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We consider the problem of servicing a number of objects in a discrete time environment. In each period, we may select an object that
will receive a service in the period. Each time an object is serviced, we incur a servicing cost dependent on the time since the object’s
last service. Problems of this type appear in many contexts, e.g., multiproduct lot-sizing, machine maintenance, and several problems in
telecommunications. We assume that at most one object can be serviced in a given period. For the general problem with m objects, which
is known to be NP-Hard, we describe properties of an optimal policy; and for the speci0c case of m= 2 objects, we determine an optimal
policy.

1. INTRODUCTION

We consider the problem of servicing a set of m objects
over the in0nite horizon. We assume that decisions concern-
ing when to service an object are made in a discrete time
environment, i.e., time is partitioned into periods of, for ex-
ample, a day, a week, or a month. We assume that the cost
of servicing an object is a function of the number of peri-
ods since the previous (or next) service to the object. We
are interested in 0nding an optimal policy for servicing all
objects that minimizes the average cost per period over the
in0nite horizon.

Multiproduct lot-sizing clearly falls into this problem
framework. In this case, the objects are products, and ser-
vicing an object corresponds to ordering the product, or
replenishing the product’s inventory. The cost of servicing
an object (ordering a product) may include a 0xed cost for
ordering along with the inventory carrying charges for the
product over the interval until the next service.

In the case where there are no constraints on the set of
objects serviced in a given period, and assuming fairly stan-
dard conditions on the cost of service, an optimal policy is
easily constructed. Each object is serviced using equidistant
(object-speci0c) time intervals. This optimal interval length
between services can be found by minimizing the average
service cost per period.

In this paper, we study the periodic scheduling prob-
lem with the following service constraint: At most one ob-
ject can be serviced in a given period. This constraint may
be because of accounting, space, workforce, or transporta-
tion considerations. We give several motivating examples
below.

Anily et al. (1997a) consider this same problem in the
context of scheduling preventive maintenance of a set of
machines. Here the machines are the objects, and servicing

a machine means performing maintenance. The service
constraint may be because (1) a machine in maintenance
cannot be in operation and required production levels pro-
hibit maintaining more than one machine in a given period,
and=or (2) there is not enough time, physical space, or other
resources to maintain more than one machine in a period. In
Anily et al. (1997a), the authors assume that the cost of op-
erating a machine in a period is a linear (increasing) func-
tion of the number of periods since its last service. That is,
they assume no 0xed (set-up) cost for actually performing
the maintenance. They present a simple algorithm to com-
pute optimal policies for m= 2 and a nonpolynomial 0nite
algorithm to 0nd the optimal policy for general m. Because
the complexity of this latter algorithm increases fairly fast
with m, they also present heuristics and worst-case bounds.
To date, it is not clear whether the problem considered in
Anily et al. (1997a) is NP-Hard. In Anily et al. (1997b)
the same authors consider the problem with three machines.
They show that the problem is either solvable to optimal-
ity or the optimum can be closely approximated, depend-
ing on the machine parameters. In the latter case, the au-
thors provide a heuristic with a guaranteed worst-case bound
of 1:0:3%.

Bar-Noy et al. (1997) consider a more general problem
where out of the m objects, at most k can be serviced in a
given period. In the context of machine maintenance, they
assume object-dependent set-up costs as well as operating
costs as in Anily et al. (1997a). They show that this prob-
lem is NP-Hard for any 16k¡m. Therefore, the problem
we study in this paper is NP-Hard for a general number of
objects. Bar-Noy et al. (1997) propose approximation algo-
rithms for the case k = 1 that are based on properties of the
Fibonacci numbers. The proposed heuristics achieve worst-
case bounds of 9=8 in the case when there is no 0xed cost
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for maintaining a machine, and 1.57 when there is a 0xed
cost for maintenance. They also prove that a simple greedy
algorithm used in Anily et al. (1997a), which was shown
empirically to generate close to optimal solutions, has a
worst-case bound of 2.

In this paper, we study the problem of periodically ser-
vicing m objects under general service cost functions. We
assume only that the total cost of servicing an object over
t periods, e.g., once in period p¿1 and then not again
until period t + p, is a convex function of t and is inde-
pendent of p. One can verify that the problems analyzed
in Anily et al. (1997a) and Bar-Noy et al. (1997) fall into
this framework. We present general properties that an op-
timal policy must satisfy for this case. For the case of two
objects (m= 2), we show that an optimal policy can be eas-
ily constructed. Speci0cally, we show that according to the
cost functions there exists an optimal policy whose closed
form can be either predetermined or is one of at most four
possible simple forms.

In addition to the context of multiproduct lot-sizing and
machine maintenance, there are a number of other appli-
cations of this same problem. Consider the case where a
retailer must collect various products at a number of suppli-
ers. Assume transportation operations are carried out by the
retailer (and not the suppliers) who owns a single vehicle.
The vehicle cannot visit multiple suppliers on a single day
because (1) suppliers are not located close to each other,
and=or (2) products cannot be mixed on the vehicle. In ad-
dition, such a policy may be attractive from a practical point
of view; it balances the workload per day associated with
the inventory replenishments and thus necessitates fewer re-
sources to handle these operations.

Several applications in the telecommunications area are
presented in Bar-Noy et al. (1997). We describe one here.
A database containing m pages is accessed by clients. A
broadcast-disk broadcasts only a limited number of these
pages in each time period. With each page, there is a prob-
ability that a client wishes to access it. A client who wishes
to access page i listens to the disk until the end of the time
period in which page i is broadcast. When at most one page
can be broadcast in a given period, the problem of minimiz-
ing the expected time spent by clients is therefore the model
described in Anily et al. (1997a).

Related problems are analyzed by Chandrasekaran et al.
(1992a, 1992b), Glass (1992, 1994), Hassin and Meggido
(1991), Holte et al. (1992), Mok et al. (1989), and Wei
and Liu (1983). For example, in Holte et al. (1992), each
object has an upper bound on the number of periods between
services it receives. In Mok et al. (1989), and Wei and Liu
(1983), the exact service intervals are 0xed, and the problem
is to determine the minimum number of servers needed to
form a feasible schedule, where one server can service one
object per period.

In the next section, we give some preliminary de0nitions
and notation. In §3, we present properties of an optimal pol-
icy for the general problem of m objects. The remainder of
the paper is concerned with the case of two objects (m= 2).

In §4, we consider cases that lend themselves to a straight-
forward solution method. In §5, we present a set of simple
policies. In the last two sections, we consider the case where
an optimal solution is not, at 0rst glance, readily found.
In §6, we present more speci0c properties of an optimal so-
lution. In §7, we show that an optimal policy must exist in
the set of simple policies presented in §5.

2. PRELIMINARIES

Let R+≡ [0;+∞) and N≡{1; 2; 3; : : :}. For each object
i= 1; 2; : : : ; m, we de0ne a general service cost function
Fi :N �→R+. For integer t¿1, this service cost Fi(t) speci-
0es the total cost over t consecutive periods where object i
is serviced in the 0rst period of an interval of t periods, and
then it is not serviced for the next t − 1 periods.

We let fi :N �→R+ denote the respective average cost
function for object i, which is simply:

fi(t)≡ 1
t
Fi(t); for t¿1:

The average cost function fi(t) speci0es the average cost
per period for object i, over the t periods where a service to
object i occurs in the 0rst period and no service to object i
occurs in the next t − 1 periods.

