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A job shop has to deliver a given number of custom-order items. Production is performed in "lots" that require costly setup, and output 
quality is stochastic. The size of each lot must be set before output quality is observed. We study production processes whose yield is 
distributed according to a generalized truncated geometric distribution: Production can randomly go "out of control," in which case all 
subsequent output of that lot is defective. The "generalization" allows both hazard rates and marginal production costs to vary as production 
progresses. Our results characterize the optimal lot sizes. In particular, we show that for small demands the optimal lot size equals the out- 
standing demand, and for larger demands it is less than the outstanding demand, with all lot sizes being uniformly bounded. For sufficiently 
large demands, we identify conditions under which the optimal lots are precisely those that minimize the ratio of production cost to the 
expected number of good items. A tighter characterization is given for the standard case, where hazard rates and marginal costs are constant. 

1. INTRODUCTION 

Technological and economic considerations often dictate 
production in "lots" involving some set-up cost. This 

applies not only to batch processing: When production is 
sequential, one can consider the set of items to be manu- 
factured prior to the next inspection and realignment of the 
machine as a "production lot." The key issue is that the lot 
size must be determined before output quality can be ascer- 
tained. Small lot sizes result in lower risk of poor qual- 
ity but more frequent set-ups. Large lot sizes may result 
in a waste of producing too many defective items or good 
items in excess of the demand. The later factor is especially 
crucial for custom-order demand, in which nondeliverable 

good items have little, if any, salvage value. 
This paper considers the problem of optimal lot sizes for 

custom orders. The demand to be satisfied is "rigid"-one 
must deliver a given number of items that meet some pre- 
specified quality standards. If the number of good items on 
hand is less than the outstanding demand, an additional pro- 
duction lot must be initiated, and so forth until the demand 
is fully satisfied. It is assumed that defective items and 
good items in excess of the required quantity have the same 
salvage value. The production planning problem, then, is 
to determine the optimal lot size for each possible quan- 
tity of outstanding demand. The objective is to minimize 
the expected total cost of satisfying the demand. Our study 
addresses this problem for processes where the production 
yield obeys the truncated geometric probability distribu- 
tion. One way of interpreting this distribution is the follow- 
ing. Suppose that the process can be either "in control," in 
which case the items produced are of acceptable quality, 
or "out of control," in which case the items produced are 
defective. As time goes on, an "in control" process may 

deteriorate, go out of control, and throughout the remain- 
der of the run produce only items that are of substandard 
quality. At the end of the run, the output is inspected (and 
the process is realigned if a new run is needed). Monden 
(1983) discusses such a system in a Toyota factory, where 
an automated high-speed punch press is fed by lots of 50 
or 100 units and may randomly go out of control before 
the end of the run. 

1.1. A Brief Review of Earlier Literature 

The problem of determining optimal lot sizes to satisfy 
a rigid demand has commanded considerable theoretical 
analysis from as far back as the 1950s (e.g., Llewellyn 
1959, and Levitan 1960). The models in the literature typi- 
cally include set-up costs and linear production costs. Early 
studies of the problem were devoted almost exclusively to 
processes with binomial yield distribution, and they pri- 
marily suggested heuristic computational approximations. 
Because part of the output was expected to come out 
defective, the optimal lots were always taken to be larger 
than the outstanding demand to allow for possible rejects, 
and the problem was then accordingly dubbed the "reject 
allowance" problem. White (1965) gives a dynamic pro- 
gramming formulation of this problem with general yield 
distribution but gives no insight on the structure of opti- 
mal policies. In particular, researchers continued to look 
for structural properties of optimal policies for production 
processes with binomial yield distribution. Implicit in this 
case is the assumption that occurrences of failures during a 
run are independent and identically distributed. Beja (1977) 
considered processes where failures are independent but not 
necessarily of equal probability. He studied a family of pro- 
cesses with "constant marginal efficiency of production," 
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meaning that the expected production cost per good item 
is fixed throughout the run (as is the case with binomial 

yield and linear cost). He showed that there is an optimal 
policy in which the optimal lot size is strictly increasing in 
the outstanding demand (and hence the optimal lot is never 
less than the outstanding demand, justifying the notion of 
"reject allowance"). For the family of processes studied, 
Beja also gave additional structural properties that greatly 
reduce the required computation in the search for optimal 
policy. 

More recent studies of the problem allow for failures 
that are not necessarily independent. Anily (1995) shows 
results similar to those of Beja (1977) for the case of dis- 
crete uniform yield distribution with linear cost, a process 
that does not exhibit stochastic independence but does have 
constant marginal efficiency of production. Grosfeld-Nir 
and Gerchak (1996) consider some properties of the solu- 
tions for general yield distributions. They prove that when 
yield is geometrically distributed and production costs are 
linear, the optimal lot size never exceeds the outstanding 
demand. Zhang and Guu (1998) also studied the geometric 
distribution. In particular, they prove that the optimal lot 
size never increases by more than one unit in response to 
a unit increase in the demand. In addition, they prove that 
the optimal lot sizes are uniformly bounded by a function 
of the cost parameters and the failure rate. Grosfeld-Nir 
(1995) and Grosfeld-Nir and Robinson (1995) consider lot 
sizing problems with rigid demands in multistage produc- 
tion systems and various yield distributions (but they do 
not consider the geometric distribution). 

