 2*O* T 

+ Tz T + E1 +1 

I-GUS 2 T( T) it U I21 

Since Ti" may fail to be order-preserving and invoking 
the bounds on the ratios TH/ Tj* (1 = 1,... , L*), we 
obtain 

CX*(TH) 

r K 1*H mlh0max(T1H, 
+ +_M TH)] 

+ Ao/2[- + -T]+ Z 1/2 T 
To* To leG US\ {,..,1} TZ Z 

+ z 

leI UI2\'{1, l} 

E T* + 22 ,T 

+ v(2 (mlho ) max( T,*, To)] 

(l(EU 
> 

1 ) ) 2 x 

2- 1/2 < X < 21/2 } 

?2 Z cT*(H,, ml) + 1.061V 
l1= 1 

?4.6 21M*1 V 1.06 + N . 

The following conclusions may be drawn with respect to 
the worst case optimality gaps. Let V = CX*(TH). 

Corollary 1 

a. If b = oo, (V- V*)/ V* < 0.061. 
b. If b < oo, L is variable and N is a multiple of 

M*, (V - V*)/ V* < 0.061. 
c. If b < oo, L is variable and N is not a multiple 

of M*, (V- V*)/ V* < 0.061 + 2M*/N. 
d. If b < oo, and L is fixed, ( VV*)/ V* < 

def 
0.061 + 2[cx(M*/(M* - 1)) + 1]M*/N where ae = L 
- N/M*. 

Proof. Parts a, b and c follow from Theorem 1 and 
I 

1 = 0, 0 and 1, respectively. 

d. (LM* -N) L 
(M*-1) 

M* 
+1c(Z*)+ 1; see() 

Note that the upper bounds for the worst case optimality 
gaps in Cases c and d, even though comparatively small, 
have been obtained by rather crude bounding arguments. 
For example, the proof of Theorem 1 is based on an 
increase of the cost of the first I families by a factor of 
two (!) when replacing their replenishment intervals T1* 
by T1H, and, in practice, a considerably smaller increase 
should be expected. When L is fixed, ae = L - N/M* 
denotes the excess number of families above the minimal 
(and indeed optimal; see (10)). Note that for fixed ae, the 
upper bound for the worst case optimality gap rapidly 
decreases to 0.061. 



452 / ANILY AND FEDERGRUEN 

We conclude with a description and discussion of the 
entire algorithm required to compute the lower bound V, 
determine the collection of families x* and the power- 
of-two policy TH. 

Algorithm 

Step 1. Rank the end-items { 1... ,n} in ascend- 
ing order of their (incremental) holding cost rates 
{hi: i- 1, .. . , n}. Use this list to generate the collec- 
tion of demand items X = { x1,.. ., XN} (again num- 
bered in ascending order of the holding cost rates). 

Step 2. Determine X* in accordance with (10). 
Compute the numbers {HI: 1 = 1, . . . L*} (HI= 
EjeX,*hi). 

Step 3. Determine To by the linear-time implementa- 
tion of the procedure TO-finder; determine {T,*: / 
1, . . . L*} from (6) and (7). 

Step 4. Determine TH by the Rounding Procedure. 

Complexity of the Algorithm 

In Step 1, the ranking of the end-items requires O(n log n) 
operations and the creation of the list X = { xl,. ., XN} 

an additional O(N) operation. Step 2 requires O(N) 
operations as well. As discussed, the TO-finder proce- 
dure has a complexity O(L*) = O(N), while { Tl : / - 
1, . . . , L*} may be computed in O(L*) O(N) elemen- 
tary operations and evaluations of the square root func- 
tion. Finally, Step 4 requires O(L*) = O(N) operations 
and evaluations of the log2( ) function. 

In summary, counting additions, multiplications, com- 
parisons and evaluations of the square root and log2( ) 

function as elementary operations, we conclude that the 
complexity of the entire algorithm is O(N log N) = 

O(n log n + dmax n). 
Since a problem instance is specified by O(n) input 

parameters (the end-items' demand rates and incremental 
holding cost rates, as well as a few cost and constant 
parameters), the algorithm is, strictly speaking, not fully 
polynomial in the usual complexity theoretical sense. 
We argue, however, that in practical applications dmax is 
relatively small, and for fixed values of dmax the algo- 
rithm is O(n log n) only! 