We require that these cost functions satisfy the following
properties. For each i= 1; 2; : : : ; m:

(P1) Fi is convex, i.e., Fi(t+1)−Fi(t)6Fi(t+2)−Fi(t+1)
for all t¿1.

(P2) fi(t) is unbounded as t→∞.

In the context of lot-sizing, assume product (object) i has
a 0xed ordering cost of Ki¿0, a linear holding cost of hi¿0
and a demand per period di¿0, then we have

Fi(t) =Ki + (t − 1)hidi + (t − 2)hidi + · · · + 2hidi + hidi

=Ki +
hidi
2
t(t − 1);

and fi(t) =Ki=t+(hidi=2)(t−1). One can verify that in this
case (P1) and (P2) are satis0ed.

For each i= 1; 2; : : : ; m, de0ne f∗
i ≡min{fi(t) : t¿1 and

integer} and let T∗i denote the set of integers t satisfying
fi(t) =f∗

i . The set T∗i represents those values of t that yield
the minimal average cost per period, i.e., without any ser-
vice constraints it is optimal to service object i once over a
sequence of t periods, for any t ∈T∗i . We show below that
these de0nitions are well de0ned.

LEMMA 1. (P1) and (P2) imply the following; for each
i= 1; 2; : : : ; m:

(1) If t (integer) is a local maximum of fi; then either
t= 1 or fi(t − 1) =fi(t) =fi(t + 1).

(2) T∗i is a nonempty (-nite) set of consecutive integers.
(3) fi(t) is strictly decreasing for 16t6min(T∗i ) and

strictly increasing for t¿max(T∗i ). Also Fi(t) is strictly
increasing for t¿max(T∗i ).
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(4) Let a; b¿0 be such that a+b6min(T∗i ); then Fi(a)+
Fi(b)¿Fi(a+ b).

(5) For a+b= �; Fi(a) +Fi(b) is a nondecreasing func-
tion of |a− b|.

(6) For 26t6min(T∗i ); Fi(t) − Fi(t − 1)¡f∗
i ; and for

t¿max(T∗i ); Fi(t + 1) − Fi(t)¿f∗
i .

PROOF. (1) We prove this by showing that for each
i= 1; 2; : : : ; m, there does not exist a t¿2 such that
fi(t)¿fi(t − 1) and fi(t)¿fi(t + 1); where at least one
of these inequalities is strict. The proof is by contra-
diction. Assume that there exists a t¿2 with the above
property such that fi(t)¿fi(t − 1) and fi(t)¿fi(t + 1)
(the proof of the other case is analogous). By (P1),
Fi(t) − Fi(t − 1)6Fi(t + 1) − Fi(t). Then:

tfi(t) − (t − 1)fi(t − 1)6 (t + 1)fi(t + 1) − tfi(t)

¡ (t + 1)fi(t) − tfi(t) =fi(t):

This implies fi(t)¡fi(t−1), contradicting our assumption.
(2) By (P2) and (1), T∗i is bounded and therefore

nonempty. In addition, (1) implies the set consists of con-
secutive integers.

(3) To prove the 0rst part, consider three consecutive
integers t; t + 1; and t + 2, with t¿1. From (P1), we must
have 2(t+ 1)fi(t+ 1)− tfi(t)6(t+ 2)fi(t+ 2). This leads
to fi(t + 1)6[(t + 2)fi(t + 2) + tfi(t)]=(2t + 2)≡ z:
From this expression we see that if fi(t + 2)¡fi(t)
then fi(t + 1)6z¡fi(t): Similarly, if fi(t)¡fi(t + 2)
then fi(t + 1)6z¡fi(t + 2). Therefore, the two cases
fi(t) =fi(t+ 1)¿fi(t+ 2) and fi(t)¡fi(t+ 1) =fi(t+ 2)
are impossible. This proves the 0rst part of (3).

For the second part, because fi(t) is strictly increasing
for t¿max(T∗i ), then Fi(t) is as well.

(4) Because a + b6min(T∗i ) and a; b¿0, then by (3),
fi(a)¿fi(a+ b) and fi(b)¿fi(a+ b). Therefore, afi(a) +
bfi(b)¿(a+ b)fi(a+ b).

(5) This follows directly from (P1). To see this, assume
without loss of generality that a¡b, for b= � − a. Then
(P1) implies: Fi(a+ 1) − Fi(a)6Fi(b) − Fi(b− 1); which
implies Fi(a+ 1) + Fi(b− 1)6Fi(a) + Fi(b).

(6) Let tmin ≡min(T∗i ), then for t6tmin (and t¿2):

Fi(t) − Fi(t − 1)6 Fi(tmin) − Fi(tmin − 1) (from (P1))

= tminf∗
i − (tmin − 1)fi(tmin − 1)

= (tmin − 1)[f∗
i − fi(tmin − 1)] + f∗

i

¡f∗
i :

For the other case, let tmax ≡max(T∗i ). Then for t¿tmax,

Fi(t + 1) − Fi(t)¿ Fi(tmax + 1) − Fi(tmax) (from (P1))

= (tmax + 1)fi(tmax + 1) − tmaxf∗
i

= (tmax + 1)[fi(tmax + 1) − f∗
i ] + f∗

i

¿f∗
i :

We remark that we have included condition (P2) for the
sole purpose of excluding certain pathological cases where
an optimal policy is to service a particular object once and
then never again. Examples of this occur if, for example,
fi(t) is nonincreasing for all t¿1 (e.g., fi(t) = 1=t), then
T∗i is empty. Similarly, if fi(t) =f∗

i for all t¿t′ for some
t′¿1, then max(T∗i ) is not 0nite.

A policy P is a sequence P= [i1; i2; : : :] where ik ∈{0; 1; 2;
: : : ; m} for k = 1; 2; : : : denotes the object that is serviced in
period k (if ik¿0) or denotes an empty period (ik = 0). An
empty period is one in which no object is serviced. For a
policy P, let C(t; P) denote the average cost over periods
1; 2; : : : ; t.

We are interested in policies with bounded average cost.
For each such policy P we de0ne

C(P)≡ lim sup
t→∞

C(t; P):

A policy is optimal if it minimizes C(P). We let
C∗≡minP C(P). In the next section, we show that C∗ is
well de0ned.

3. PROPERTIES OF AN OPTIMAL SERVICE POLICY

We de0ne a cyclic policy (or simply a cycle) to be a schedule
of services for all objects over a 0nite sequence of periods.
To create a policy, the cycle is repeated ad in0nitum. We
use the term basic cycle to denote the shortest generating
sequence of a cyclic policy. For example, for m= 3, a cyclic
policy de0ned by S = [123123] is not basic, but S = [123]
is. For a given cycle S, say S = [1233], we say that the cycle
uses a four-interval for object 1 (i.e., object 1 is serviced
once over a four-interval or every four periods), and uses a
four-interval for object 2. For object 3, S uses a one-interval
and a three-interval.

A basic cycle S is minimal if there does not exist a con-
secutive subsequence in S servicing all objects which re-
peats itself. Thus, for m= 3, the basic cycle S = [12323123]
is not minimal since there is a repetition of the subsequence
“123.” We note that a minimal cycle is always basic, but
not vice versa (as in the example just stated).