Deteriorating production processes in EOQ-type prob- 
lems were investigated by Porteus (1986, 1990), Rosenblatt 
and Lee (1986a, 1986b), and Lee and Rosenblatt (1987). 
These papers have modeled the time at which the produc- 
tion process goes out of control, by a geometric probability 
distribution in the discrete case, or by an exponential prob- 
ability distribution in the continuous case. 

For a more extensive review of the literature on optimal 
lot sizing with random yields, the reader is referred to Yano 
and Lee (1995). 

1.2. An Overview of this Paper 
The geometric yield distribution studied in this paper rep- 
resents an extreme degree of stochastic dependence-the 
conditional probability of success for the nth item in a 
production run is positive if all previous items are good, 
and zero if there has been an earlier failure (e.g., a fail- 
ure occurs when a machine tool gets out of its prescribed 
setting, and as a result all subsequent items in that run are 
defective). This model is thus in some sense diametrically 
different from the earlier models of the rigid demand prob- 
lem, with stochastic independence and binomial yields. Not 
surprisingly, the resulting optimal policies are accordingly 
also diametrically different. 

The model of the production process is presented in ?2. 
Where possible, we generalize the familiar standard geo- 
metric distribution to allow for possibly varying hazard 
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rates and marginal costs, in a way analogous to Beja's gen- 
eralization of processes with stochastic independence. The 
results of the model typically depend on various assump- 
tions regarding the yield distribution and/or the cost struc- 
ture. 

The presentation of our results starts with a sequence 
of fairly straightforward observations. It is shown that 
under fairly general conditions, the geometric yield model 
exhibits the following properties: (1) The optimal lot size 
never exceeds the outstanding demand; (2) total cost is 
strictly increasing in the outstanding demand; (3) the opti- 
mal lot sizes are uniformly bounded from above, if, in addi- 
tion, the marginal production costs are nondecreasing, i.e., 
the marginal production cost of the i + 1st item in the run 
is at least as large as that of the ith item, then we further 
obtain that (4) a unit increase in the outstanding demand 
never induces more than a unit increase in the optimal lot 
size (but it may induce a decrease in the optimal lot size; 
and (5) there is a critical value L such that the optimal lot 
size is equal to the outstanding demand if and only if the 
outstanding demand does not exceed L. 

Section 3 deals with the optimal lot sizes for large 
demands. We prove that the optimal lot sizes for sufficiently 
large outstanding demands converge to a set of at most 
two consecutive integers under some assumptions about the 
marginal costs, and when the yield distribution is the inter- 
rupted geometric. This set consists of all integer values that 
maximize the expected number of good items produced 
per dollar invested in initiating the run (equivalently min- 
imize the ratio of production cost to the expected number 
of good items in the run). Usually, this set consists of a 
single integer. In such a case, the optimal policy for large 
demands is to produce a lot of this size until the outstand- 
ing demand becomes sufficiently small. If the set consists 
of two integers, then the optimal lot size for a sufficiently 
large demand is either of these two integers. This conver- 
gence is of special importance because recursive compu- 
tation of optimal lot sizes by dynamic programming gets 
progressively cumbersome as demands get larger. 

Section 4 gives a tighter characterization of the opti- 
mal policy for the standard case of constant hazard rates 
and linear costs. We identify the largest value of the out- 
standing demand for which it is optimal to produce exactly 
the demanded quantity, and we also show that this value 
is the largest lot size consistent with optimality over all 
conceivable outstanding demands. For the reader's conve- 
nience, the more lengthy proofs of ??3 and 4 are deferred 
to appendixes. Finally, ?5 offers a few concluding remarks 
on possible extensions of the results of this paper. 

2. THE MODEL 

A production process is conceptually defined by its yield 
distribution and cost function. In this paper, we study dis- 
crete production processes (lot sizes and yields are nonneg- 
ative integers) where the potential deterioration in output 
quality is stochastic and persistent, i.e., if an item happens 
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to be defective then all subsequent items in the same run 
are also defective. Such processes are usually modeled in 
the literature by the truncated geometric probability distri- 
bution: Letting Gn denote the number of good items in a 
run of n items, the yield distribution is given by 

P{Gn k}=qk for k=O0,1,2,..., n 

=0 for k > n, 

where 0 < q < 1 is the quality parameter of the production 
process and (1 - q) is its constant hazard rate; i.e., the 

probability that an item is defective, given that all previous 
items in that run are of good quality. 