We apply the algorithm to the following example. 

Example. Consider a system with four end-items, i.e., 
n = 4. Their demand and echelon holding cost rates are 
given by 

Product 1 2 3 4 

Demand rate 5 7 4 10 
Echelon holding 1 2 3 4 

Assume that M* = 8, L is variable, b = 24, ho = 4, 
Ko= 400 and K1 = 100. 

Thus X = {xI, . . ., x26} where the demand-items 
{xi, 1 < i 5} correspond to product 1, {xi, 4 < i< 
12} correspond to product 2, { xi, 13 < i < 16} corre- 
spond to product 3 and { xi, 17 < i < 26} correspond to 
product 4. The optional partition is X* - { 1, X2, X3, 
X4}, where X ={xI, x2}, X2={x3,...,xl0}, 
X3= {x,... , x18} and X4 {X19, .., X26} result- 
ing in HK = 2, H2 = 13, H3 = 24, H4* = 32 and 
ml=2, mn=zmn=m4=8. 

As explained, the function U(T), defined below (11), 
is differentiable everywhere except in the following 
points: - = 1.768, T> = 1.89, TI = 2.108, T4 2.5, 

= 2.887, b/M* = 3, T2 = 3.922, r' = 4.472, T1 = 10 
and b/rm= 12. (See (6) for the calculation of the T' 

and T values.) Following the TO-finder procedure we 
conclude that To* = 3. (At To = 3 the left derivative of 
the function U( ) is negative and the right derivative is 
positive.) Moreover, according to the definition of the 
sets G, E, S, I, and I2 we obtain that G = {1}, 
E = {2} and S ={3, 4} . Thus T>* = 4.472, T2* = 3, 
T3 = 2.887, T4* =2.5 and by substituting into V we get 
the lower bound V = 524.169. 

Following the Rounding Procedure we obtain: X = 3, 
TOH = 3, TH=6, TH'=3, T3H=3, T4H =3. It is 
easy to verify that Cx*(TH) = 527.5 which is less than 
0.64% above the lower bound value! 

APPENDIX 

Proof of Lemma 1 

In this appendix, we give an outline of the proof of 
Lemma 1 by showing how the proof of Theorem 1 in 
Roundy (1985) needs to be modified. Let X = 

(X1I. .., XL) be a feasible ordered partition of X and 
T be the unique vector of replenishment intervals with 

I 

UV(x) =Cx(T) =inf{Cx(T): O <To; O <T < b/ ml}. 
The existence of this vector follows as in Section 2. In 
Section 3, we define family index sets G, S, E, I, and 
I2 with respect to a specific partition X* and vector T*. 
Redefine these sets as well as the numbers {I 1, r, HI: 
/ = 1, . . ., L} with respect to the partition x and the 
vector T. 

A vector Tpreserves the order (of T) if T) > To and 
T,b/l IXI1, 1eG; T1= To and To0b/l I X,, lEE; 
T, b/IXII, T,?To, leS; T =b/ IX,I and To 
bl I XI I, leI1 and T1 = b/ I XI I, To > b/ I X I t lEI2. 
Note that any order-preserving policy is feasible. 

The long-run average cost associated with the partition 
X and any order-preserving vector T may be written in 
the form Cx(T)=K/TO+HT0+ZI0E(K1/T,+ 
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H,T,) where 

K=Ko+ I El K1 

H=1/2 (HI+mlho)+1/2 > m,ho 
IEE IeSUI2 

- =/2(H,+m,hO) leGUII 

'12HI IeSUI2. 

Let 

/to= 2( KH)O. 

2(K1H,)0.5 leG U S 

Xl I Kl / b + Hl b /jX jlj I1U I2. 

Lemma Al 

a. UV(X) = AO + Zl EPE1 

b. to= K/H; T,=/KI/HI leGUS. 