It is possible to show, in a similar manner as
Anily et al. (1997a), that there exists an optimal solution
which is a cyclic policy.

LEMMA 2. For any policy P; there exists a policy P∗ such
that the number of periods between two consecutive services
to object i is bounded from above by a constant bi; for
i= 1; 2; : : : ; m; and C(P∗)6C(P).

PROOF. Assume that bi is a constant, which will be speci0ed
below. Let P be the given policy and let �(P) be the 0rst pe-
riod in which object i is not serviced during the next bi + 1
periods. We may assume there exists such a period, other-
wise there is nothing to prove. In order to construct P∗ we
will de0ne a sequence of policies Pk , for k = 0; 1; 2; : : : ; with
P0 =P and such that C(Pk+1)6C(Pk) and �(Pk+1)¿�(Pk),
for k¿0.
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We show how to construct Pk+1 from Pk , for k¿0, as
follows. Let i be the object that is serviced in period �(Pk)
and then not serviced until at least period �(Pk) + bi + 1.

We will make use of the following observation. For each
i, the value

Fi(t) −
(
Fi
( t

2
− m

)
+ Fi

( t
2

+ m
))

(1)

can be made arbitrarily large as t→∞. To see this, let
t0 ≡ 2[m + max(T∗i )] and note that for t¿t0 (i.e., t=2 −
m¿max(T∗i )), Fi(t) and fi(t) are strictly increasing accord-
ing to Lemma 1, part (3). Also note that

Fi(t=2 + m)6m
(
Fi(t) − Fi(t=2)

t=2

)
+ Fi(t=2): (2)

To see this, consider the line connecting the points
(t=2; Fi(t=2)) and (t; Fi(t)); it has slope [Fi(t)−Fi(t=2)]=[t=2].
The right-hand side of (2) is the value along this line at
x= t=2 + m, which by the convexity of Fi and the fact that
t¿t=2 + m must be greater than or equal to Fi(t=2 + m).
Thus for t¿t0:

Fi(t) − (Fi(t=2 − m) + Fi(t=2 + m))

¿Fi(t) − 2m
t

(Fi(t) − Fi(t=2)) − Fi(t=2) − Fi(t=2 − m)

=
(

1 − 2m
t

)
(Fi(t) − Fi(t=2)) − Fi(t=2 − m)

=
(
t=2 − m
t=2

)
(Fi(t) − Fi(t=2)) − Fi(t=2 − m)

=
( t

2
− m

)
(2fi(t) − fi(t=2) − fi(t=2 − m))

¿2
( t

2
− m

)
(fi(t) − fi(t=2))

= (t − 2m)(fi(t) − fi(t=2)):

We now consider several cases. If fi(t) − fi(t=2) is un-
bounded in t, then it follows that (1) can be made arbitrarily
large. Otherwise, if t[fi(t)−fi(t=2)] is unbounded in t, then
again it follows that (1) can be made arbitrarily large. The
only case remaining is when t[fi(t) − fi(t=2)] is bounded
for all t¿t0. Let us assume that this is the case. We show
that fi must then also be bounded, contradicting (P2). Say
t[fi(t)−fi(t=2)]6M for some constant M and for all t¿t0.
Then

fi(t)6fi(t=2) + M=t: (3)

Consider fi(t) at points t= 2k for integers k¿ :k ≡�log2 t0.
A recursive application of (3) shows thatfi(2k)6fi(2

:k)+M
for all k¿ :k. Because fi is strictly increasing for t¿t0, then
it must also be bounded.

Having established that the value of (1) can be made
arbitrarily large, we can now prove the claim. Assume bi is
such that bi+1−2m is even and nonnegative. Let vi ≡ 1

2 (bi+
1 − 2m)¿0.

Renumber the periods so that period �(Pk) is period 0. Let
I be the interval from periods vi + 1 to vi + 2m − 1. The

interval I is 2m−1 periods long, and since vi+2m−1¡bi+1,
it does not contain any service to object i. We distinguish
between two cases:

Case 1: I has an empty period. Say this empty period
is period t with vi¡t¡vi + 2m: Let Pk+1 be an identical
policy to Pk , except that we service object i in period t. The
savings is therefore Fi(bi + 1)− [Fi(t) +Fi(bi + 1− t)]. For
vi¡t¡vi + 2m, using Lemma 1, part (5) with a= vi and
b= bi + 1− vi, and a= vi + 2m and b= bi + 1− (vi + 2m):

Fi(bi + 1) − [Fi(t) + Fi(bi + 1 − t)]

¿Fi(bi + 1) − max{Fi(vi) + Fi(bi + 1 − vi);

Fi(vi + 2m) + Fi(bi + 1 − vi − 2m)}
= Fi(bi + 1) − [Fi(vi) + Fi(vi + 2m)] (by def. of vi)

= Fi(bi + 1)−
[
Fi

(
bi + 1

2
− m

)
+ Fi

(
bi + 1

2
+ m

)]
:

The proof then follows because there exists a large enough
bi for which this is nonnegative. Therefore, the new policy
Pk+1 has C(Pk+1)6C(Pk) and �(Pk+1)¿�(Pk):

Case 2: I has no empty periods. Because I is 2m − 1
periods long, there is an object, say object j, that is serviced
at least three times in I . Let t1; t2; and t3 be the periods where
object j receives its 0rst three services in I . We construct the
policy Pk+1 by taking Pk and replacing j’s second service in
I with a service to object i. The diPerence between the total
cost of servicing object j in the policy Pk and the total cost
of servicing object j in Pk+1 is some 0nite amount

Qj =Fj(t3 − t1) − (Fj(t2 − t1) + Fj(t3 − t2)):

If Qj60 then exchange the second service to object j in I
with a service to object i. There is no extra cost for deleting
the service to object j and the proof follows from Case 1.
Therefore we assume Qj¿0. For object i, we save:

Fi(bi + 1) − [Fi(t2) + Fi(bi + 1 − t2)];

for vi + 1¡t2¡vi + 2m− 1:

Proceeding as in Case 1, there exists a large enough bi for
which this is at least Qj. Therefore, the new policy Pk+1 has
C(Pk+1)6C(Pk) and �(Pk+1)¿�(Pk).

According to the above construction, policies (Pj)∞j=k
coincide in the 0rst �(Pk) periods. As �(Pk) is monotone
increasing, we conclude that a limiting policy P∗ exists. By
construction, C(P∗)6C(P).

We de0ne the state of the system at a given period as
a vector (s1; s2; : : : ; sm), where si¿0 denotes the number of
periods since the last service to object i; i.e., if object i is
serviced in the period, then si = 0.

THEOREM 1. There exists an optimal cyclic policy.

PROOF. According to Lemma 2, the number of possible
states for object i is bounded from above by a constant
bi + 1. Therefore, the total number of possible states, con-
sidering the m objects, is bounded by

∏m
i=1(bi + 1). In view
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of the 0niteness of the state space and the stationarity of the
model, we conclude that for any optimal policy there exists
an alternative optimal policy that is cyclic.

We will therefore restrict our attention to cyclic poli-
cies. We remark that a similar nonpolynomial, but 0nite,
algorithm as in Anily et al. (1997a) can be devised to
0nd the optimal cycle. However, as noted in Anily et al.,
the running time grows rapidly with the size of the state
space.

The following theorem will be useful in subsequent
proofs.

