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Abstract

We consider a two-echelon assembly system producing a single final product for which the demand is known. The
first echelon consists of several parallel stages, whereas the second echelon consists of a single assembly stage. We
assume that the yield at each stage is random and that demand needs to be satisfied in its entirety; thus, several pro-
duction runs may be required. A production policy should specify, for each possible configuration of intermediate
inventories, on which stage to produce next and the lot size to be processed. The objective is to minimize the expected
total of setup and variable production costs.

We prove that the expected cost of any production policy can be calculated by solving a finite set of linear equations
whose solution is unique. The result is general in that it applies to any yield distribution. We also develop efficient algo-
rithms leading to heuristic solutions with high precision and, as an example, provide numerical results for binomial
yields.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

As manufacturing frequently requires the combined effort of several stages (machines), the efficient plan-
ning of production lots often becomes a crucial economic factor. The determination of production lots
is particularly challenging when yields are random and demand needs to be satisfied in its entirety (i.e.,
is ‘‘rigid’’). Then, several production runs may be necessary at some or all stages.
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Fig. 1. A two-echelon assembly system.
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We consider a two-echelon assembly system producing a single final product. The first echelon consists
of at least two parallel stages and the second echelon consists of a single (‘‘final’’) assembly stage (Fig. 1).
We refer to output of the first echelon, waiting to be used by the assembly stage, as work-in-process (WIP).

We assume:

• Production at each stage is in lots involving fixed and variable processing costs.
• Production yield at each stage is random. Defective units, either WIP or final products, are worthless and

must be scrapped.
• Demand for final goods is rigid.
• There is no value to excess WIP or conforming final products.

These assumptions fit environments where orders are for small quantities and products are custom-
made. In particular, models leading to multiple production runs are realistic in environments where the var-
iance of the yield rate is large. For more information see Grosfeld-Nir and Gerchak (2004).

For any outstanding demand level and any possible configuration of intermediate inventories (i.e., WIP),
a production policy should specify the stage at which production takes place next and the lot size to be used
at that stage. The objective is to minimize the expected total of setup and variable production costs.

Note that while our formulation below holds in general, i.e., for any yield distribution, our numerical
study tests only the binomial distribution.

1.1. Literature review

The modeling of manufacturing systems with random yields attracted the attention of many researchers;
see Yano and Lee (1995) for a literature review. Two variants of demand have been addressed in the liter-
ature: (i) ‘‘rigid demand’’, where an order must be satisfied in its entirety, possibly necessitating multiple
production runs; see Grosfeld-Nir and Gerchak (2004) for a literature review of such models; and (ii)
‘‘non-rigid demand’’, where there is only one production run and a penalty for a shortage; see Yano
and Lee (1995) and Section 9.4.8 of Zipkin (2000) for a description of such single-attempt scenarios.

The single stage with binomial yields and rigid demand has been analyzed since the mid-1950s, often
under the label of ‘‘reject allowance’’ (Sepheri et al., 1986). For the binomial yield, Beja (1977) proved that
the optimal lot size strictly increases in the demand and that the expected cost is quasi-convex in the lot size,
which provides a convenient stopping rule in the quest for the optimal policy. Anily (1995) proved a similar
result for the discrete uniform yield case. Grosfeld-Nir and Gerchak (1996) showed that the monotonicity
of the lot size as a function of the demand does not hold for any yield distribution: in their study of some
fundamental questions concerning the single stage, the authors provide examples where the optimal lot size
may decrease in the demand and in the setup cost. Anily et al. (2002), analyzed the interrupted-geometric
yield distribution, and proved that the optimal lot size never exceeds the demand and that an increase in the
demand may induce a decrease in the optimal lot size.

Only few results are known concerning serial multi-stage systems with random yield and rigid demand.
Grosfeld-Nir and Ronen (1993) and Grosfeld-Nir (1995) studied ‘‘single-bottleneck systems’’ (SBNS) which
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are described in Section 2.2. Wein (1992) assumed ‘‘perfect rework’’, i.e., if the number of usable units exit-
ing a certain stage is insufficient, defective units can be perfectly reworked, thus necessitating at most two
production runs at each stage. Grosfeld-Nir and Gerchak (2002) allow for unlimited reworks at each stage.
Pentico (1994) analyzed a heuristic for the serial multi-stage system with binomial machines. He assumed
that all usable units exiting a stage proceed to the next stage.

Grosfeld-Nir and Robinson (1995) studied a binomial two-stage system, providing an LP formulation
for calculating the optimal policy. The LP formulation requires a large number of constraints; numerically
they solved examples for demand equal one and two, and proposed a heuristic for a larger demand. Gros-
feld-Nir (2005) studied ‘‘two-bottleneck systems’’ (2-BNS): multi-stage serial systems where setup costs for
all but two stages are zero. The author proved the expected cost of any production policy can be evaluated
by solving a finite set of linear equations. This result is important since it provides the means to compare the
effectiveness of various policies and heuristics. In particular, one can search for the optimal policy by using
a full enumeration procedure, i.e., by evaluation of all feasible policies within a subset of policies that con-
tains an optimal solution. The author also developed a policy improvement algorithm for the two-stage sys-
tem and reports that in all his testable experiments it reached the optimal solution.