Proof. Note from (1) that Cx(T) is convex in TeRL I. 

The functionCx: RIGI+ISI+I R: 

(TO, {Ml} leG, {llS) 

K K1 + (HI + m,ho) To} 
TO +eE To 2 

+EII UI2 { b 2 m, + 2mmliomax(i'o;-)} 

+ { +-HITi +-mihomax(To; T)} 
IEG US T, 2 2 

(obtained by substituting T, = To,0 I EE and T, = b / min, 

IEJ1 U I2 in Cx(T)) is thus strictly convex as well. On 
def 

the polyhedron II = {(TO, { T,}EG {T,},es): T17? T> 0, 
leG and 0 < T, < T, leS} we have CX = To, 

def 
{ T1}1cGG { TI}IES) __= Ko / To + HTo + 
ZE, cIu 2(fl'2,Ki/b+H`,b/m,) + E1EGUs(KI/T,+ 
H,T,). The vector (To, { Tl}lEG, {IT,}ls) is the unique 
global minimum of Cx because the capacity constraints 
are not binding for Ie G U S. This vector is also an 
interior point of H and hence must be a local (uncon- 
strained) minimum of b. But the latter has only one 
unconstrained minimum with To K/H and 
T, = K1/HIeG U S. Thus, To= K/H and 
t1= ,/KI/Hj, leGUS. Part a of the lemma now 
follows by substitution into CX. 

The proof of Lemma 1 is based on a modification of 
the proof of Theorem 1 in Roundy (1985). As in Roundy, 
we show that it is possible to allocate the costs incurred 

by an arbitrary policy using a given partition x = 

{XI, . . ., XL} to the individual families of finished 
demand-items and the intermediate product in such a 
way that: 

* the average cost incurred by the policy is at least as 
large as the sum of the average costs allocated to the 
families and the intermediate product; 

* the total average cost allocated to a family or the 
intermediate product is the average cost of a solution 
to a single facility problem; 

* the sum of the costs of the optimal solutions to these 
single facility problems is at least as large as U(x). 

To facilitate this cost allocation process we first define 
reallocated holding cost rates. Referring to the inter- 
mediate product as the 0th family of demand-items, let 
for each I = 1, . . ., L K, = K1 and define the reallo- 
cated holding cost rate H, = K, / T6 for lEWW=EU 
{O}. Also define fi, = 2(KH,)0 5, lE W. For 1 W, H, 
has already been defined and we set ii = it,. The follow- 
ing lemma is an adaptation of Lemma 1 of Roundy 
(1985). 

Lemma A2 

a. H = ZEw H,. 

b. U(x) = 
L f0,I where , = 

minO<x<b/ I x {Kl/X + HX}, I = 1, . ... L and 

/to = min>{Ko /x + HOx}. 

C. 1/2H, <Hl < /2H + /2m,ho, I= 1, . L. 

d. HO= H' where H'=1/2H,+1/2m,h0- 

HI, -1.L. 

Proof 

a. Since K,/HI = T2= K/H for all lE W, we have 
H = K / T = Z, W K, / TI '= E le w H. 

b. It follows from the definition of the sets G and S 
that 

Tl= - K E lE(O, bl IXI I] 

achieves min0<x{KI/x + HIx} so that i, = 

2(KH )05 = K,/ T+HITI = mino<X<b/Ix, {K,/ 
x+Hx}x, lEGUS. 

Similarly, for I E E, T, = TO= K, /HI E 

(0, b/ X,I) achieves min0<x{KI/x+ H,x} so that 

Al= mino<x<b lx,l{K,lx+Hlx}, ElE as well. If 

EII /KI,/HI = K1K/(HI+ +M,hO) = T- > 
b I X so that A, = K, I XI I /b + Hjb12 I XI I 
minO X<b/ l {Kl,/x+ HHX}, IeI1. 

