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Abstract: We consider the Capacitated Traveling Salesman Problem with Pickups and Deliv-
eries (CTSPPD). This problem is characterized by a set ofn pickup points and a set ofn delivery
points. A single product is available at the pickup points which must be brought to the delivery
points. A vehicle of limited capacity is available to perform this task. The problem is to
determine the tour the vehicle should follow so that the total distance traveled is minimized, each
load at a pickup point is picked up, each delivery point receives its shipment and the vehicle
capacity is not violated. We present two polynomial-time approximation algorithms for this
problem and analyze their worst-case bounds.© 1999 John Wiley & Sons, Inc. Naval Research
Logistics 46: 654–670, 1999

1. INTRODUCTION

The Capacitated Traveling Salesman Problem with Pickups and Deliveries (CTSPPD) con-
sists of n pickup points (hereafter called “blue” points) andn drop-off (delivery) points
(hereafter called “red” points) and one vehicle of limited capacityk $ 1. One blue point is
designated as the starting and ending point, from which any solution must start and end. At each
blue point is a load of unit size that can be delivered to any red point, each of which requests
a load of unit size. The problem is to determine a minimum length feasible tour that picks up
and delivers all loads and does not violate the vehicle capacity ofk units.

The problem of transporting a commodity from a set of suppliers to a set of demand points
with a fleet of limited capacity vehicles is called the Capacitated Vehicle Routing Problem with
Pickups and Deliveries (CVRPPD). This model can capture many real-life transportation and
distribution problems. Casco Golden, and Wasil [6] discuss applications of a special case (the
Vehicle Routing Problem with Backhauls) in the grocery industry where the supermarkets are
the delivery points and the grocery suppliers are the pickup points. In fact, Casco et al. [6] report
that combining deliveries and pickups on a route has led to industry wide savings in distribution
costs upwards of $160 million a year. Clearly, problems involving multiple depots or pickup
points (e.g., [12]) and multiple dropoff points (such as school bus routing, see [5], or express
mail delivery and pickup, messenger services etc.) can be modeled using the CVRPPD. There
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are also applications in robotics, automated guided vehicle systems and industrial drilling (see
[4, 7]).

One important application of the CVRPPD (and the CTSPPD) occurs in the context of
inventory repositioning. Assume a set of retailers (owned and operated by the same firm) are
geographically dispersed in a region. Often, due to the random nature of demands, some retailers
have an excess of inventory while others have such strong sales that they are in need of
additional stock. In many cases, the firm may decide to transfer inventory at retailers that have
experienced below average sales to those that have experienced above average sales. For the one
product problem, determining the cheapest way to execute a given stock transfer is exactly the
CVRPPD (or, for the one vehicle case, the CTSPPD).

The assumption of unit size loads, in many cases, can be made without loss of generality. This
is when each delivery or pickup load is allowed to besplit. For instance, a delivery (or pickup)
of size 7 units can be delivered (or picked up) in two parts, one for 3 units and later one for 4
units. Under this assumption, the CTSPPD (or CVRPPD) can handle essentially any load size
since a delivery (pickup) ofm units can be replaced bym red (blue) points at the same physical
location. If we consider the inventory repositioning example above, since the retailers are owned
by the firm, multiple visits may be tolerated. Imposing a constraint that a customer be visited
only once is clearly more important when the customer isexternalto the firm. In those cases,
multiple visits to the same customer is clearly an unsatisfactory service policy.

We will concentrate on the CTSPPD and point out in which instances our algorithm can be
used for the CVRPPD. The CTSPPD has received scant attention in the literature in spite of its
relevance in a variety of distribution systems. The worst-case analysis of heuristics for this
problem has been limited to very special cases of the problem mainly because of tractability. For
example, the case where the vehicle capacity is 1, or infinite, as well as the case where all blue
(or red) points are at the same physical location have been analyzed. However, the more general
problem of limited capacity and general locations for delivery and pickup customers has not
been sufficiently studied mainly because of its complexity.

The CTSPPD is NP-hard since it includes the Traveling Salesman Problem (TSP) as a special
case (i.e., if all red points are at the same location andk $ n). This implies that the existence
of a polynomial-time algorithm providing the optimal solution for each instance of the CTSPPD
is unlikely to be found. We therefore concentrate our efforts on finding heuristics which have
certain desirable properties. One such property is worst-case effectiveness. Ana-approximation
algorithm for a problem is an algorithm that guarantees that the length of the solution it creates
is at mosta times the length of the optimal solution. Alternatively, ana-approximation
algorithm provides a solution with aworst-case boundof a. Our goal is to develop polynomial-
time heuristics with worst-case bounds. Below, we review a number of well-known versions of
the CTSPPD that can be solved by using the algorithms proposed in this paper. We also review
some worst-case results that have been obtained for related versions of the CTSPPD.