THEOREM 2. Given an optimal cycle S:

(a) there exists a consecutive subsequence S ′ of S; which
de-nes an optimal minimal cycle; and

(b) for each object; the set of service intervals used in S ′

is a subset of the set of service intervals used in S.

PROOF. We 0rst prove (a). If S is minimal, there is noth-
ing to prove, hence we assume S is not minimal. We de-
scribe a method called pruning a cycle. The method works
as follows: Identify a subsequence of periods, where each
object is serviced in the subsequence, such that the subse-
quence appears (at least) twice in nonoverlapping parts of S.
Assume the 0rst (second) occurrence of the subsequence is
the interval from period t1 (t2) to period t′1 (t′2). Consider the
cycle formed by the sequence from period t′1 + 1 to period
t′2 (call this cycle S1) and the cycle formed by the sequence
from period t′2 +1 to the end of the basic cycle and then from
period 1 to period t′1 (call this cycle S2). It is straightforward
to show that the average cost of S is a weighted average of
the cost of these two shorter cycles. To see this, let ‘i be the
length of cycle Si. Let C(S) represent the average cost per
period of a cycle S. Then

(‘1 + ‘2)C(S) = ‘1C(S1) + ‘2C(S2):

Therefore, because S is optimal, we must have C(S1) =
C(S2), and the pruned cycle S1 has the same average cost
as S and has only one occurrence of the subsequence. Note
that there may be another subsequence that is repeated in S1.
In this case, we can prune this cycle. This procedure will
eventually lead to a minimal cycle.

We now prove (b). Given a cycle S, let t1; t′1; t2; t
′
2 be as

de0ned above. Note that in S, the state of the system in
period t′1 is identical to the state of the system in period t′2.
Therefore, for each object the set of service intervals used
in the cycle S1 is a subset of the set of service intervals used
in S.

We conclude the following.

COROLLARY 1. There exists an optimal cycle which is
minimal; and hence basic.

In view of Corollary 1, C∗ = minP C(P) is well de0ned.
We note the following simple observation.

LEMMA 3. The sum of the minimums of the average cost
functions is a lower bound on the minimal policy cost; i.e.,
C∗¿Qm

i=1f
∗
i ≡LB.

The following lemma of Anily et al. (1997b) will be
necessary in subsequent proofs.

LEMMA 4. An optimal basic cycle S has the following
properties:

(i) Extending S by k periods by inserting any combi-
nation of empty periods or services to any set of objects
increases the total cost of the basic cycle by at least kC∗.

(ii) Removing from S any set of k periods cannot reduce
the total cost of the basic cycle by more than kC∗.

PROOF. For a solution generated by a basic cycle R, de-
note by K(R) the total cost of the solution generated by
R during one basic cycle. Let T denote the length of the
given optimal basic cycle S. Let S ′ denote a cycle of length
T + k derived from S as described in (i). Because S is
optimal, we know that K(S ′)=(T + k)¿K(S)=T =C∗, and
hence K(S ′) − K(S)¿kC∗, as claimed. Similarly, if S ′

denotes a basic cycle derived from S as described in (ii),
we have C∗ =K(S)=T6K(S ′)=(T − k), and hence K(S) −
K(S ′)6kC∗.

4. TWO OBJECTS: THE EASY CASES

We consider the case of two objects, i.e., m= 2. In what
follows, we use the convention: i∈{1; 2} and, once i is
de0ned, we use j to denote the index of the other object (i.e.,
j≡ 3 − i). Recall that T∗i is the set of integers t satisfying
fi(t) =f∗

i , for i= 1; 2.
In this section, we consider several special cases where

an optimal cycle can be easily constructed.

4.1. The Case 1∈ T∗1 ∪ T∗2
We 0rst consider the case where 1∈ T∗1 ∪ T∗2 . In this case,
there are no empty periods because it is cheaper to service
an object in {j : 1∈ T∗j } than not to.

We show that an optimal policy must be of one of two
simple forms.

THEOREM 3. If 1∈ T∗1 ∪ T∗2 ; there exists an optimal cycle
that is of one of the following forms:
• An optimal cycle is of the form [21 : : : 11]; i.e.; an

optimal cycle consists of a service to object 2 and then k¿1
services to object 1.
• An optimal cycle is of the form [12 : : : 22]; i.e.; an

optimal cycle consists of a service to object 1 and then k¿1
services to object 2.

(Note that the alternating policy [12] falls within both
forms.)

PROOF. Consider an optimal and minimal cycle S. Because
S has no empty periods and is minimal, we can assume
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without loss of generality that S contains a single occurrence
of the subsequence “12.” As a result the optimal cycle must
be of the form [1 : : : 12 : : : 2], i.e., k 1’s followed by ‘ 2’s
(k¿1 and ‘¿1). Assume, by contradiction, that both k¿2
and ‘¿2, i.e., the cycle S contains the subsequence “1122.”
By using Lemma 1, part (5), switching the second 1 and the
0rst 2 in the subsequence (yielding the subsequence “1212”)
de0nes a policy with no worse cost.

We can now work through and 0nd the exact optimal
policy as follows. Suppose 0rst that 1∈ T∗1 but 1 =∈ T∗2 ; then
obviously the optimal cycle is of the form [21 : : : 11]. The
average cost of such a cycle of length � is

1
�

(F2(�) + (�− 2)F1(1) + F1(2))

=f2(�) +
1
�

[F1(2) − 2F1(1)] + F1(1): (4)

From Lemma 1, part (3), for � large enough, f2(�) is strictly
increasing in � and from (P2) it is unbounded. The value
F1(2)−2F1(1) is nonnegative as 1∈ T∗1 . Hence an integer �∗

minimizing (4) can be easily found, and it clearly satis0es
�∗¿max(T∗2 ). The case 1 =∈ T∗1 and 1∈ T∗2 is analogous.

If 1∈ T∗1 ∩ T∗2 , then it is not clear a priori what is the exact
form of an optimal cycle. However, for the two possible
forms, [211 : : : 1] and [122 : : : 2], the best cycle of each form
can be found as above. The optimal solution is then obtained
by comparing the average cost of these two cycles.

Example: Lot-Sizing. In the context of lot-sizing of two
products referred to in §2, we can obtain the following
stronger result. Note that 1∈ T∗1 ∪ T∗2 corresponds to the case
where at least one of the products should be ordered once
per period. Let

#≡ 1
2 [(K1 − h1d1) + (h2d2 − K2)]:

THEOREM 4. In the case of lot-sizing; if 1∈ T∗1 ∪ T∗2 then
there are three cases:

• #6−h2d2. The optimal cycle is of the form [21 : : : 11];
i.e.; an optimal cycle consists of a replenishment of product
2 and then k¿1 replenishments of product 1.
• −h2d2¡#¡h1d1. The optimal cycle is of the form [12];

i.e.; the alternating policy is optimal.
• #¿h1d1. The optimal cycle is of the form [12 : : : 22];

i.e.; an optimal cycle consists of a replenishment of product
1 and then k¿1 replenishments of product 2.