Some of our results allow for possible variations in the 
hazard rates as production progresses. This gives rise to a 

generalized truncated geometric distribution, defined by 

P{Gn>k}=Qk fork=0,1,...,n 

=0 for k > n, 

where Q0o 1. 
The technological characteristics of the process are spec- 

ified here by a nonincreasing parameter sequence, 1 > Qk > 

Qk+1 > 0. These characteristics are equivalently defined 

by the parameters {0 < qk < 1, k = 1, 2, ...}, where for 
k = 1, 2,... qk = QklQk-1 < 1, so that Qk qlq2 ... qk. As 

before, the complement value (1 - qk) is the probability that 
the kth item in a production run fails, given that all previous 
k -1 items were good, so that the hazard rate now depends 
on k. The salient feature of the generalized geometric dis- 
tribution is the property that, for k < n, P{Gn ) k} is inde- 

pendent of n. 
The cost of initiating a run of size n, denoted C(n), 

consists of a set-up cost a > 0, independent of the size 
of the run, and variable costs, which are specified by the 

sequence of marginal costs Pi > 0, viz., 

n 

C(n) = a+ fIi, 
i=1 

i.e., P,i is the marginal cost of producing the ith unit in a 

production run. 
Nondecreasing marginal costs and hazard rates reflect 

the effects of wear and tear in sequential processing, or of 
overcrowding a limited space in batch processing; nonin- 
creasing marginal costs and hazard rates reflect economies 
of scale (particularly learning effects in sequential process- 
ing). Our results depend on various assumptions regarding 
the structure of technological parameters and/or the cost 
parameters (e.g., nondecreasing or constant marginal costs, 
bounded or constant hazard rates, etc.). Clearly, stronger 
assumptions allow for stronger results (our tightest charac- 
terization of the optimal policy relates to the standard case 
of constant hazard rates and linear costs). 

As explained in the introduction, we deal here with pro- 
duction processes for custom orders. For such processes, 
it is reasonable to assume that salvage values, if any, are 

the same for defective items and for good items in excess 
of the required quantity, and that these are small, relative 
to production costs. More specifically, we assume that the 
common salvage value is strictly less than - = inf>,l Pi 
(otherwise, it may sometimes pay to produce items just for 
scrap). Consequently, without loss of generality, we can 
assume that the salvage value is zero: Suppose that the sal- 
vage value, say S, is strictly positive. Then, for each of the 
items produced, except for the D good items that meet the 
demand, the revenue from the salvage value can be cred- 
ited against the production cost. Because D is constant and 
S < 3i, we can define an equivalent problem in which the 
salvage value is S' = 0, by redefining the marginal costs for 
all i, as 'i =3,i -S. 

The objective of minimizing the expected cost required 
to fulfill an outstanding rigid demand is investigated 
through three interrelated functions: 

V(D) = The minimal expected cost to fulfill an 
order for D items (i.e., the expected 
cost when an optimal policy is followed 
throughout). 

U(n, D) = The expected cost incurred in fulfilling a 
rigid demand for D items if a run of size 
n is initiated once, and an optimal policy is 
followed thereafter. 

W(n, D) = The expected cost incurred in fulfilling a 
rigid demand for D items if a run of 
size n is initiated whenever the outstanding 
demand is equal to D units, and an opti- 
mal policy is used whenever the outstand- 
ing demand is less than D. 

Given that salvage values are taken to be zero, as discussed 
above, we can simplify the notation by extending the defi- 
nition of V to negative integers as well. Thus, we let 

V(D) =0 for D = 0, -1, -2,... 

The three functions satisfy the following relationships: 
n 

U(n,D)= C(n) + P{n =k}V(D-k), 
k=O 

W(n,D)= ^C(n)+ P{Gn=k}V(D-k) /P{Gn >, 
k=l1 

V(D)= min U(n,D). 
n=l,2,... 

Also, let 

N(D) = arg min U(n, D). 
n=l, 2,... 

Note (from the above) that P{Gn > 0}{W(n,D)- 
V(D)) = U(n, D) - V(D), thus sign[W(n, D) - V(D)] = 

sign[U(n, D)- V(D)], hence also (as expected from the 
definitions), 

V(D)= min W(n,D) and 
n=l, 2,... 

N(D) = arg min W(n, D). 
n=1,2, ... 
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For the case of the generalized geometric yield, substituting 
for C(n) and P{Gn = k} and simplifying, we get 

n 

U(n,D) = V(D)+a+ /3i 
i=1 

n 
-E Qk[V(D + -k)-V(D-k)], (1) 

k=l 

U(n + 1, D)- U(n, D) 

= n+ - Qn+[V(D - n) - V(D-n- 1)]. (2) 

Inspection of the above equations gives rise to a number 
of straightforward results, which because of their simplic- 
ity are stated as "observations." Their proofs are given in 
Appendix A. 

OBSERVATION 1. For all D, Max N(D) < D. 

Furthermore, for all n > D, 

U(n + 1, D) - U(n, D) = C(n + 1)- C(n) = Pn+l 

The first part of Observation 1 was stated by Grosfeld-Nir 
and Gerchak (1996) for the special case of linear produc- 
tion costs and standard geometric yield, and by Zhang and 
Guu (1998) for linear production costs when the yield dis- 
tribution satisfies certain conditions that cover the general- 
ized geometric distribution. 