A similar argument verifies Part b for 1E12. Obvi- 

ously, o = 2 KHo = minO < X{ K, / x + H0 x} . 
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Part c is immediate from the definition of H, and 
IT' To <? l, IeE. Finally, in view of Part a 

Ho - H - ZlEEHl = EE [/2 H + /2 mho - HI] 

+ E>,SU I21/2m,ho= >jKlH'. 

Proof of Lemma 1 

Choose an arbitrarily feasible infinite-horizon policy for 
the partition X and let c(t') be the average cost incurred 
by this policy over the finite interval [0, t'). We show 
that liminf,t.O c(t') ?>U(x). 

Let J,(t) be the number of replenishments of family I 
in [0, t'). Since the policy is feasible we must have 

limsup t/JI(t) < b/ I X,I. (*) 
t-+oo 

Following the proof of Theorem 1 in Roundy (1985) and 
employing the identities in Parts c and d of Lemma A2, 
one verifies that 

L [ J(t') 1 
c(t') ? S [K ( ? H,I 

Thus, in view of (*), there exists a sequence { tkk= 
def 

with lim kooC(tk) = lim inf t,oc(t) and x, - 

limk,ootk/JA(tk) exists for all l 1,..., L. Thus 

L K] K 
liminf c(t) Y E [ x inf K [ Hox 

L _K 

= x1 Oxbb/ I XI I X 

L 

l=l1 

see Lemma A2, Part b. 

ACKNOWLEDGMENT 

We are indebted to the Associate Editor and the referees 
for their thorough reading and careful editing of a previ- 
ous version of this paper. The research of the first author 
has been supported in part by NSERC grant A4802. The 
research of the second author has been partially sup- 
ported by NSF grant ECS-8604409 as well as a grant by 
the Faculty Research Fund of the Graduate School of 
Business, Columbia University. 

REFERENCES 

ANILY, S. 1987. Integrating Inventory Control and Trans- 
portation Planning. Ph.D. Dissertation, Columbia Uni- 
versity, New York. 

ANILY, S., AND A. FEDERGRUEN. 1990. Structured Parti- 
tioning Problems. Opns. Res. 39, 132- 149. 

BAKER, K. R., P. S. DiXON, M. J. MAGAZINE AND E. A. 
SILVER. 1978. An Algorithm for the Dynamic Lot-Size 
Problem With Time-Varying Production Capacity Con- 
straints. Mgmt. Sci. 24, 1710-1720. 

BARANY, I., T. J. VAN RoY AND L. A. WOLSEY. 1984. 
Strong Formulations for Multi-Item Capacitated Lot 
Sizing. Mgmt. Sci. 30, 1255-1261. 

BARNES, E., A. HOFFMAN AND U. ROTHBLUM. 1989. Opti- 
mal Partitions Having Disjoint Convex and Conic 
Hulls. Working Paper, Faculty of Industrial Engineer- 
ing and Management, Technion, Haifa, Israel. 

BITRAN, G. R., AND H. H. YANASSE. 1982. Computational 
Complexity of the Capacitated Lot Size Problem. 
Mgmt. Sci. 28, 1174-1186. 

BROWN, R. G. 1967. Decision Rules for Inventory Man- 
agement. Holt, Rinehart & Winston, New York, 
46-55. 

CHAKRAVARTY, A. K., J. B. ORLIN AND U. G. ROTHBLUM. 

1982. A Partitioning Problem With Additive Objective 
With an Application to Optimal Inventory Groupings 
for Joint Replenishment. Opns. Res. 30, 1018-1020. 

CHAKRAVARTY, A., J. ORLIN AND U. G. ROTHBLUM. 1985. 
Consecutive Optimizators for a Partitioning Problem 
With Applications to Optimal Inventory Groupings for 
Joint Replenishment. Opns. Res. 33, 820-834. 

EPPEN, G., AND L. SCHRAGE. 1981. Centralized Ordering 
Policies in a Multi-Warehouse System With Leadtimes 
and Random Demand. In Multi-Level Production/ 
Inventory Control Systems: Theory and Practice, L. 
Schwarz (ed.). North-Holland, Amsterdam, 51-67. 