In total, early studies prove that solving any system with more than one machine requires a considerable
effort. As explained below, the two-stage problem is much harder and requires a specialized approach. An
effective way to treat a serial system is yet unknown. In this context the two-stage assembly system is a nat-
ural avenue for research.

1.2. Summary of results

• We show that the expected cost associated with any given production policy, for the two-echelon assem-
bly system can be evaluated by solving a finite set of linear equations, which has a unique solution.

• We develop modifications of algorithms, used for the two-stage system, to solve the more complex
assembly system.

• We develop a new powerful ‘‘intermediate-demand-algorithm’’ (IDA) that is rapid and easy to
implement.
2. Serial multi-stage systems

In this section we review several known results for serial multi-stage systems. Later we employ these re-
sults in the analysis of the two-echelon assembly system.

2.1. The single stage

We consider a production facility producing in lots, or runs, where the production of a lot N entails the
cost a + bN. We refer to a and b as setup and variable production costs, respectively. We denote p(x, N),
0 6 x 6 N, the probability to obtain x conforming units from a lot of size N and define the following cost
functions:

VD is the optimal (minimal) expected cost required to fulfill an order of size D P 1.
VD(N) is the expected cost if a lot of size N is run whenever the demand is D and an optimal lot is
processed whenever the remaining demand is less than D.

Therefore, VD = minN{VD(N)} � VD(ND); where ND 2 argmin{VD(N) : N P 1}. Without loss of gener-
ality we can assume that the salvage value is zero (see discussion in Anily et al. (2002)) and therefore we can
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define VD = 0 for any D 6 0. The following recursive formulation that was originally proposed by White
(1965) holds for any yield distribution:
V DðNÞ ¼ aþ bN þ pð0;NÞV DðNÞ þ
XD�1

x¼1

pðx;NÞV D�x
or equivalently,
V DðNÞ ¼
aþ bN þ

PD�1
x¼1 pðx;NÞV D�x

1� pð0;NÞ : ð1Þ
Thus, the optimal lot size and the optimal expected cost can be calculated recursively in D, via a search over

N. We refer to a stage as ‘‘binomial machine’’ if pðx;NÞ ¼ N
x

� �
hxð1� hÞN�x. We refer to a system with

binomial machines only as a ‘‘binomial system’’.

2.2. A single-bottleneck system with binomial yields

Grosfeld-Nir and Ronen (1993) and Grosfeld-Nir (1995) refer to a stage with non-zero setup cost as a
‘‘bottleneck’’ (BN) and to a system with only one BN as a ‘‘single-bottleneck system’’ (SBNS). Similarly,
a system with no BNs (all setups are zero) is referred to as a ‘‘zero-bottleneck system’’ (0-BNS). Typically,
a SBNS consists of two 0-BNS and the BN. Fig. 2 demonstrates a binomial SBNS; hj is the success prob-
ability of machine j.

When a binomial 0-BNS faces a rigid demand D, it is optimal to process units one at a time until the
demand is satisfied. The resulting expected cost is mD, where m, the minimal expected cost to satisfy a de-
mand of one unit, is given by
m ¼ b1

h1 . . . hM
þ b2

h2 . . . hM
þ � � � þ bM

hM
: ð2Þ
When a binomial SBNS faces a rigid demand D, it is optimal to process units one at a time on the first 0-
BNS until a certain batch size is ready to be processed on the BN. These units are then processed in one
batch on the BN, and, finally, the usable units exiting the BN are processed, one at a time, on the second
0-BNS until the demand is satisfied or all units are exhausted. Therefore, the problem of optimally control-
ling a SBNS is completely characterized by the optimal lot to be processed by the BN.

We denote by m1 and m2 the expected cost of obtaining one good unit by the first and second 0-BNS,
respectively (to be computed via (2)). Grosfeld-Nir (1995) proved that a binomial machine whose param-
eters are
a ¼ ak; b ¼ bk þ m1; h ¼ hkhkþ1 . . . hM
is ‘‘equivalent’’ to the SBNS of Fig. 2. The equivalency is in that
Fig. 2. A typical binomial SBNS.



Fig. 3. A 6-stage binomial SBNS with a BN at the 4th stage.
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(a) The optimal lot-size to enter the BN of a SBNS is the same as the optimal lot-size for the equivalent
machine (for each D).

(b) The expected cost required to fulfill an order D by the SBNS equals the expected cost to fulfill the
same order by the equivalent machine plus Dm2.

For example, consider the 6-stage binomial SBNS of Fig. 3; the equivalent machine has parameters:
a = a4; b = b1/h1h2h3 + b2/h2h3 + b3/h3 + b4;h = h4h5h6.

2.3. The two-stage system

In this subsection we consider a two-stage system consisting of two bottlenecks, M1 and M2 (Fig. 4). A
production policy should specify, for each level of WIP, on which machine to produce next and the number
of units to be processed.

The two-stage problem is hard to solve for the following reason (formal details can be found in Grosfeld-
Nir (2005)): For each level of WIP it is necessary to decide whether to produce on M1 or M2. Production on
M1 may increase the WIP, thus the expected cost associated with such an action depends upon expected
costs of higher levels of WIP, making it impossible to solve the problem recursively.