Observation 1 implies that N(1) = {1}, and from 
Equation (1), we get 

V(1) = +/3. 
ql 

OBSERVATION 2. For all D, V(D) > V(D- 1). It should be 
noted that while V(D) > V(D- 1) is universal and obvious, 
V(D) > V(D- 1) is not universally true and depends on 
the yield distribution, hence it cannot be taken for granted. 
For example, if P{G1 = 0} = 1 and P{Gn , 2} = 1 for 
n = 2, 3,... , then V(2) = V(1). Our proof (see Appendix 
A) uses the fact that the generalized geometric distribution 
satisfies P{G,n+ = k} = P{G, = k} for all k < n, and in fact 
our proof establishes the tighter bound V(D) - V(D - 1) > 

maxiEN(D) Pi/ql. (The stated version of the observation was 
given preference over the stronger alternative both for its 
simplicity and also to emphasize its being nontrivial.) 

OBSERVATION 3. (a) Suppose marginal costs are bounded 

away from zero, i.e., 3i > P > 0 for all i = 1,2,..., and 
suppose further that Qi -- 0 as i -+ oo. Then, 

for all D, max N(D) < M, where 

M = max{i= 1,2,... :.,i < QiV(1)}. 

(b) If, in addition, the hazard rates are bounded away 
from zero, i.e., qi ? q< 1 for all i = 1, 2..., then 

for all D, we have that maxN(D) < 0, 

where 0 = 
0logV-log3 i.e. q V(1)=13. log(l/q) ' 

OBSERVATION 4. Suppose that marginal costs are nonde- 
creasing, i.e., f3i < 3i+ for all i. Then, 

for D > 2, maxN(D) < min N(D- 1) + 1. 

Zhang and Guu (1998) have stated Observation 4 (in a 
slightly weaker version) for the special case of standard 
geometric yield and linear costs. 

OBSERVATION 5. Suppose that marginal costs are nonde- 
creasing, i.e., 3,i < i+l for all i. Then, 

(i) D E N(D) implies N(d) = {d} for d < D- 1, 
(ii) D ? N(D) implies d ? N(d) for d > D + 1. 

REMARKS. Observations 1, 3, and 4 give upper bounds on 
the optimal lot size. The first of these is in sharp contrast 
with the familiar results regarding other yield distributions, 
as noted in the introductory section. Yet, this observation is 
quite intuitive and it holds for general marginal costs and 
general hazard rates. With a geometric yield distribution, 
output beyond the Dth item in a production run can be 
of good quality only if all the first D items in that run 
are of good quality, in which case the excess output is 
not needed. Indeed, the economic implication of extending 
the production run by one more item is exactly the added 
production cost for this marginal item, without any benefit 
to compensate for this extra cost. 

Observation 3 gives a uniform upper bound on the opti- 
mal lot sizes for all possible values of the outstanding 
demand: No matter how large this demand is, it is always 
optimal to produce in lots of size not exceeding M. The 
stated conditions for the existence of the bound are fairly 
general: Changes in the marginal costs need not be mono- 
tonic, and the condition Qi - 0 only requires that for suf- 
ficiently large lots, eventual failure becomes almost a cer- 
tainty. Tighter results are given in later sections for more 
restricted contexts: (i) For large demands, we specify in 
?3 conditions under which a given lot size, typically much 
lower than M, is not only an asymptotic bound but in fact 
an optimal lot size; (ii) for the case of constant hazard rates 
and linear costs, we identify in ?4 the lowest possible uni- 
form upper bound on all N(D), i.e., the largest lot size 
which is actually optimal for some outstanding demand. 

Observations 4 and 5 apply to processes with non- 
decreasing marginal costs (with no restriction on hazard 
rate patterns). Observation 4 gives a "comparative" upper 
bound on the optimal lot size, relative to the optimal 
lots for smaller demands. Note that the observation does 
not restrict downward changes in the optimal lot size. In 
extensive numerical experiments, we have observed that 
drastic reductions in the optimal lot size (in response to 
increases in the outstanding demand) are typical occur- 
rences at demand levels, where it is first optimal to produce 
less than the demanded quantity. 

Observation 5 states conditions under which the set of 
demand values for which it is optimal to produce exactly 
the demanded amount is contiguous. This range of values 
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always starts at D = 1, where N(1) = {l} is dictated by the 
nonoptimality of ever producing more than the outstanding 
demand. For the special case of constant hazard rates and 
linear costs, the demand value at which this range ends is 
fully specified in ?4. 