FEDERGRUEN, A., AND Y. ZHENG. 1988. The Joint Replen- 
ishment Problem With General Joint Cost Structures: 
General Solution Methods and Performance Bounds. 
Opns. Res. (to appear). 

FEDERGRUEN, A., AND P. ZIPKIN. 1984a. Allocation Poli- 
cies and Cost Approximations for Multi-Location In- 
ventory Systems. Naval Res. Logist. Quart. 31, 
97-130. 

FEDERGRUEN, A., AND P. ZIPKIN. 1984b. Approximations 
of Dynamic Multi-Location Production and Inventory 
Problems. Mgmt. Sci. 30, 69-84. 

FEDERGRUEN, A., AND P. ZIPKIN. 1984c. Computational 
Issues in an Infinite Horizon, Multi-Echelon Inventory 
Model. Opns. Res. 32, 218-836. 

FEDERGRUEN, A., AND P. ZIPKIN. 1986a. An Inventory 
Model With Limited Production Capacity and Uncer- 
tain Demands I: The Average Cost Criterion. Math. 
Opns. Res. 11, 193-207. 

FEDERGRUEN, A., AND P. ZIPKIN. 1986b. An Inventory 
Model With Limited Production Capacity and Uncer- 
tain Demands II: The Discounted Cost Criterion. 
Math. Opns. Res. 11, 208-215. 

FEDERGRUEN, A., AND P. ZIPKIN. 1988. Allocation Policies 
and Cost Approximation for Two-Echelon Inventory 
Systems With Centralized Stock (in preparation). 



Two-Stage Multi-Item Production /Inventory Model / 455 

FLORIAN, M., AND M . KLEIN. 1971. Deterministic Produc- 
tion Planning With Concave Costs and Capacity Con- 
straints. Mgmt. Sci. 18, 18-20. 

FLORIAN, M., J. K. LENSTRA AND A. H. G. RINNOOY KAN. 
1980. Deterministic Production Planning: Algorithms 
and Complexity. Mgmt. Sci. 26, 669-679. 

GOYAL, S. K. 1973. Determination of Economic Packaging 
Frequency for Items Jointly Replenished. Mgmt. Sci. 
20, 232-235. 

GOYAL, S. K. 1974a. Optimal Ordering Policy for a Multi- 
Item, Single Supplier System. Opns. Res. 25, 
293-298. 

GOYAL, S. K. 1974b. Determination of Optimum Packaging 
Frequency of Items Jointly Replenished. Mgmt. Sci. 
21, 436-443. 

GOYAL, S. K., AND A. S. BELTON. 1979. On 'A Simple 
Method of Determining Order Quantities in Joint Re- 
plenishments Under Deterministic Demand'. Mgmt. 
Sci. 26, 604. 

GRAVES, S. 1979. On the Deterministic Demand Multi- 
Product Single Machine Lot-Scheduling Problem. 
Mgmt. Sci. 25, 276-280. 

JACKSON, P., W. L. MAXWELL AND J. A. MUCKSTADT. 

1985. The Joint Replenishment Problem With Power- 
of-Two Intervals. IIE Trans. 17, 25-32. 

JACKSON, P., W. L. MAXWELL AND J. A. MUCKSTADT. 

1988. Determining Optimal Reorder Intervals in Ca- 
pacitated Production-Distribution Systems. Mgmt. Sci. 
35, 938-958. 

MAXWELL, W., AND J. MUCKSTADT. 1985. Establishing 
Consistent and Realistic Reorder Intervals in Produc- 
tion-Distribution Systems. Opns. Res. 33, 1316-1341. 

MUCKSTADT, J. 1985. Planning Component Delivery Inter- 
vals in Constrained Assembly Systems. In Multi-Stage 
Production Planning and Inventory Control, S. 
Axsater, C. Schneeweiss and E. Silver (eds.). Springer 
Verlag, Berlin. 

MUCKSTADT, J., AND R. ROUNDY. 1987. One-Warehouse, 
Multi-Retailer Distribution Systems. Mgmt. Sci. 33, 
1416-1430. 