A ‘‘fixed policy’’ for the two-stage problem, as defined by Grosfeld-Nir (2005), is a specific production
plan, i.e., for any level of WIP a fixed policy specifies on which machine to produce next and the lot-size to
be processed. The author proves that the expected cost of such a policy can be calculated by solving a finite
system of linear equations (below). Note that a fixed policy specifies the production plan for a specific D. In
contrast, a ‘‘fixed production strategy’’ consists of a collection of fixed policies, for D P 1.

We wish to note that in his treatment of fixed policies Grosfeld-Nir (2005) does not address the issue of
feasible and non-feasible production plans. For example a production policy instructing to always produce
on M1 is non-feasible, as the demand will never be satisfied. On the other hand, any production policy using
a control limit which instructs to produce on M2, whenever the WIP exceeds the control limit, is feasible.
For obvious reasons we always require pi(0, N) < 1, i = 1, 2.

Any feasible fixed policy can be defined by two disjoint sets D1
D and D2

D of WIP levels for which produc-
tion takes place on M1 or M2, respectively. We denote by ND (L) the lot size to be processed whenever the
demand is D and the WIP is L. (The lot ND(L) is processed on M1 if L 2 D1

D and on M2 if L 2 D2
D.) Note that

D1
D;D

2
D and ND(L) completely define a fixed policy (see Example 1). Grosfeld-Nir (2005) implicitly assumed

that the set D1
D is finite and proved the following:
Fig. 4. A two-stage system.
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Theorem 1. Let UD(L) be the expected cost associated with a certain fixed policy whenever the demand is D

and the WIP is L P 0, and suppose that Ud(L), L P 0, are known for 0 < d < D, and Ud(L) = 0 for d 6 0

and any L P 0. Then,

(a) The expected costs, UD(L), L P 0, can be calculated via solving the finite set of linear equations defined
in (3) and (4), below.

(b) The number of equations is 1 + d(D), where dðDÞ � maxfLþ NDðLÞ : L 2 D1
Dg.

Note that, starting with L = 0 (zero WIP), d(D) is the maximum WIP level that can be reached. If

production is on M1 (i.e., L 2 D1
D, and writing, for simplicity, N instead of ND(L)), we have:
UDðLÞ ¼ a1 þ b1N þ
XN

x¼0

p1ðx;NÞUDðLþ xÞ: ð3Þ
If production is on M2 (i.e., L 2 D2
D), then:
UDðLÞ ¼ a2 þ b2N þ
XN

x¼0

p2ðx;NÞUD�xðL� NÞ: ð4Þ
Note that these equations hold for any yield distribution.

Example 1. Consider the two-stage system of Fig. 4. The following is an example of a fixed policy for a
given D, D P 1:
L
 Action
0
 Produce 4 units on M1
1
 Produce 1 unit on M2
2
 Produce 2 units on M2
3
 Produce 2 units on M1
4
 Produce 4 units on M2
5
 Produce 4 units on M2
Note that a fixed policy is general in that it allows, for example, to produce on M2 when L = 2 and on
M1 when L = 3. For this example, D1

D ¼ f0; 3g; D2
D ¼ f1; 2; 4; 5g; and ND(0) = 4, ND(1) = 1, etc�. Also,

starting with L = 0, the maximum WIP level that can be reached is d(D) = 5. Thus, UD(0), . . . , UD (5)
can be calculated by solving the following six linear equations:
UDð0Þ ¼ a1 þ 4b1 þ
X4

x¼0

p1ðx; 4ÞUDðxÞ;

UDð1Þ ¼ a2 þ b2 þ
X1

x¼0

p2ðx; 1ÞUD�xð0Þ;

UDð2Þ ¼ a2 þ 2b2 þ
X2

x¼0

p2ðx; 2ÞUD�xð0Þ;
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U Dð3Þ ¼ a1 þ 2b1 þ
X2

x¼0

p1ðx; 2ÞU Dð3þ xÞ;

U Dð4Þ ¼ a2 þ 4b2 þ
X4

x¼0

p2ðx; 4ÞU D�xð0Þ;

U Dð5Þ ¼ a2 þ 4b2 þ
X4

x¼0

p2ðx; 4ÞU D�xð1Þ:
As a consequence of Theorem 1 we have

Corollary 1. Given a fixed production strategy, i.e., a sequence of fixed policies for D = 1, 2, . . . The expected

costs UD(L), L P 0, can be computed recursively, in D, by solving repeatedly the linear set of equations (3) and

(4) starting with D = 1, then D = 2 and so on.

While the linear equations (3) and (4), above, were formulated in Grosfeld-Nir (2005), the author did not

prove that these equations have a unique solution. We prove the uniqueness of the solution in Theorem 2 in

Appendix A.

Theorem 2. For any given fixed policy, the set of d(D) + 1 linear equations defined by (3) and (4) has a unique
solution.
2.3.1. Algorithms for the two-stage system

We believe that any optimal policy for the two-stage system is such that the set D1
D is bounded. If this

property holds true then we need to search the optimal policy among a finite number of distinct fixed pol-
icies. The most naive way for searching for the optimal policy over the set is by evaluating the expected cost
of all fixed policies within the set. Clearly, this process is tedious as the number of fixed policies that need to
be evaluated is large. If the respective expected cost function turns out to be quasi-convex in the lot size,
then policy-improvement algorithms can be used.