Consider the Capacitated Vehicle Routing Problem (CVRP). In this problem, a central depot
serves as the supply point for all shipments. Vehicles of limited capacity start and end their tours
at the central depot and must bring product from the depot to the customers. Each customer
requests a unit of product. This situation can be modeled using the CTSPPD by simply putting
all the blue points at the depot’s location and having each customer represented by a red point.
Any solution to the CTSPPD corresponds to a solution to the CVRP and vice versa. For the
CVRP, numerous worst-case results exist, including [1, 9]. In the conclusion, we describe the
conditions under which our algorithms improve the best worst-case bounds known for the
CVRP.

Consider the Multi-Depot Capacitated Vehicle Routing Problem (MCVRP) (see [12]). In this
problem, in addition to a number of customers requesting product, there are several depots. At
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each depot there are vehicles of limited capacity as well as a supply of product. The objective
is to design routes for the vehicles such that each customer receives its shipment, the vehicle
capacity is not exceeded and the total distance traveled is minimized. Most research on this
problem (including the worst-case analysis of [12]) has assumed that there is anunlimited
amount of product at each depot. If one models this problem using the CTSPPD, the model can
capture themore realisticproblem where each depot has alimited supplyof product and
(without loss of generality) total supply is equal to total demand. To do this, simply puts blue
points at a depot withs units of supply. Each customer can be represented by a red point, or a
number of red points equal to the size of the quantity demanded. In the conclusion, we describe
the conditions under which our algorithms provide the best known worst-case bounds for the
MCVRP.

The CTSPPD itself is a special case of the Swapping Problem (see [2]). There, the problem
consists of a number of different commodities or product types. Each point is associated with
the type of product currently at the point (if any) and the desired product type (if any). For each
product, total demand is assumed to be equal to total supply. Anily and Hassin [2] present a
2.5-approximation algorithm for the Swapping Problem for the case where the vehicle capacity
k 5 1. This bound holds also whendrops are allowed (a drop means that an object can be
temporarily stored at an intermediate point on the vehicle route). Chalasani and Motwani [7]
consider the special case of two product types which, in the context of the Swapping Problem,
is equivalent to the CTSPPD. Fork 5 1, the problem is equivalent to finding an alternating tour
between blue and red points of minimum length. The authors provide a 2-approximation
algorithm, improving the above bound, based on solving a matroid intersection problem.

The CTSPPD withk 5 ` is studied in Anily and Mosheiov [3]. The problem in their paper
is described in a somewhat different context. More specifically, the paper considers the
Traveling Salesman Problem with Delivery and Backhauls. In this problem, a single vehicle of
limited capacity, starting and ending at a depot, must serve customers that are partitioned into
two groups: delivery and backhaul customers. At a delivery customer, the vehicle unloads one
unit of product brought from the depot, while, at a backhaul customer, the vehicle loads one unit
of product that is to be brought to the depot. Thus, when leaving the depot, the vehicle carries
thetotal delivery requirement, whereas, when returning to the depot, the vehicle carries the total
backhaul requirement. For the case where the number of delivery customers is identical to the
number of backhaul customers and the vehicle capacity equals or exceeds the total delivery
requirement, this problem is equivalent to the uncapacitated TSPPD (the CTSPPD withk 5 `);
in order to see this, note that both problems reduce to finding a shortest closed tour where, at
each point of the tour, the number of blue (delivery) customers visited so far does not fall below
the number of red (back-haul) customers visited so far. Anily and Mosheiov provide a
2-approximation algorithm for this problem, based on doubling a minimum spanning tree.

The first to consider the general capacity case were Chalasani and Motwani [7]. They show
that there exists a constant-approximation algorithm for general finitek. The algorithm they
propose is a 9.5-approximation algorithm.