MUCKSTADT, J., AND R. ROUNDY. 1988. Analysis of Multi- 
Stage Production Systems. Technical Report No. 806, 
School of O.R. and I.E., Cornell University, Ithaca, 
New York. 

NOCTURNE, D. J. 1972. Economic Ordering Frequency for 
Several Items Jointly Replenished. Mgmt. Sci. 19, 
1093-1096. 

QUEYRANNE, M. 1987. Finding 94% Effective Policies in 
Linear Time for Some Production/Inventory Systems. 
Faculty of Commerce Working Paper, University of 
British Columbia, Vancouver. 

ROUNDY, R. 1985. 98%-Effective Integer-Ratio-Lot-Sizing 
for One-Warehouse-Multi-Retailer-Systems. Mgmt. 
Sci. 31, 1416-1430. 

ROUNDY, R. 1986. A 98%-Effective Lot-Sizing Rule for a 
Multi-Product, Multi-Stage Production/Inventory Sys- 
tem. Math. Opns. Res. 11, 699-727. 

SCHWEITZER, P. J., AND E. A. SILVER. 1983. Mathematical 
Pitfalls in the One Machine Multiproduct Economic 
Lot Scheduling Problem. Opns. Res. 31, 401-405. 

SHU, F. T. 1971. Economic Ordering Frequency for 
Two Items Jointly Replenished. Mgmt. Sci. 17, 
B406-B410. 

SILVER, E. A. 1976. A Simple Method of Determining 
Order Quantities in Joint Replenishment Under Deter- 
ministic Demand. Mgmt. Sci. 22, 1351-1361. 

WIJNGAARD, J. 1972. An Inventory Problem With Con- 
strained Order Capacity. TH-Report 72-WSK-63, 
Eindhoven University of Technology, Eindhoven, The 
Netherlands. 

ZHENG, Y. 1987. Replenishment Strategies for Production/ 
Distribution Networks With General Joint Setup Costs. 
Ph.D. Dissertation, Columbia University, New York. 


	Article Contents
	p. 443
	p. 444
	p. 445
	p. 446
	p. 447
	p. 448
	p. 449
	p. 450
	p. 451
	p. 452
	p. 453
	p. 454
	p. 455

	Issue Table of Contents
	Operations Research, Vol. 39, No. 3 (May - Jun., 1991), pp. 351-525
	Front Matter [pp.  351 - 351]
	In This Issue [pp.  352 - 354]
	OR Forum
	Six (Or So) Things You Can Do with a Bad Model [pp.  355 - 365]

	OR Practice
	Decision Support for Supercomputer Acquisition [pp.  366 - 377]

	Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning [pp.  378 - 406]
	Optimal Assignment of Components to Parallel-Series and Series-Parallel Systems [pp.  407 - 414]
	Dynamic Search Games [pp.  415 - 422]
	An Algorithm for Solving Dynamic Capacitated Plant Location Problems with Discrete Expansion Sizes [pp.  423 - 436]
	Sufficient Conditions for Coincidence in Minisum Multifacility Location Problems with a General Metric [pp.  437 - 442]
	Capacitated Two-Stage Multi-Item Production/Inventory Model with Joint Setup Costs [pp.  443 - 455]
	Parallel Savings Based Heuristics for the Delivery Problem [pp.  456 - 469]
	Matchup Scheduling with Multiple Resources, Release Dates and Disruptions [pp.  470 - 483]
	Off-Day Scheduling with Hierarchical Worker Categories [pp.  484 - 495]
	Optimal Manufacturing of a Two Product Mix [pp.  496 - 501]
	Some Effects of Nonstationarity on Multiserver Markovian Queueing Systems [pp.  502 - 511]
	Technical Notes
	Multi-Echelon Assembly Systems with Nonstationary Demands: Heuristics and Worst Case Performance Bounds [pp.  512 - 518]
	How Many Forecasters Do You Really Have? Mahalanobis Provides the Intuition for the Surprising Clemen and Winkler Result [pp.  519 - 523]

	Back Matter [pp.  524 - 525]