PROOF. We show that if #¿−h2d2 (#¡h1d1) then; in an op-
timal policy; product 1 (2) cannot be ordered in consecutive
periods. This will prove the theorem. The two proofs are
analogous; and thus we do only one. Assume that #¿−h2d2

and product 1 appears in ‘; ‘¿2, consecutive periods in
an optimal cyclic policy P. (Also assume that ‘ is maximal
with this property.) Let P′ be the policy resulting from tak-
ing policy P and removing one of the ‘ consecutive orders

of product 1. In addition, assume the cycle of P is � periods
long and therefore that of P′ is �− 1 periods long. Then

(�− 1)C(P′) = �C(P) − (K1 + ‘h2d2);

and thus

C(P′) =C(P) +
C(P) − (K1 + ‘h2d2)

�− 1
: (5)

Now an alternating policy (one where replenishments occur
in every period and alternate between the two products) has
average cost:

1
2 (K1 + K2 + h1d1 + h2d2)¡K1 + 2h2d26K1 + ‘h2d2;

where the 0rst inequality follows from #¿−h2d2. There-
fore, C(P)¡K1 + ‘h2d2, for ‘¿2, and combining this
with (5), C(P′)¡C(P), i.e., P cannot be an optimal policy.
Hence, product 1 does not repeat in an optimal policy. This
completes the proof.

We can now work through and 0nd the optimal cycle
length, which we call �. If −h2d2¡#¡h1d1, then �= 2, and
an alternating policy is optimal. If #¿h1d1, then the optimal
cycle consists of one replenishment of product 1 and �− 1
replenishments of product 2. The average cost per period in
this cycle is

1
� (K1 + (�− 1)K2 + h2d2 + h1d1 + 2h1d1 + · · ·

+ (�− 1)h1d1)

=K2 − h1d1

2
+
K1 − K2 + h2d2

�
+
h1d1�

2
:

Then the (relaxed) optimal cycle time is

�∗ =

√
2(h2d2 + K1 − K2)

h1d1
;

and the best � is either ��∗� or ��∗. A symmetric formula
exists for the other case (#6−h2d2).

4.2. The Case 1 �∈ T∗1 ∪ T∗2
The case 1 =∈ T∗1 ∪ T∗2 is not as straightforward. We deal here
with two simple special cases; the remaining, more diRcult,
cases are dealt with in subsequent sections.

We will need the following de0nition. Let gcd(a; b) de-
note the greatest common divisor of the integers a¿0 and
b¿0. If gcd(a; b) = 1, a and b are said to be relatively prime.

We 0rst consider the case where there is a T ∗
1 ∈ T∗1 and

a T ∗
2 ∈ T∗2 that are not relatively prime. We present below

an optimal policy for this case for which the average cost
coincides with the lower bound LB (see Lemma 3), proving
the optimality of the policy.

THEOREM 5. If there exist T ∗
1 ∈ T∗1 and T ∗

2 ∈ T∗2 that are
not relatively prime; then there is an optimal cyclic policy
whose average cost is LB.

PROOF. The proof is based on constructing such a policy:
Schedule a service to object 1 in period 1 and thereafter
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every T ∗
1 periods, and schedule a service to object 2 in period

2 and thereafter every T ∗
2 periods. Because gcd(T ∗

1 ; T
∗
2 )¿1,

the services to objects 1 and 2 never coincide since 1 +
‘T ∗

1 = 2+kT ∗
2 has no solution in integers ‘ and k. The cycle

de0ned by periods 1; 2; : : : ; T ∗
1 T

∗
2 (which is nonbasic) is a

feasible policy. This policy uses only T ∗
1 -intervals for object

1 and T ∗
2 -intervals for object 2, and therefore the average

cost of the policy is f1(T ∗
1 ) + f2(T ∗

2 ) = LB.

Another simple case occurs when at least one of the func-
tions fi admits at least two minimizers, i.e., | T∗1 |¿2, for
some i∈{1; 2}. Assume 1 =∈ T∗1 ∪ T∗2 , as the case 1∈ T∗1 ∪ T∗2
was dealt with earlier in this section.

THEOREM 6. If | T∗i |¿2 for some i∈{1; 2}; and 1 =∈ T∗1 ∪ T∗2 ;
then there is an optimal cyclic policy whose average cost
is LB.

PROOF. Let {T ∗
i ; T

∗
i +1}⊆ T∗i for some i∈{1; 2}, and let

T ∗
j ∈ T∗j . We can assume that the conditions of Theorem 5 are

not satis0ed, i.e., gcd(T ∗
i ; T

∗
j ) = 1 and gcd(T ∗

i + 1; T ∗
j ) = 1,

otherwise there is nothing to prove. Moreover, we are given
that T ∗

i ¿1 and T ∗
j ¿1. We construct an optimal cycle for

this case. Service object j in periods 1; 1+T ∗
j ; 1+2T ∗

j ; : : : .
Service object i in period 2 and then, if period 2 + T ∗

i is
empty, service object i in period 2+T ∗

i . Then service object
i in period 2 + 2T ∗

i if the period is empty. Continue in this
manner until there is some period 2 + kT ∗

i where object j is
serviced for k¿1. Then service object i in the next period,
i.e., period 2 + kT ∗

i + 1 (which is empty because T ∗
j ¿1).

Because there is a repetition of the subsequence [ j; i] (0rst
in periods 1 and 2 and then again in periods 2 + kT ∗

i and
2 + kT ∗

i + 1), the sequence contains a basic cycle as a
subsequence. In this basic cycle, object j is serviced every
T ∗
j periods and object i is serviced every T ∗

i periods, except
once when it is serviced once over a sequence of T ∗

i + 1
periods. By using the fact that fi(T ∗

i ) =fi(T ∗
i + 1), we see

that the average cost of the policy de0ned by this cycle is
LB, proving its optimality.

5. MINIMUM VIOLATION CYCLES

In this section, we present a set of special cycles that are use-
ful in subsequent proofs and will prove to be very ePective.

Due to the results of the previous section, from here on
we make the following assumptions:

Assumption S.

• For each i∈{1; 2; }; T∗i contains only one element, T ∗
i .

• For each i∈{1; 2}; T ∗
i ¿2.

• T ∗
1 and T ∗

2 are relatively prime.

These are conditions for which an optimal policy has not
yet been established. Under Assumption S there may be
empty periods; the other cases were analyzed in §4.

We number the objects so that T ∗
16T ∗

2 . Assumption S
then implies T ∗

2¿3.

Given that T ∗
1 ¿1 and T ∗

2 ¿1 are relatively prime, it is
clear that a cycle cannot be constructed where object i is
serviced every T ∗

i periods, for i= 1; 2. Therefore, in any
cycle there will be occasions where some object i is always
serviced once over a number of periods diPerent from T ∗

i ,
for i= 1 and=or 2. We call such a service interval a violation.
We de0ne a special set of cycles, which we call minimum
violation basic cycles.

Let i∈{1; 2} and z1; z2 ∈{−1;+1}. There are four such
minimum violation cycles, which are constructed as follows.
The cycles depend on the values of T ∗

1 and T ∗
2 ; however,

we will omit this in the notation. We construct the minimum
violation cycle, called Si(zi). To this end, de0ne

k∗i ≡ min{k¿0 : (kT ∗
i + (T ∗

i + zi)) mod(T ∗
j ) = 0}; (6)

and

mi ≡ (k∗i T
∗
i + (T ∗

i + zi))=T ∗
j : (7)

The cycle Si(zi) is T̃ i(zi)≡miT ∗
j periods long. The index i

denotes the object for which we have a violation, i.e., the
object that is not serviced exclusively using T ∗

i -intervals.
More speci0cally, object i is serviced k∗i times using an
interval of length T ∗

i and once using an interval of length
T ∗
i + zi. Object j is always serviced once every T ∗

j periods,
a total of mi times. The exact service policy Si(zi) depends
on the value zi. More precisely, we specify the services for
miT ∗

j consecutive periods starting in period (1 + zi)=2:

• service object i in periods 1 + zi + kT ∗
i , for k = 0; 1;

: : : ; k∗i , and
• service object j in periods 1 + ‘T ∗

j , for ‘= 0; 1; : : : ;
mi − 1.