Grosfeld-Nir (2005) considered the following plausible class of policies for the two-stage problem with
binomial yields: For any demand level D, a control-limit CD is associated, so that production takes place on
M2 if and only if WIP P CD, i.e., D1

D ¼ f0; . . . ;CD � 1g. The paper also proposes a Policy-Improvement
Algorithm (PIA). With PIA both CD and the production lots are decision variables. Clearly, PIA converges
to the optimal policy if the expected cost functions are convex in the production lots for all levels of WIP.
PIA was then combined with a Fixed-Policy-Algorithm (FPA) which is based on successive approximation
and takes advantage of the special structure of (3) and (4). Grosfeld-Nir (2005) reported that in all the
(binomial) two-stage problems he examined PIA reached the optimal policy.

In the sequel we used modifications of FPA and PIA to solve assembly systems. However, as even the
simplest assembly system is significantly more complex than the two-stage system, computation time is pro-
hibitive. This motivated us to develop a new method named the intermediate-demand-algorithm.
2.3.2. The intermediate-demand-algorithm (IDA)

We denote N M1
D ðNM2

D Þ the optimal lot to be processed on M1(M2), if it alone, as a single stage, faced a
rigid demand D. These lots can be calculated by (1). The intermediate-demand-algorithm (IDA) is a heu-
ristic that searches over a subset of control-limit policies. For demand D, IDA is defined in terms of a single
decision variable KD, playing the role of ‘‘intermediate demand’’: whenever production takes place on M1

the lot size to be processed is determined as if it alone faced the rigid demand KD. More precisely, let
WIP = L, then IDA, with parameter KD, is defined as follows:



Table 1
Numerical results for a binomial two-stage system with parameters: a1 = 20, b1 = 5, h1 = 0.6 and a2 = 50, b2 = 2, h2 = 0.8, as a
function of D, when L = 0

D UD(0) Gap (%) NM1
D ð0Þ CD Time (seconds)

PIA IDA PIA IDA PIA IDA PIA IDA

1 99.4 102.0 2.6 3 2 1 1 20 4
2 118.3 119.7 1.2 6 6 2 3 60 5
3 135.2 137.1 1.4 8 7 4 4 180 6
5 166.1 169.0 1.7 12 12 6 7 360 15
10 239.3 242.2 1.2 23 22 12 13 1260 60
15 311.8 313.0 0.4 34 32 16 19 2100 185
20 381.6 383.0 0.4 45 43 21 26 4320 450
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• If L P NM2
D a lot of size NM2

D is processed on M2.
• If L < NM2

D and L P KD a lot of size L is processed on M2.
• If L < minfN M2

D ;KDg � CD a lot of size N M1
KD�L is processed on M1.
Therefore, IDA generates a control-limit policy, where production takes place on M2 if and only if
L P CD. Also, IDA simplifies the computation as the lot sizes to be processed on M1 and M2 are obtained
by solving single stage problems. IDA searches over all plausible values of KD. Our numerical test shows
that (i) PIA always produces a better solution than IDA; (ii) IDA is much faster and the gap between the
solution produced by IDA and PIA is small.

Numerical results comparing PIA and IDA are exhibited in Table 1 (N M1
D ð0Þ is the lot size to be pro-

cessed on M1 whenever the demand is D and the WIP is zero; UD (0) is the corresponding expected cost).
Table 1 demonstrates that relative deviations from PIA decrease in D. As we are going to see, this remains
true when solving assembly systems.
3. Two-echelon assembly systems

Referring to Fig. 5, we denote ak + bkN the cost of processing a lot of size N at stage k and by pk(x, N)
the corresponding probability to obtain x conforming units out of this stage. We denote Lk the number of
usable units that exited stage k, ready to enter the final stage. We assume in the sequel that one assembled
unit requires one unit of each of the intermediate inventories from the first stage. General bill of material
plans can be handled similarly.
3.1. Fixed policies for assembly systems

A fixed policy specifies for each possible configuration of given intermediate inventories, i.e., a vector
(L1, L2, . . . , LS), and an outstanding demand D, on which machine to produce next and the lot size to be
processed. The objective is to minimize the expected total of setup and variable production costs required
to satisfy the whole demand.

Similarly to the two-stage problem we define Di
D to be the set of WIP levels for which production takes

place on machine i, i = 1, . . . , S + 1, when the outstanding demand is D. Let ND(L1, L2, . . . , LS) denote the
lot size to be processed whenever the demand is D and the WIP is (L1, L2, . . . , LS), and UD(L1, L2, . . . , LS)



Fig. 5. A general two-echelon assembly system.
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the corresponding expected cost. As for the two-stage serial systems, we consider only fixed policies for
which the sets Di

D for i = 1, . . . , S are bounded.

3.2. Calculating the expected cost of fixed policies

We refer to the most elementary assembly system, which consists of only two stages at the first echelon as
the basic assembly system (Fig. 6).