In this paper, we show that the same basic algorithm proposed in [7], with a slight refinement,
yields a (72 3/k)-approximation algorithm for the CTSPPD. In our efforts to improve this
bound, we were able to derive a second algorithm, called MATCHk, whose worst-case bound
is a (nonmonotone) function ofk, and turns out to yield worst-case bounds which are smaller
than 72 3/k for almost all practical values ofk. For example, the worst-case bound fork 5
2 is 2.5 (compared to 5.5), fork 5 4 it is 3.25 (compared to 6.25), fork 5 8 it is 3.875
(compared to 6.625), and fork 5 16 it is 4.4375 (compared to 6.8125). The first value ofk for
which the worst-case bound of the second algorithm exceeds 7 isk 5 385. Up tok 5 382 (with
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the exception ofk 5 255) thesecond algorithm provides better worst-case bounds than the first
algorithm.

Finally, we note that our bounds are stronger for relatively smallk. There are many cases
where k is naturally not very large. The transportation of cars, large appliances, industrial
machinery and handicapped children1 are just a few examples where the size of the items being
transported is a reasonable fraction of the vehicle capacity. There are obviously many examples
wherek is large. For those examples, alternate methods may be better suited.

The paper is organized as follows: In Section 2 we present notation and preliminaries, several
useful bounds on the optimal solution value and structural properties which are used thereafter.
In Section 3 we present our refinement of the algorithm proposed by Chalasani and Motwani [7],
which we call the Iterated Tour Matching (ITM) Algorithm and prove its worst-case bound. In
Section 4 we present the MATCH2 Algorithm for the special case where the vehicle capacity is
2 and prove its worst-case bound. In Section 5 we present the MATCHk Algorithm for a general
vehicle capacity ofk and prove its worst-case bound. In Section 6 we describe how our
algorithm and worst-case bounds relate to other common vehicle routing problems.

2. NOTATION AND PRELIMINARIES

Let N1 be the set of blue points (pickups) and letN2 be the set of red points (deliveries or
dropoffs). LetN [ N1 ø N2 be the set of all points, and letuN2u 5 uN1u 5 n and thusuNu
5 2n. We assumek , n, since the casek $ n is equivalent tok 5 1` and was dealt with
in [3]. From here on, we denote a blue point byb or bi, and a red point byr or r i. Let b0 [
N1 be the designatedstarting and ending point,i.e., the tour must start and end atb0.

We define a complete undirected graph& with node setN and edge setN 3 N. The length
of arc (i , j ) is denoted, ij and is equal to the distance between pointi and pointj . The distances
,ij are assumed to be symmetric and satisfy the triangle inequality, i.e.,

, ij # , ih 1 ,hj, ; h, i , j [ N.

For any set of arcsE, let ,(E) 5 ¥(i , j ) [ E , ij .
The Traveling Salesman Problem (TSP) will play a central role in our analysis. For any tour

T, let ,(T) be the length of the tour. Denote byT*( N) a minimum length tour throughN. If
Ta(N) is a tour of the nodesN found by ana-approximation algorithm for the TSP, then
,(Ta(N)) # a,(T*( N)). The best knowna-approximation algorithm for the TSP is Christ-
ofides’ algorithm witha 5 1.5 (see [8]).

Let 3k denote an instance of the CTSPPD defined with vehicle capacityk $ 1. Let OPTk

be the length of the optimal solution to3k. Let Hk be the length of the solution provided by a
heuristicHk on 3k. The following will also be of interest in our analysis. LetM2 be the arcs of
a minimum weight (length)bipartite matching where the bipartition is (N1, N2). Each arc of
M2 is a blue-to-red arc. Among all minimum weight (length)generalmatchings on the nodes
of N, let Mall be the arcs of a matching that contains the maximum number of arcs in common
with M2. Note that this solution may have arcs of any type (blue-to-red, blue-to-blue or
red-to-red). Clearly,(Mall) # ,(M2).

We now present several bounds on optimal solutions to various versions of the problem. In
what follows, letx denote the smallest integer greater than or equal tox.

1 For example, in New York City vans holding at most 16 children are used (see [5]).
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LEMMA 1: The following relations hold:

(1) 2,(Mall) # ,(T*( N)) # OPTk, @k $ 1,
(2) ,(Mall) 1 ,(M2) # OPT2,
(3) OPTj # k/jOPTk, @k $ j $ 1,
(4) 2,(M2)/k # OPTk, @k $ 1.

PROOF: (1) The optimal traveling salesman tour is clearly a lower bound onOPTk for all k $
1. The optimal traveling salesman tour also defines two matchings on the nodes (by taking every
other arc).