The restriction of Observations 4 and 5 to processes with 
nondecreasing marginal costs is not a limitation of our 
proof, but rather a genuine reflection of the nature of the 
optimal policy: When PD > PD+1, it can indeed be the case 
that N(D) = {D-1} and N(D+ 1) = {D+ 1} (for example, 
if a = 0.9 1 = 32 = 1.0 P3 = 0.1 and q = q2 = q3 = 0.5, 
then N(2) = {1} and N(3) = {3}). It is worth noting that 
when marginal costs and hazard rates are nondecreasing, 
the only incentive for increasing lot sizes is to save costly 
set-ups; otherwise, there may be additional incentives as 
well (such as an attempt to take advantage of potential 
economies of scale), and idiosyncrasies in the marginal cost 
and hazard rate patterns can induce idiosyncrasies in the 

optimal lot size pattern. 

3. OPTIMAL LOT-SIZE FOR LARGE DEMANDS 

In the previous section, we described some properties of 

optimal lot-sizes for finite demands under mild conditions 
for the hazard rates and the marginal costs. These proper- 
ties enable us to somewhat reduce the search for the opti- 
mal lot-size when solving the recursive formula. Neverthe- 
less, the computation of the optimal lot-sizes for a given 
outstanding demand D > 2 requires the solution of V(d) 
and the sets N(d) for d = 1,... , D- 1. A question that 
is of particular interest is whether the sets N(d) exhibit 
certain convergence patterns when the outstanding demand 
d increases. Such convergence would imply two benefits: 
From an implementation viewpoint, it would imply that the 

optimal lot-size is independent of the remaining demand as 

long as the outstanding demand is sufficiently large, i.e., 
the same lot-size can be used repetitively until the remain- 

ing demand becomes small enough. Computationally, such 

convergence would imply that the problem of finding the 

optimal lot-size for any demand can be solved by applying 
the recursive formula up to the first value of d where con- 

vergence is guaranteed. In this section, we investigate the 
conditions that ensure a convergence of the sets N(d) for 
d ) 1. We prove that limd_, N(d), exists under mild con- 
ditions for the marginal costs and when hazard rates are 
constant. 

Indeed, under the conditions stated in Theorem 1, we 
prove that for sufficiently large demands it is optimal to 
use lot sizes that solve a related problem-minimizing the 
ratio of the production cost of a run to the expected num- 
ber of good items produced in that run. We introduce this 
related problem in ?3.1, and analyze some of its more rele- 
vant mathematical features. The asymptotic behavior of the 
optimal policy and of the minimum cost function is then 
studied in ?3.2. 

3.1. A Related Problem 

The following concepts and notation are used in our state- 
ment of the related problem. The expected number of good 
items in a run of size n is denoted E[Gj, i.e., 

00 00 n 

E[Gn= kP{Gn = k} = P{Gn k} = EQk. 
k=l k=l k=l 

We study the function 

C(n) 
a + En=lPk 

f(n) = k=1 

E[Gn] E=l Qk 

Intuitively, one can think of f(n) as "the average cost per 
good item in a run of size n." Also, let us define 

p = minf(n), 
n 

No = argmin f(n). n 

(3) 

(4) 

Very mild conditions suffice to guarantee that the mini- 
mum is attained, so that (p exists and No is nonempty. In 
particular, it is sufficient (but not necessary) that C(n) is 
unbounded as n -> oo and qi < q < 1 for all i. 

Lemma 1 states conditions under which f(n) is mini- 
mized on at most two adjacent integers, strictly decreasing 
for lower values of n and strictly increasing for higher val- 
ues of n. The basic argument of the proof can be intuitively 
summarized as follows: When marginal costs are nonde- 
creasing the marginal contribution of each subsequent item 
in the lot to the numerator of f is higher than that of previ- 
ous items, and (since hazard rates are positive) its marginal 
contribution to the denominator (i.e., the probability that 
the item is good) is lower than that of previous items; thus 
if f(n) > f(n- 1) then f(n + 1) > f(n). 

LEMMA 1. Suppose that Sp = minnf(n) exists, and that 
marginal costs are nondecreasing, i.e., f3i < 3i+1 for all i. 
Then there exists an integer u. thatfully characterizes No 
as follows: 

= min m: Im+i > Im Q } 

N0= {(} if +1 > = P 
QA+1 2i=1 Qi 

= {, L+ 1} if a- = li 
QA+1 Ei=1 Qi 

PROOF. The proof is based on the following basic prop- 
erty: Given four positive real numbers al, bl, a2, and b2 
with < a2, then a +a2 < 

a . In addition, if a a2 
b, b2 b1 bl +b2 b2 bl b2 ' 

then al+a2 _ a,l. In our context, 3i < P/i+ and Qi > Qi+l b -+b2 b1' 

imply that ̂ - < '-+- for i > 1. Consider now the following 
sequence of ratios, a+t, 2, 3,..., i.e., the numerator 
of the ith ratio is P,i except for i = 1, where the numer- 
ator is a +P3, and the denominator of the ith ratio is Qi 
for i > 1. If a+L < f2 then f(n) is strictly increasing in n Q1 Q2 