Next we provide an example of a fixed policy, for D = 1 (Table 2), and write the corresponding set of
linear equation.

Example 2. Note that D1
D ¼ fð0; 0Þ; ð0; 1Þg, D2

D ¼ fð1; 0Þ; ð2; 0Þg and D3
D ¼ fð1; 1Þ; ð2; 1Þg. Also,

ND(0, 0) = 2, ND(0, 1) = 2, etc�. Thus, the expected costs, U1(L1, L2) can be calculated via solving the
following set of six linear equations:
Fig. 6. The basic assembly system.

Table 2
A fixed policy for a basic assembly system with D = 1

L2 = 0 L2 = 1

L1 = 0 Produce 2 units on M1 Produce 2 units on M1

L1 = 1 Produce 1 unit on M2 Produce 1 unit on M3

L1 = 2 Produce 1 unit on M2 Produce 1 unit on M3
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U 1ð0; 0Þ ¼ a1 þ 2b1 þ p1ð0; 2ÞU 1ð0; 0Þ þ p1ð1; 2ÞU 1ð1; 0Þ þ p1ð2; 2ÞU 1ð2; 0Þ;

U 1ð0; 1Þ ¼ a1 þ 2b1 þ p1ð0; 2ÞU 1ð0; 1Þ þ p1ð1; 2ÞU 1ð1; 1Þ þ p1ð2; 2ÞU 1ð2; 1Þ;

U 1ð1; 0Þ ¼ a2 þ b2 þ p2ð0; 1ÞU 1ð1; 0Þ þ p2ð1; 1ÞU 1ð1; 1Þ;

U 1ð2; 0Þ ¼ a2 þ b2 þ p2ð0; 1ÞU 1ð2; 0Þ þ p2ð1; 1ÞU 1ð2; 1Þ;

U 1ð1; 1Þ ¼ a3 þ b3 þ p3ð0; 1ÞU 1ð0; 0Þ;

U 1ð2; 1Þ ¼ a3 þ b3 þ p3ð0; 1ÞU 1ð1; 0Þ:
For any fixed policy for which the sets Di
D for i = 1, . . . , S are bounded, the following S constants are

defined: di = max{Li + ND(L1, . . . , Li, . . . , LS): ðL1; . . . ; Li; . . . ; LSÞ 2 Di
Dg for i = 1, . . . , S. Note that di is

an upper bound on the maximum WIP of component i that can be realized by the given policy whenever
production starts without any stock of WIP. Theorem 3 proves that the expected cost of any given fixed
policy for the assembly system can be obtained by solving a finite set of linear equations.

Theorem 3. Suppose we are given a fixed policy for an assembly system with demand D, such that Di
D are

bounded for i = 1, . . . , S. In addition, suppose that the expected costs Ud(L1, . . . , LS), (L1, . . . , LS) P (0, . . . , 0)

are known for d = 1, 2, . . . , D � 1. Then the expected costs, UD(L1, . . . , LS), Li P 0 for i = 1, . . . , S, can be
calculated by solving a finite system of

QS
i¼1ð1þ diÞ linear equations. Moreover, this system of equations is

guaranteed to have a single solution.

Proof. In order to prove the theorem we present the system of linear equations for solving
UD(L1, L2, . . . , LS), 0 6 Li 6 di, For simplicity, we write N instead of ND(L1, . . . , LS).

If ðL1; . . . ; LSÞ 2 Di
D for i 2 {1, . . . , S} then the equations are of the following form:
UDðL1; L2; . . . ; LSÞ ¼
ai þ biN þ

PN
x¼1piðx;NÞU DðL1; L2; . . . ; Li�1; Li þ x; Liþ1; . . . ; LSÞ

1� pið0;NÞ
: ð5Þ
Otherwise, i.e., if ðL1; L2; . . . ; LSÞ 2 DSþ1
D , the equation is as follows:
UDðL1; L2; . . . ; LSÞ ¼ aSþ1 þ bSþ1N þ
XD�1

x¼0

pSþ1ðx;NÞU D�xðL1 � N ; L2 � N ; . . . ; LS � NÞ; ð6Þ
where Ud(L1, . . . , LS) = 0, if d 6 0. The number of equations is determined by the number of possible WIP
levels. The uniqueness of the solution is proved similarly to the proof of Theorem 2 and is, therefore,
omitted. h

In the next proposition we prove two basic properties of the expected cost of an optimal policy. Let
FD(L1, . . . , LS) denote the optimal (minimal) expected cost required to satisfy the demand D when the
WIP = (L1, . . . , LS). Note that FD(L1, . . . , LS) is different from UD(L1, . . . , LS), as the latter corresponds
to a fixed policy which may not be optimal.
Proposition 1

(a) The optimal expected cost FD(L1, . . . , LS) is non-decreasing in D for given (L1, . . . , LS).

(b) The optimal expected cost, FD(L1, . . . , LS), is non-increasing in the WIP levels, (L1, . . . , LS).
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Proof
(a) Consider two levels of demand: D1 and D2, where D2 > D1. Then, when the demand is D1, the man-
ufacturer has the option to follow, throughout, the same policy which is optimal for a demand level
equal to D2 until the demand D1 is satisfied to its entirety, at a cost of maximum FD2(L1, . . . , LS).
Thus, FD1(L1, . . . , LS) 6 FD2(L1, . . . , LS).