(Observe that if zi = +1, the speci0cation of the cycle is
from period 1 to period miT ∗

j ; if zi =−1 it is from period 0
to period miT ∗

j − 1.)
First, we prove that the minimum violation cycles are

feasible and minimal.

LEMMA 5. Under assumption S; for i∈{1; 2} and zi ∈{−1;
+1}; the minimum violation cycle Si(zi) is feasible and
minimal.

PROOF. To prove feasibility, we have to show that there does
not exist two overlapping services (services in the same
period) to objects 1 and 2 in Si(zi). Assume by contradiction
that there do exist two overlapping services. This means that
there exists an ‘ (06‘6mi − 1) and a k (06k6k∗i ) such
that

‘T ∗
j + 1 = 1 + zi + kT ∗

i ;

or equivalently

‘T ∗
j = kT ∗

i + zi: (8)

We can write (8) as

((k − 1)T ∗
i + T ∗

i + zi) mod(T ∗
j ) = 0:
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Note that k �= 0, otherwise ‘T ∗
j = zi, which is impossible.

But by the de0nition of k∗i in (6), we obtain that k∗i 6k− 1,
contradicting our assumption that k6k∗i .

To prove the minimality of Si(zi), we have to show that
there does not exist any repeating subsequence (with ser-
vices to both objects) in Si(zi). Observe that the last ser-
vice in the cycle Si(zi) is in period �≡ max{k∗i T ∗

i + 1 +
zi; (mi−1)T ∗

j +1}. So, if there is a repeating subsequence it
must be between periods (1 + zi)=2 and �. However, within
this interval object 1 (object 2) is feasibly serviced at equi-
distant intervals of T ∗

1 (T ∗
2 ). Because T ∗

1 and T ∗
2 are rela-

tively prime, the length of this interval is less than T ∗
1 T

∗
2 ,

i.e., �− ((1 + zi)=2) + 1¡T ∗
1 T

∗
2 . When object k is feasibly

serviced every T ∗
k periods, for k = 1; 2, over an interval of

length less than T ∗
1 T

∗
2 (and T ∗

1 and T ∗
2 are relatively prime),

it is easily veri0ed that there is no repeating subsequence
servicing both objects.

6. TWO OBJECTS: PROPERTIES OF AN OPTIMAL
CYCLE

In this section, we prove a number of properties of an optimal
cycle.

LEMMA 6. Under assumption S; any optimal basic cycle
has the following properties:

(a) object 1 is never serviced in three consecutive periods;
and

(b) object 2 is never serviced in two consecutive periods.

PROOF. Let S be an optimal and basic cycle.
Assume that S does not satisfy (a), i.e., say object 1 is ser-

viced in periods 1, 2, and 3. Eliminating the service in period
2 and leaving this period empty saves 2F1(1)−F1(2), which
is strictly positive from the fact that T ∗

1 ¿2 and Lemma 1,
part (4) (with a= b= 1). This contradicts the optimality
of S.

Assume that S does not satisfy (b). Say object 2 is ser-
viced in periods 1 and 2. Let t1 (t2) be the last (0rst) period
before (after) period 1 in which object 1 is serviced. Note
that t160 and t2¿3. Let p= t2 − t1 be the length of the
corresponding service interval for object 1. We prove (b)
by applying Lemma 4, distinguishing between three cases:

Case i: p¿T ∗
1 . In this case, remove period 2. The total

savings is

F2(1) + F1(p) − F1(p− 1)

=f2(1) + F1(p) − F1(p− 1)

¿f2(T ∗
1 ) + F1(p) − F1(p− 1)

¿f2(T ∗
1 ) + f∗

1 ¿C∗;

contradicting Lemma 4, part (ii). (The 0rst inequality
follows from Lemma 1, part (3) and T ∗

1 ¿2; the second
inequality follows from Lemma 1, part (6); and the last
inequality from the fact that f2(T ∗

1 ) + f∗
1 represents the

average cost of a feasible policy where each of the objects
is serviced every T ∗

1 ¿1 periods.)
Case ii: p¡T ∗

1 . In this case, we add an empty period in
between period 1 and 2. The total increase in cost is

F2(2) − F2(1) + F1(p + 1) − F1(p)¡f∗
2 + f∗

1 6C∗;

contradicting Lemma 4, part (i). (The 0rst inequality follows
from Lemma 1, part (6), T ∗

2 ¿3 and p¡T ∗
1 . The second

inequality follows from the fact that f∗
2 + f∗

1 is a lower
bound on the optimal average cost.)

Case iii: p=T ∗
1 . In this case, we add T ∗

1 periods in be-
tween period 1 and period 2 as follows: After servicing ob-
ject 2 in period 1 we add T ∗

1 + t1 − 2 empty periods, then
a period with a service to object 1 and then 1 − t1 empty
periods. It is easily veri0ed that the intervals for object 1
starting in period t1 and the following one are each T ∗

1
periods long. The total increase in cost is

F1(T ∗
1 ) + F2(T ∗

1 + 1) − F2(1)

=T ∗
1 f

∗
1 + [F2(T ∗

1 + 1) − F2(T ∗
1 )]

+ [F2(T ∗
1 ) − F2(T ∗

1 − 1)] + · · · + [F2(2) − F2(1)]

¡T ∗
1 f

∗
1 + T ∗

1 f
∗
2 6T ∗

1 C
∗;

contradicting Lemma 4, part (i). (The 0rst inequality follows
from Lemma 2:1, part (6), and T ∗

1 + 16T ∗
2 :)

We show that there exists an optimal cycle where each
object is serviced using at most two interval lengths which
are consecutive integers. Let P∗ be the set of optimal basic
cyclic policies generated by a minimal cycle. According to
Corollary 1, P∗ is not empty.

LEMMA 7. Under Assumption S; there exists a policy inP∗

that has each object serviced using at most two interval
lengths that are consecutive integers.

PROOF. Given an arbitrary policy P ∈P∗, if the claim of the
lemma is not satis0ed, we will perform a series of simple
changes to the policy’s generating optimal, minimal cycle
that does not increase the policy’s average cost. The resulting
cycle uses, for each object, only service intervals whose
lengths are two consecutive integers. If this cycle is not
minimal, a minimal cycle of strictly shorter length can be
constructed by using the pruning technique of Theorem 2.
In addition, by part (b) of Theorem 2, for each object, the
set of service intervals have the desired property as well.

Suppose there exists an optimal policy P ∈P∗, generated
by a minimal cycle S, that uses two diPerent service intervals
for object i∈{1; 2}, say �i and �i + U for U¿2. Note that
if i= 2 then �i¿2 according to Lemma 6, part (b).