ANILY, BEJA, AND MENDEL / 429 

and therefore N = {1}. If a+P - 2 , then f(1) = f(2) and 
'Q1 

-- 
Q2 

f(n+ 1) > f(n) for n > 2, implying No = {1, 2}. Otherwise, 
a,Pj > 2, and we have f(2) <f(1). Moreover, as long Q Q2' 

as n+ < f (n), then f(n + 1) < f(n). So f(n) is strictly 

decreasing up to , = min{m: .m+ ali l}. The exis- 
tence of ,u is guaranteed because otherwise the minimum 
of f is not attained, contradicting the theorem's assump- 
tions. If 3+ > +E'=/, then f(n) is strictly increasing 

for n > ,/, thus No = {Iu. Otherwise, if 1+' = +E='P 
then f(/Lt) = f (A + 1) and f(n) is strictly increasing for 
n > f+ 1, thus No = {A,+ 1} . [ 

3.2. Asymptotic Behaviour of N(D) and V(D) 
for Constant Hazard Rates 

We now investigate a class of production processes for 
which (i) the optimal lot-sizes for large demands coincide 
with those that solve the related problem presented in the 

previous subsection, and (ii) the marginal cost of satisfy- 
ing a unit increase in the demand converges to (but need 
not coincide with) the minimum cost Sp of the related prob- 
lem. This class of production processes is characterized by 
constant and positive hazard rates and a cost function C(n) 
that is unbounded. 

We first state the main result of this section, Theorem 1, 
applying the definitions of f, 'o, N0, and ,, given in the 

previous subsection, as well as the definitions and notation 
of ?2. 

THEOREM 1. Suppose that qi = q < 1 for all i, and that 
C(n) is unbounded. Let 8 and H be defined by 

n 

8=min{[f(n)-(p] qk: n No}, 
k=l 

log[V(l) - q0] - log 8 

log(l/q) 
=0 if p = V(1). 

if < V(1) 

Then 
(a) For all D > H, N(D) C No. 
(b) If, in addition, marginal costs are nondecreasing, 

i.e., P,i < 13i+ for all i, then for all D > H, N(D) = No, 
(c) If 'p = V(1), then for all D, N(D) = No, and it 

is always optimal to produce one unit at a time, i.e., 
1 E N(D). 

The chain of arguments leading to the proof of Theorem 1 
is broken down into a number of steps. In the first step, we 
rewrite the equation for U(n, D), and identify a summa- 
tion term, to be denoted S(n, D), that plays a pivotal role in 
the subsequent analysis. In the second step, we prove that 
S(n, D) tends to vanish for large D, a convergence that is 
stated as Lemma 2(a). This convergence property is a key 
element in the chain of arguments. It also implies part (b) 
of the lemma, where we prove that the growth rate of V(d) 
converges to 'p. Finally, we present the concluding argu- 
ments that prove the main theorem. 

As noted above, in the first step, when 'o exists, we can 
rewrite Equation (1) as 

n 

U(n,D) =V(D)+a+ /3 
i=1 

n 

- qk[V(D + 1 - k)- V(D-k)] 
k=l 

=V(D)+[f(n)- p] qk 
k=l 

n 

-E qk[ V(D + 1- k) - V(D-k)-(p]. 
k=l 

For convenience, we denote the last term on the right- 
hand side of the above equation by S(n, D), i.e., for D = 
1, 2,..., and n = 1, 2,... D, define 

n 

S(n, D) = qk[V(D + -k)-V(D -k)-. 
k=l 

S(n, D) can be viewed as a measure, exponentially 
weighted, of the differences between (p and the growth rates 
of the sequence V(d), for d ranging from D- n to D. 
Equation (1) then becomes 

n 

U(n, D) = V(D) + [f(n) - (p] L qk _ S(n, D). 
k=l 

(5) 

In the second step, we present the next lemma, whose 
proof is deferred to Appendix B. In its first part we show 
that S(n, D) converges to zero as D becomes large. This 
result is central to the proof of Theorem 1. In its second 
part we show that the growth rate of V(d) converges to (p. 

LEMMA 2. Suppose hazard rates are constant, i.e., qi = 

q < 1 for all i, and costs are such that (p exists. Then, 
(a) for D = 1, 2,..., and n = 1,... , D, 

IS(n, D) < [V(1) - pqD 

(b) V(D+ 1)- V(D) - (p as D - oo. 

PROOF. See Appendix B. 

CONCLUSION OF PROOF FOR THEOREM 1. Note that the 

assumptions of the theorem imply that for all D, N(D) is 
nonempty, that (p exists, and that 8 exists and is positive. 
V(1) = f(1) implies 'p < V(1). We note that the state- 
ment of part (c) for the case (p = V(1) is stronger than the 
statements in parts (a) and (b) for the general case. There- 
fore, we need only to prove parts (a) and (b) for the case 
'p < V(1). 

PART (a). We note from the definition of H that 

(1/q)H= V(1) -P 

[V(i) - p]qH = . 
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Under the postulated conditions, Lemma 2 holds; hence, 

for D > H, {S(n, D)l < [V(1) - p]qD 

< [V(1) - ]qH = . 