(b) Consider two levels of WIP: (L1, . . . , LS) and ðL01; . . . ; L0SÞ, such that ðL01; . . . ; L0SÞP ðL1; . . . ; LSÞ. Then,
for the WIP ¼ ðL01; . . . ; L0SÞ the manufacturer has the option to follow, throughout, the same policy
which is optimal if the WIP were (L1, . . . , LS), at a cost of FD(L1, . . . , LS). Thus,
F DðL01; . . . ; L0SÞ 6 F DðL1; . . . ; LSÞ. h
4. Heuristics for the assembly problem

In this section we refer to computational aspects of heuristic policies for the assembly system. For this
sake we generalize the concept of control limit policies that was proposed by Grosfeld-Nir (2005) for the
two-stage system.

4.1. Control limit policies

The purpose of processing units on the first echelon, i.e., M1, . . . , MS is, to increase the WIP to levels that
warrant production on MS+1. We, therefore, conjecture that there exists an optimal policy of the following
form: ‘‘Produce on MS+1 if and only if Li P CD for i = 1, . . . , S’’. Table 3 provides an example of a control
limit policy for a basic assembly system.

Note that the control limit does not completely define a fixed policy. Additionally, it is required to spec-
ify the size of the lots to be processed at each stage. Also, in the case that production is possible on a num-
ber of machines, it is required to specify on which machine to produce first. This order of production may
have an affect on the expected total cost if the lot size on one machine in the first echelon depends on the
WIP of another component. However, to simplify matters we will restrict ourselves to control-limit policies
where we produce on the lowest indexed machine in the first echelon, for which the WIP is below CD. Thus,
we adopt the following rule: If min {L1, . . . , Li�1} P CD and Li < CD for a certain i 6 S, then produce on
Mi. Otherwise, i.e., if Li P CD for i = 1, . . . , S, then produce on MS+1. Specifically, for a basic assembly
system the rule is as follows:
Table 3
The basic assembly system with CD = 2

L1 L2

0 1 2 3 4 5

0 Produce on either
M1 or M2

Produce on M1

1
2 Produce on M2 Produce on M3

3
4
5
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• If L1 < CD produce on M1.
• If L1 P CD and L2 < CD produce on M2.
• If L1 P CD and L2 P CD produce on M3.

For the remainder of this article we restrict ourselves to such control-limit policies.

4.2. Heuristics

In this section we propose modifications of PIA + FPA and IDA + FPA to solve assembly systems. We
like to comment that we used FPA merely to solve the linear equations (5) and (6). Instead, MATLAB, for
example, could be used.

It turns out that PIA can be used almost in the same way as with the two-stage system and it gives very
good results. On the other hand, IDA must be modified to fit assembly systems. As we have mentioned, the
problem with PIA is the time it consumes. For example, consider the binomial basic assembly system with
the parameters
Table
A com

D

1
2
3
4

a1 ¼ 20; b1 ¼ 5; h1 ¼ 0:7; a2 ¼ 50; b2 ¼ 2; h2 ¼ 0:9; a3 ¼ 30; b3 ¼ 10; h3 ¼ 0:8: ð7Þ

For D = 4 the running time on a Pentium was 275 minutes (see Table 4, below).

4.2.1. Modification of IDA for a general assembly system
Similar to the two-stage problem, IDA defines fixed policies in terms of a single decision variable KD:

For demand D, whenever production takes place on a machine of the first echelon, the lot to be processed
is determined via solving a problem where a single stage aims to satisfy the demand KD. More precisely, let
NMi

D , for i = 1, . . . , S + 1, be the optimal lot size if machine Mi alone, as a single stage, faced a rigid demand
D. Let also L � min{L1, . . . , LS}. IDA with parameter KD is defined as follows:

• If L P NMSþ1
D produce a lot of size NMSþ1

D on MS+1.
• If L < NMSþ1

D and L P KD produce a lot of size L on MS+1.

Otherwise, i.e., if L < NMSþ1
D and L < KD.

• Identify machines of the first echelon for which Li < N MSþ1
D and Li < KD; produce a lot of size NMi

KD�Li
on

Mi.

Note that IDA defines a control limit CD ¼ minfKD;N
MSþ1
D g, so that production takes place on MS+1 if

and only if L P CD. Thus, with IDA, we calculate UD(0, 0, . . . , 0) for KD = 1, 2, . . . , to stop when there is
no more improvement. Selected numerical results for the system presented in (7), compared with PIA, are
4
parison between PIA and IDA for the basic assembly problem (7)

UD(0, 0) Gap (%) CD Time (seconds)

PIA IDA PIA IDA PIA IDA

144.5 145.5 0.7 1 1 120 6
177.1 180.0 1.6 2 3 900 20
206.4 209.3 1.4 3 4 4800 35
235.1 236.7 0.7 4 5 16,500 48
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exhibited in Table 4. As can be seen, using PIA gives slightly better solutions at a much significant time
increase. Indeed, the running time needed by PIA for assembly systems with even a few machines in the
first echelon makes it prohibitive.