We start by assuming that S contains two adjacent in-
tervals for object i, the 0rst of length �i and the other of
length �i+U; U¿2. We will perform a shift of the services
to object i that changes the �i-interval and the (�i + U)-
interval into a (�i + 1)-interval and a (�i + U − 1)-interval.
This technique maintains feasibility, does not aPect the ser-
vices to object j, does not aPect the total length of the
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cycle, and does not increase the total (or average) cost
(according to Lemma 1, part (5)). Renumber the periods,
if necessary, so that object i is serviced in periods 1; �i + 1
and (�i + 1) + (�i + U). Therefore, period k ≡ �i + 1 is the
beginning of the (�i + U)-interval. Note that the next ser-
vice to object i, after the one in period k, is not until period
k + �i + U¿k + 3. If period k + 1 is empty, then a simple
shift of the service to i currently in period k to period k + 1
achieves the desired result. Otherwise, if period k + 1 has a
service to object j, then by the minimality of S all services
to object i in S, except the service to object i in period k,
are followed by an empty period. We claim that we can as-
sume without loss of generality that period k + 2 is empty.
To prove this claim, note that because k + �i + U¿k + 3,
if there is a service in period k + 2, it must be to object j.
Also, in such a case, j �= 2 because otherwise object j= 2
is serviced in two consecutive periods (k + 1 and k + 2),
contradicting Lemma 6, part (b). Therefore, i= 2 and j= 1.
Note that object 2 is not serviced in period k + 3 (because
k + �2 + U¿k + 4). Therefore, consider object 1. It is ser-
viced in period k + 1, and assume that it is also serviced in
period k + 2. By Lemma 6, part (a), object 1 cannot be ser-
viced in period k + 3. In this case, period k + 3 is empty,
and the service to object j= 1 in period k+2 can be moved
to the empty period k+3 at no additional cost (according to
Lemma 1, part (5)). Therefore, we can assume period k + 2
is empty. Now shift all services to object i in S forward by
one period except for the service in period k, which is shifted
forward two periods (to period k+2). This accomplishes the
desired result (i.e., we have transformed the �i and �i + U
intervals into a (�i + 1)- and a (�i + U − 1)-interval).

This proves that any two consecutive service intervals for
object i either are the same length or their lengths diPer by
exactly one period. Assume now that S contains an interval,
call it I0, of length �i for object i, then z¿0 intervals of
length �i + 1 followed by an interval, call it I2, of length
�i +2. We show below that this cycle can be transformed, at
no additional cost, to a cycle in which the �i-interval and the
(�i + 2)-interval are adjacent, which was dealt with above.
Let period 0 be the period that is at the beginning of I0, so
that object i is serviced in period 0.

We 0rst describe a shifting technique that reduces z by
one each time and does not change the cost of the solution.

As long as z¿0, we do the following. Let period k = �i +
z(�i + 1) be the period at the beginning of I2, when object
i is serviced. If there is no service to either object in period
k + 1, then move the service to object i currently in period
k to period k + 1. The cost of the solution does not change
since the number of intervals of each type does not change;
a (�i + 2)-interval becomes a (�i + 1)-interval and a (�i +
1)-interval becomes a (�i + 2)-interval and in between the
�i-interval and the (�i+2)-interval there are (z−1) (�i+1)-
intervals. Otherwise, if there is a service in period k + 1,
it must be a service to object j because the next service to
object i is not until period k + �i + 2¿k + 3. Because the
cycle is minimal, there cannot be a repeating subsequence.
Therefore, all services to object i in the cycle, except for

the one in period k, are followed by an empty period. In
addition, period k+2 can be assumed to be an empty period
for the same reasons as detailed above (when analyzing the
(�i + U)-interval). Shift all services to object i forward by
one period, except for the service in period k, which is shifted
forward two periods (to period k + 2). This reduces z by
one without changing the total number of intervals of each
type used, for each object. This procedure can be repeated
until z= 0 which was dealt with above.

Let P∗∗ ⊆P∗ denote those policies of P∗ where object
i is serviced using at most two interval lengths which are
consecutive integers, for i∈{1; 2}. Lemma 7 shows thatP∗∗

is nonempty. The following lemma shows that there exists
an optimal policy in P∗∗ where the only service intervals
used to service object i are either T ∗

i and T ∗
i − 1 or T ∗

i and
T ∗
i + 1, for i∈{1; 2}.

LEMMA 8. Under assumption S; there exists an optimal
policy P ∈P∗∗ where for object i∈{1; 2} the service in-
tervals used are of length either T ∗

i − 1 and T ∗
i or T ∗

i and
T ∗
i + 1.

PROOF. According to assumption S; T ∗
i ¿2 for each i= 1; 2.

From Lemma 7, there exists an optimal policy P ∈P∗∗ such
that the set of service intervals for object i consists of either
a single value �i or two values �i and �i + 1.

By de0nition, fi(t) is minimized at T ∗
i . Let T (2)

i be the
second best minimizer of fi(t). (Note assumption S implies
fi(T ∗

i )¡fi(T
(2)
i ).) By Lemma 1, part (3), without loss of

generality we can assume that T (2)
i is either T ∗

i −1 or T ∗
i +1.

Suppose there exists an optimal policy P for which the claim
of this lemma does not hold for at least one object, say
object i∈{1; 2}. We construct a new policy P′ that services
object j every T ∗

j periods and services object i in intervals

of at most two lengths: T ∗
i and T (2)

i . Let zi =T (2)
i −T ∗

i , and
construct the minimum violation cycle Si(zi). The average
cost of object j in P′ is fj(T ∗

j ), which is a lower bound on
the average cost for object j, and therefore is not higher than
that cost in P. The average cost of object i is a weighted
average of fi(T ∗

i ) and fi(T
(2)
i ) which is strictly better than

any weighted average of any fi(x) and fi(x + 1) where
x¿T ∗

i + 1 or x6T ∗
i − 2.

The policy proposed in the proof of Lemma 8 has one
object serviced using its optimal interval length (e.g., ev-
ery T ∗

j periods), and the other object is serviced using two
types of intervals: its optimal interval length (T ∗

i periods)
and its second best interval length (T (2)

i periods). That is,
the only time we deviate from the lower bound LB is when
we service object i after T (2)

i periods instead of T ∗
i peri-

ods. At what rate this occurs depends on the length of the
cycle Si(T

(2)
i − T ∗

i ). It is this issue that we deal with in
the remainder of this paper. It is interesting to note that it
may be optimal to use T ∗

i along with a value other than
the second best value. For example, say T ∗

1 = 4 and T ∗
2 = 5

with T (2)
1 = 5. The cycle formed by using 4- and 5-intervals
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for object 1 and 5-intervals for object 2 leads to the cy-
cle [12000]. However, using 3- and 4-intervals for object
1 along with 5-intervals for object 2 leads to the cycle
[120010201002100]. The latter cycle may have a smaller
average cost.

Lemmas 7 and 8 have established that there exists an op-
timal policy that is generated by a minimal basic cycle with
the following particular structure, which we call canonical
structure.

DEFINITION 1. Under assumption S; a minimal cycle S
is canonical if there exist z1; z2 ∈{−1;+1} and integers
p1; p2; q1; q2¿0 such that object i is serviced (in S) pi
times using an interval of length T ∗

i and qi times using an
interval of length T ∗

i + zi; for i= 1; 2.