Thus, for D > H, S(n, D) < 8for all n=l ,..., D, 

and if n N0, [f(n) - (] E=, qk ) 

(from the definition of 5). 

Using these two inequalities, we have from Equation (5) 
for D > H, and n ' N0, 

n 

U(n, D) = ()+ [f (n) - (] , q _- S(n, D) 
k=l 

) V(D)+ 8-S(n, D) > V(D). 

This implies that for D > H, n ' N(D) whenever n N No; 
thus N(D) C No, as claimed. 

PART (b). Under the postulated conditions, both Lemma 1 
and Part (a) above apply. 

(b.l) N(D) is nonempty, hence if INo = 1 (and by 
Lemma 1 > a =, i), then N(D) = No follows imme- 

diately from part (a). 
(b.2) Alternatively, suppose that IN01 = 1. Then from 

Lemma 1, it follows that No = {/., ,L + 1}, with -+I = 

a+/I=i . To allow for possible perturbations in a, we set 
-i=1 Qi 

the above values as a1 and u', i.e., = a +Z=1i. We 
Q1+' E- i Qi 

also define a2 and a? as those values of a that satisfy the 

following equalities, respectively: +2= a2 +EI+1 and 

Q,/ _ 
a 

+ L-1 The fact that the sequence i for i > 1 
Q-! 

for 1 1QiQ 
is increasing in i implies that a? < a1 < a2. We now want 
to see how N0, W(n, D), and V(D) change with a around 
a1. From Lemma 1 it follows that 

for a1 < a < a2 N = {1 + 1}, 

for a = a1, 

for a? < a < a1, 

NO = {/1, /1JI + 1}, 

N = { 
' 

I}. 

It follows from (b.l) above that for a in the range a1 < 
a < a2, we have N(D) = {,' + 1}, hence V(D) = W(p,u + 
1, D), and for a in the range a? < a < a1, we have N(D) = 
{/A1}, hence V(D) = W(pI,, D). 

But inspection of the definitions of the functions V(D) 
and W(n, D) shows (recursively on D = 12,...) that these 
functions are continuous (indeed piecewise linear) in a. 
Left continuity implies that at a = a1, V(D) = W(A}l, D), 
hence /Au E N(D), and right continuity implies that at a = 
a1, V(D) = W(L1l + 1, D), hence , + 1 E N(D). Thus, by 
Lemma 1, No c N(D), and with Part (a) above, this gives 
N(D) = N. 

PART (c). From Lemma 2, Part (a) it follows that in this 
case S(n, D) = 0 for all n and D, and then it is clear from 

Equation (5) that U(n, D) = V(D) if and only if f(n) = (p, 
i.e., n E No. Next, note that qp = V(1) =f(1) implies 1 E N0, 
and hence 1 e N(D). O 

4. FURTHER RESULTS FOR STANDARD 
GEOMETRIC YIELD AND LINEAR COST 

All previous literature on optimal lot-sizing for these pro- 
cesses has been restricted to a special "standard" case, 
where both hazard rates and marginal costs were assumed 
constant. In this section, we give a tighter characterization of 
the optimal policy for the standard case, i.e., qi = q, where 
0 < q < 1 and /3i = 1B for all i. Without loss of generality, 
we henceforth simplify the exposition by letting ,1 = 1. 

In general terms, our earlier results indicated the follow- 
ing. When the yield is geometrically distributed, it is never 
optimal to produce more than the outstanding demand. 
For small demands, it is optimal to produce exactly the 
demanded quantity (Observation 5). This holds up to some 
critical level, say L, beyond which the optimal lot sizes 
are always strictly less than the outstanding demand. In 
Theorem 2 below, we precisely identify the critical value L 
for the standard case. Also, as we have noted in ?2, all opti- 
mal lot sizes are uniformly bounded from above, and we 
have identified possible values for such bounds in Obser- 
vation 3. Theorem 3 below states that in the standard case 
the critical value L is in fact the lowest upper bound on 
all optimal lot sizes, i.e., a lot of size L is optimal for an 
outstanding demand of size L, and lots larger than L are 
never optimal, whatever the outstanding demand may be. 
For the reader's convenience, we defer the detailed proofs 
of these theorems to Appendix C, and in the text we give 
only a brief exposition of the underlying arguments. 

The critical value L is specified indirectly by a number 
of intermediate parameters, defined as follows: 

-a + - a2 +4a/ n(l/q) 
2 

[i.e., 5 solves the equation (a + c) ln(1/q) = a]. 

Let L1J be the largest integer not exceeding s, and define 

K 
, fq , L~J ( + L5J + 1) K= LJ if q (+ J) 

(L{J + 1) (a+ L[J) 
= LkJ + 1 otherwise. 