As mentioned, our computational study focuses on binomial machines. In order to test the quality of
IDA we develop a simple lower bound on the optimal expected cost.

Proposition 2. Let FD be the minimal expected cost associated with the (binomial) assembly system of Fig. 5
starting with zero WIP, in the particular case where a1 =� � �= aS = 0. Then

(a) FD is equal to the optimal expected cost required for a binomial single stage with demand D and param-
eters: a ¼ aSþ1; b ¼

PS
i¼1bi=hi þ bSþ1; h ¼ hSþ1.

(b) U LB
D � F D þ

PS
i¼1ai is a lower bound on the optimal expected cost for the assembly system.
Proof. For (a) see Section 5; for (b) note that If ai 5 0, the expected cost increases by at least ai. h

An intuitive way to understand Proposition 2 is as follows: The optimal expected cost of the system of
Fig. 5 is at least as large as if only one setup cost were incurred by each of the machines of the first echelon,
and thereafter the remaining expected costs is minimized.

In Table 5, we demonstrate the effectiveness of IDA compared to the lower bound for the basic assembly
system problem given in (7). As we can see, the gap between IDA and the lower bound tends to decrease as
the demand increases.

Example 3. Consider an assembly system with three machines at the first echelon with the parameters
presented in Table 6.

We solve Example 3 using IDA. A few numerical results are exhibited in Table 7.
Table 5
A comparison between the lower bound and IDA for the problem (7)

D Lower bound UD(0, 0) Gap (%) CD Time (seconds)

1 131.7 145.5 10.5 1 6
2 162.2 180.0 11.0 3 20
3 189.5 209.3 10.4 4 35
4 215.0 236.7 10.1 5 48
5 241.0 267.0 10.8 7 100
6 267.2 293.6 9.9 7 175
7 293.6 319.2 8.7 9 310
8 318.3 345.8 8.6 10 630
9 343.3 374.5 9.1 12 985
10 368.5 400.5 8.7 12 1440

Table 6
Data for an assembly system with three machines in the first echelon

ai bi hi

M1 50 1 0.8
M2 40 2 0.9
M3 30 3 0.8
M4 20 4 0.9



Table 7
Numerical results for an assembly problem with three machines at the first echelon

Demand Lower bound UD(0, 0, 0) Gap (%) CD Running time (minutes)

1 154.7 164.4 6.3 1 1.5
2 169.2 186.4 10.2 2 3
3 183.5 201.9 10.0 4 8
4 197.6 215.8 9.2 5 16.5
5 211.5 230.1 8.8 6 28

A. Grosfeld-Nir et al. / European Journal of Operational Research 173 (2006) 600–616 613
5. Extensions

In this section we consider a few variants of assembly systems where all the machines are binomial. We
first show that assembly systems with additional 0-BN machines at either end (Fig. 7), can be analyzed
using the methodology above. The situation then is similar to the SBNS of Section 2.2.

Referring to a binomial assembly system of this structure, we denote mi, i = 1, . . . , S + 1, the expected
cost of producing one good unit on the ith 0-BNS (to be computed via (2)). Note that as long as a policy
dictates to produce on the first SBNS (consisting of the first 0-BNS followed by M1), it is optimal to process
units, one at a time, until a batch of conforming units of sufficient size is ready to enter M1. Thus, the cost
effect of the first 0-BNS is to add a cost m1, to the variable cost of M1. That is, the expected cost of pro-
cessing a lot of size N on M1 is a1 + (m1 + b1)N. The same holds true for the other SBNS of the first ech-
elon. Finally, as a lot exits MS+1, it is optimal to process these units, one at a time, until the demand is
satisfied, or all units are exhausted. Thus, the effect of the (S + 1)-st 0-BNS is to add the expected cost
DmS+1 to the expected cost of satisfying the demand. Also, let c denote the probability that a unit processed
by the (S + 1)-st 0-BNS ends conforming. The next Theorem defines an equivalent two-echelon assembly
system for any multi-echelon assembly system of the form depicted in Fig. 7.

Theorem 4. The problem of optimally controlling the binomial assembly with SBNS at either end can be

reduced to that of optimally controlling an equivalent assembly system with binomial machines M e
i and

parameters ae
i ; b

e
i ; h

e
i for
ae
i ¼ ai; be

i ¼ bi þ mi; he
i ¼ hi for i ¼ 1; . . . ; S; and ae

Sþ1 ¼ aSþ1; be
Sþ1 ¼ bSþ1;

he
Sþ1 ¼ chSþ1:
The equivalency is in that

(a) The optimal lot size to enter machines Mi for i = 1, . . . , S, is the same as the optimal lot size to enter the

equivalent machines M e
i for i = 1, . . . , S.

(b) The expected cost required to fulfill an order D by such an assembly system equals the expected cost to

fulfill the same order by the equivalent assembly system plus DmS+1.