We say a canonical cycle S is generated by (z1; p1; q1; z2;
p2; q2). Any canonical cycle clearly satis0es p1T ∗

1 +
q1(T ∗

1 + z1) =p2T ∗
2 + q2(T ∗

2 + z2). Also because T ∗
1

and T ∗
2 are relatively prime, a canonical cycle must have

q1 + q2¿0.
We now derive several additional properties of canonical

cycles.

LEMMA 9. Under assumption S; in a canonical cycle the
number of services to object 2; i.e.; p2 + q2; is bounded as
follows:

p2 + q26
{
T ∗

1 − 1; if q1 = 0;
T ∗

1 ; if q1¿0:

PROOF. Let S be a canonical cycle. First note that T ∗
2 ¿T ∗

1
and |zi|= 1 (for i= 1; 2) imply that any interval between
services to object 1 in S contains at most one service to
object 2. Arbitrarily number the services to object 2 in S:
1; 2; : : : ; p2 + q2. Let nk¿1 be the number of periods since
the last service to object 1 when object 2 receives service
number k, for k = 1; 2; : : : ; p2 + q2. Because S is minimal,
each nk must be a distinct integer.

If q1 = 0; then nk ∈{1; 2; : : : ; T ∗
1 − 1}, for each k; hence

p2 + q26T ∗
1 − 1. If q1¿0, there may exist (if z1 =+1) at

least one (T ∗
1 + 1)-interval for object 1 in S and therefore

nk ∈{1; 2; : : : ; T ∗
1 }, for each k; hence p2 + q26T ∗

1 .

The following lemma characterizes the average cost of
canonical cycles. It will be useful in the next section. De-
0ne &i(zi)≡ (T ∗

i + zi)[fi(T ∗
i + zi)−fi(T ∗

i )]¿0, for i= 1; 2.
(The strong inequality follows from assumption S. The other
cases were solved in §4.)

LEMMA 10. Under assumption S; let P denote the policy
generated by a canonical cycle of length T =piT ∗

i +qi(T ∗
i +

zi); for i= 1; 2; then:

C(P) =LB +
q1&1(z1) + q2&2(z2)

T
:

PROOF.

C(P) =
1
T

2∑
i=1

[piT ∗
i fi(T

∗
i ) + qi(T ∗

i + zi)fi(T ∗
i + zi)]

=
1
T

2∑
i=1

[piT ∗
i (fi(T ∗

i ) − fi(T ∗
i ))

+ qi(T ∗
i + zi)(fi(T ∗

i + zi) − fi(T ∗
i ))]

+
2∑
i=1

fi(T ∗
i )

=
1
T

2∑
i=1

[qi(T ∗
i + zi)(fi(T ∗

i + zi) − fi(T ∗
i ))] + LB

=
1
T

2∑
i=1

qi&i(zi) + LB:

7. TWO OBJECTS: THE OPTIMALITY OF
MINIMUM VIOLATION CYCLES

In this section, we combine the properties described in the
previous sections to prove our main result: There exists a
minimum violation cycle that is optimal.

We show that for any canonical cycle S generated by
(z1; p1; q1; z2; p2; q2), the average cost of the better of the
two minimum violation cycles S1(z1) or S2(z2) is no more
than the average cost of S. Let C(S) denote the average cost
per period of a policy generated by S.

LEMMA 11. Under assumption S; given any canonical cycle
S generated by (z1; p1; q1; z2; p2; q2); we have

min{C(S1(z1)); C(S2(z2))}6C(S):

PROOF. Recall that &i(zi)≡ (T ∗
i + zi)[fi(T ∗

i + zi) − fi(T ∗
i )]

¿0, for i= 1; 2; and

T̃ 1(z1) =m1T ∗
2 = k∗1 T

∗
1 + T ∗

1 + z1; (9)

T̃ 2(z2) =m2T ∗
1 = k∗2 T

∗
2 + T ∗

2 + z2; (10)

wheremi and k∗i are as de0ned in §5. Let T denote the length
of the canonical cycle S, where:

T =p1T ∗
1 + q1(T ∗

1 + z1); (11)

and

T =p2T ∗
2 + q2(T ∗

2 + z2): (12)

Because Si(zi) is a canonical cycle, in view of Lemma 10,
for i= 1; 2; the average cost of the policy de0ned by Si(zi)
is LB + &i(zi)=T̃ i(zi). The average cost of S (of length T ) is
LB+(1=T )(q1&1(z1)+q2&2(z2)). Therefore, to prove that the
cheaper (in terms of average cost) of the two cycles S1(z1)
and S2(z2) is at least as good as S, we need to show that

q1&1(z1) + q2&2(z2)
T

¿min
{
&1(z1)

T̃ 1(z1)
;
&2(z2)

T̃ 2(z2)

}
: (13)
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To prove (13), we investigate the relationship between
the values (z1; p1; q1; z2; p2; q2), de0ning the canonical cycle
S and the numbers k∗1 ; k

∗
2 ; m1 and m2.

One can verify (using (9)–(12)) that T ∗
1 (p1 − q1k∗1 −

q2m2) =T ∗
2 (p2 − q1m1 − q2k∗2 ), and because T ∗

1 and T ∗
2 are

relatively prime it follows that there exists an integer ‘∗

such that

p1 = q1k∗1 + q2m2 + ‘∗T ∗
2 ; (14)

and

p2 = q1m1 + q2k∗2 + ‘∗T ∗
1 : (15)

We now show that Lemma 9 implies ‘∗60. To see
this, consider both cases: q1 = 0 and q1¿0. If q1 = 0 then
Lemma 10 implies 06p2¡T ∗

1 . This with (15) implies
‘∗60. If q1¿0; then Lemma 10 implies 06p26T ∗

1 . This
with (15) and m1¿0 imply ‘∗60.

We can now prove (13). Hence,

T = p1T ∗
1 + q1(T ∗

1 + z1)

= (q1k∗1 + q2m2 + ‘∗T ∗
2 )T ∗

1 + q1(T ∗
1 + z1)

(from (14))

6 (q1k∗1 + q2m2)T ∗
1 + q1(T ∗

1 + z1) (because ‘∗60)

= (q1k∗1 + q2m2)T ∗
1 + q1(m1T ∗

2 − k∗1 T
∗

1 ) (from (9))

= q1m1T ∗
2 + q2m2T ∗

1

= q1T̃1(z1) + q2T̃2(z2)

=
q1&1(z1)

&1(z1)=T̃1(z1)
+

q2&2(z2)

&2(z2)=T̃2(z2)

(because &1(z1)¿0 and &2(z2)¿0)

6
q1&1(z1) + q2&2(z2)

min{&1(z1)=T̃1(z1); &2(z2)=T̃2(z2)} ;

which is precisely (13).

We can now conclude the following.

THEOREM 7. Under assumption S; an optimal basic cycle
exists in the set of four minimum violation cycles.

PROOF. The result follows because Lemmas 7 and 8 establish
the fact that there exists an optimal minimal cycle that is
canonical, and Lemma 11 shows that, given any canonical
cycle, there always exists a minimum violation cycle of
equal or inferior average cost per period.

We conclude therefore that under Assumption S, an
optimal solution to the problem can be found by simply
calculating the average cost of each of the four minimum
violation basic cycles S1(+1); S1(−1); S2(+1), and S2(−1),
and choosing the one with minimum average cost.
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