Note that K is a strictly positive integer because K = 0 
implies [LJ = 0 and therefore q < 0, contradicting the fact 
that 0 < q < 1. Also, recall from ?2 Observation 3 part (b) 
that for all D > 1, max N(D) < 0. Replacing 3 by 1 yields 
the following expression for 0: 

log V(1)-log 8 log 1 

log(l/q) log q 

thus 0 > 1. 
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if 1 < K --a, 
1-q 

q 
if K > Ya and K > 1. 

1 -q 

L= LLJ. 

THEOREM 2. For all D, D E N(D) if and only if D < L. 

The proof is presented in Appendix C. Here we outline 
the basic arguments of the proof, and also explain the ori- 
gins of the parameters 5 and K that define L. 

PROOF OUTLINE. For 1 < 0 < 2 we prove the theorem 

directly by using definitions of 0 and L. The proof for 68 2 
is by induction on D: Assuming inductively that d E N(d) 
for d = 1,... ,D we show that D + 1 N(D + 1) if and 
only if D+1 L. 

For this purpose, we define the function y(x) = xqx/(a + 
x) on x > 0, and we prove that under the inductive 
assumption, D + 1 E N(D + 1) if and only if qD+l ) 

max{y(k): k = 1, ... , D}. Thus, equivalently, we prove the 
theorem by showing that under the inductive assumption 
[qD+l max{y(k): k = 1,... , D if and only if D+1 < L]. 
Hence, we study the function y(x) = xqX/(a + x) on x ) 0 
and show that it is unimodal with a peak at x = -. K is 
the integer maximizer of y(x), i.e., y(K) = max{y(k): k = 
1, 2, ... . As noted above, K ) 1. Finally, we show that L 
as defined above coincides with the largest integer D + 1 
satisfying qD+l ) max{y(k): k = 1,... , D} which depends 
on how large K is (hence the three different expressions in 
the definition of L1). 

THEOREM 3. max{k E N(D), D = 1, 2,...} = L. 

A typical pattern of how the optimal lot sizes change 
with the outstanding demand is given in Figure 1. The pat- 
tern exhibits clearly the properties of optimal policies noted 
in Theorem 3 and in the observations of ?2. 

Because the optimal lot-sizes and the critical value L are 
specified rather indirectly, it is not easy to see exactly how 
they depend on the system's hazard rates and production 
costs. Intuitively, the optimal lots (and the critical value L) 
should be smaller when (a) output quality is lower (not 
worthwhile to produce in large lots when many of the items 
are likely to turn out defective), and (b) set-up costs are 
lower. If output quality and/or set-up costs are sufficiently 
low, it may be best to avoid nontrivial lots altogether, and 
always produce only one item at a time. For the standard 
case studied in this section, we can give a simple precise 
specification of the conditions for which the production of 
a single unit is optimal for all demand levels. 

COROLLARY 1. N(D) = {1} for all D = 1, 2,..., (i.e., L = 

1), if and only if q < l. 

Figure 1. Optimal lots for q = 0.95, C(n) = 10+ n. For 
these parameters, ,L = 17 and convergence of 
N(D) to {17} occurs as soon as D > 60. 
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PROOF. The condition q < al implies 0 < 2 [recall 
q-l(a + 1) = 1], hence by Observation 3(b), N(D) = {1} 
for all D. On the other hand, if N(2) = {1} then U(2, 2)- 
U(1, 2) > 0, and from Equation (2), U(2, 2)- U(1, 2) = 
1 -q2a, hence q < '. 0 

5. CONCLUDING COMMENTS 
ON POSSIBLE EXTENSIONS 

We conclude with a few comments concerning potential 
extensions of the results presented here. The results of this 
paper can be extended in two different directions. One pos- 
sible direction for future research is to identify additional 
interesting properties of the optimal policies for the classes 
of production processes studied in this paper. In particular, 
consider Figure 1, which depicts the optimal lot sizes for 
a range of outstanding demands. Beyond the properties of 
the optimal policy stated in the previous sections, Figure 1 
exhibits the following noteworthy property. When a unit 
increase in the outstanding demand induces a drop in the 
optimal lot size from, say, n to m < n, then the optimal 
lot sizes for higher outstanding demands are all between 
m and n. This property recurred consistently in extensive 
numerical investigations that we conducted. In the absence 
of formal proof, we state this as a conjecture for future 
investigation. 

CONJECTURE. In the standard case, 

if n E N(D), m e N(D+ 1) and m < n, 
then for all d > D k E N(d) implies m < k < n. 

Another potential direction for future research is to inves- 
tigate the robustness of the properties of the optimal policy 
studied in this paper with respect to the assumed character- 
istics of the production process. For example, the existence 
of a limit to N(D) as D gets large, as discussed in ?3, 
seems to apply also to other production processes that do 
not comply with the conditions of Theorem 1. It would be 
interesting to characterize the class of production processes 
for which a similar property holds. 

Define 

0 if K= 1, 

log a+K 

LK+ 1- = log 
Ii q 

qa + 1 
I -q 
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APPENDIX 

The appendices can be found at the Operations Research 
Home Page (http://or.pubs.informs.org/pages/collect.html). 
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