We omit the proof as it is similar to Grosfeld-Nir (1995).
Fig. 7. A basic assembly system with 0-BNS at either end.
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Corollary 2. Consider the general assembly system of Fig. 5 with binomial machines, where Mi is replaced by

a binomial 0-BNS, (i.e., the ith ‘‘branch’’ does not contain any BN machine) for some i, i 6 S. Then the optimal

lot size and expected cost remain unchanged if this branch is omitted from the system and the cost mi is added to

the variable cost of the final stage. In particular, if all the machines of the first echelon are replaced by 0-BNSs,

the problem of optimally controlling the assembly system becomes one of optimally controlling a single-stage
binomial machine.
6. Conclusions

Assembly production systems realistically mirror the level of complexity that manufacturers face in real
life. These systems become extremely difficult to analyze when demand is rigid, because the optimal policy
depends upon all possible levels of intermediate inventories. The fact that in spite of their importance the
literature concerning such systems is very sparse is a reflection of the immense complexity of the problem.
This study is among the first attempts to acquire a deeper understanding of such systems.

One of the main results of this paper is that the expected costs of fixed policies can be evaluated by solv-
ing a finite set of linear equations. The result is general in that it applies to any yield distribution. Also, we
note that the fixed-policy-algorithm (FPA) provides a very useful tool to solve these equations.

In all our numerical experimentations IDA proved to be efficient: there was only a moderate deviation
from the best policy obtained by the PIA. Also when compared to a lower bound on the optimal cost,
IDA results in a reasonable expected cost. For assembly systems with binomial machines we show how more
complex systems, i.e., systems in which each machine in the first echelon is preceded by a 0-BNS and the
machine in the second echelon is followed by a 0-BNS, can be reduced to a two-echelon assembly system.

IDA has some very appealing properties that we wish to point out:

(a) IDA is fast, impressively accurate, and simple to implement as production lots are always determined
by solving single-stage problems.

(b) With PIA, after each production run the manufacturer needs to observe the realized usable output
after which he must choose the next machine to operate and determine the production lot. In contrast,
with IDA, production lots are determined for each machine, independent of the other machines.

(c) With PIA, ‘‘simultaneous’’ manufacturing is impossible: the manufacturer must operate one machine
at a time. In contrast, with IDA, the manufacturer can operate some or all the machines of the first
echelon simultaneously.

Future research should characterize the structure of an optimal policy, and explore the dependency of
the optimal lots and expected costs on the WIP levels and the outstanding demand level, for assembly sys-
tems with specific yield distributions. If there proves to be an optimal policy that is a control-limit policy,
then it will be interesting to explore whether the control limits are monotone in the problem parameters and
the demand.

Future research should also consider serial multi-stage production systems and more complex assembly
systems where each ‘‘branch’’ consists of several BN machines.
Appendix A

We prove now Theorem 2, i.e., the set of d(D) + 1 linear equations defined by (3) and (4) has a single
solution. These equations can be written in the form:
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UDðLÞ ¼ bDðLÞ þ
XdðDÞ
‘¼0

hD
L;‘UDð‘Þ; for L ¼ 0; . . . ; dðDÞ;
where bD(L) and hD
L;‘ for ‘, L 2 {0, . . . ,d(D)} are the constants:
bDðLÞ ¼
a1 þ b1NDðLÞ if L 2 D1

D;

a2 þ b2NDðLÞ þ
PNDðLÞ

x¼1

p2ðx;N DðLÞÞU D�xðL� N DðLÞÞ if L 2 D2
D;

8><
>:

hD
L;‘ ¼

p1ð‘� L;N DðLÞÞ if L 2 D1
D and 0 6 ‘� L 6 NDðLÞ;

p2ð0;NDðLÞÞ if L 2 D2
D and ‘ ¼ L� NDðLÞ;

0 otherwise:

8><
>:
Thus, (3) and (4) can be written in the vector/matrix form as UD = bD + HDUD, where UD and bD are vec-
tors of size d(D) + 1, and HD is a square matrix of size (d(D) + 1) · (d(D) + 1).

Clearly, in order to prove the existence of a single solution we need to show that the matrix (I � HD)�1 is
not singular. Kemeny and Snell (1969) proved this holds true if limn!1(HD)n = 0.

Note the properties of the matrix HD: If L 2 D1 then row L resembles a Markovian matrix (entries are
probabilities whose sum is 1). If L 2 D2 then the only non-zero entry in the row is p2(0, ND(L)) in the cell
(L, L � ND(L)). Since we consider only plausible policies that terminate in a finite number of setup, we as-
sume that each L 2 D1 can reach an L 0 2 D2 in a finite number of steps. That is, we assume that D2 is reach-
able from every state L 2 D1.

We augment the matrix HD to become Markovian by adding a fictitious state R where the entry in cell
(R, R) is 1; for any L 2 D1, the entry in cell (L, R) is zero; and for any L 2 D2, the entry in cell (L, R) is
1 � p2(0, ND(L)) > 0.

The augmented matrix, named AD, can be written as AD ¼
HD ~a
0 1

� �
, where~a is a vector of size d(D) + 1

whose entries are between zero and 1, and since D2 5 B at least one of its entries is strictly positive. Thus,

½AD�1 ¼
½HD�1 �
� 1

� �
, where we do not specify the other entries of [AD]1. Note that in AD all original

states (of HD) are transient. Thus, in the matrix [AD]1 all entries are zero except for the cells in column
R which are all 1. In particular, [HD]1 = 0.
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