(2) Any feasible solution to32 can be separated into a feasible solution to the bipartite
matching problem and a feasible solution to the general matching problem. This is true since the
loads on the vehicle over two consecutive arcs differ by exactly one unit and in any solution to
32 the loads cannot be greater than 2 or less than 0. Starting at an arc with load 1, it must be
that everyother arc, in either direction, has load 1. On the complement set of arcs the load is
either 0 or 2. Each arc whose load is 0 or 2 must connect a red point and a blue point; thus this
set of arcs is a bipartite matching betweenN1 andN2. The complement of this set is a general
matching onN.

(3) Any solution to3k can be traversedk/j times with a vehicle of capacityj (for 1 # j #
k) creating a solution to3j. To see this, consider the solution to3k and, starting fromb0, label
eachbluepoint encountered with the load of the vehicle immediately after serving the point. For
example, points that are served when the vehicle is empty will have the label 1, points served
when the vehicle has load 1 will be labeled 2, etc. Then in the first traversal of the solution to
3k, pick up only blue points labeled 1, 2, . . . ,j and drop them off at the red points where they
are dropped off at in the solution to3k. In the second traversal of the solution to3k, pick up
only blue points labeledj 1 1, j 1 2, . . . , 2j and drop them off at the red points where they
are dropped off at in the solution to3k. Continuing in this manner, thek/j traversal will pick
up only blue points labeled (k/j 2 1) j 1 1, . . . , k and drop them off similarly. It is clear
that each of these traversals is feasible for a vehicle of capacityj .

(4) It is obvious that 2,(M2) # OPT1 since any optimal solution to31 can be separated into
two feasible solutions to the bipartite matching problem. Also, from the previous bound,
OPT1 # kOPTk.

The next lemma will be useful in the sequel.

LEMMA 2: Given m blue points andm red points located on a cycle and a vehicle of capacity
k $ 1, suppose that the vehicle can feasibly serve these points in a single clockwise
(counterclockwise) traversal of the cycle starting from different blue points. Then,

(1) the load of the vehicle on each of the cycle’s arcs on all feasible clockwise (counter-
clockwise) traversals of the cycle is independent of the starting point of the traversal, and

(2) there exists a feasible traversal for a vehicle of capacityk in the opposite direction.

PROOF: (a) Without loss of generality, we prove this for clockwise traversals. Take a feasible
clockwise traversal of the cycle by a vehicle of capacityk. Let b1 be its starting point. The last
point of the traversal must be a red one, sayr1. The load of the vehicle on arc (r1, b1) is 0 and
along the arcs of the cycle the load is between 0 andk. Suppose by contradiction that there exists
a different feasible clockwise traversal of the cycle starting at a blue pointb2 Þ b1 and this
traversal associates loads with the cycle’s arcs which are not identical to the ones of the first
traversal. Since the load of the vehicle is solely determined by the difference between the
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number of blue points and the number of red points visited so far, it must be that the second
traversal assigns a loadx . 0 to (r1, b1) and, moreover, that the load on any arc of the cycle
in the second traversal is greater byx than the respective load in the first traversal. As a result,
the vehicle never travels empty on the second traversal, even on the last arc of the traversal. This
contradicts the assumption that the second traversal is feasible.

(b) Without loss of generality, suppose we have a feasible traversal in the clockwise direction.
Start from the red point of the last arc of this feasible traversal and follow the counterclockwise
direction. At each arc, record the cumulative load since the start. It is easy to see that the
cumulative load on any arc in this traversal is minus the cumulative load on this arc in the
clockwise traversal. Thus the arcs of this tour are associated with cumulative loads between2k
and 0 (inclusive). Find an arc with the minimum cumulative load. This arc must have one red
and one blue end, call it (b*, r*). Therefore starting fromb* and traversing the cycle in the
direction so that (b*, r*) is traversed last (which must be counterclockwise) is feasible for a
vehicle of capacityk.

3. THE ITERATED TOUR MATCHING (ITM) ALGORITHM

We present here an algorithm whose worst-case error is bounded by 7. This is a refinement
of a result of [7]. There, the authors present a 9.5-approximation algorithm.

We first present this heuristic in an informal manner. To simplify the presentation we assume,
in this section, thatn is divisible byk. This is without loss of generality, since ifn is not divisible
by k, it is always possible to add pairs of blue and red points located at the starting point (b0)
without increasing the length of any solution.

The heuristic starts by finding a minimum length tourT*( N1) and a minimum length tour
T*( N2). Starting from the blue pointb0 [in T*( N1)], break upT*( N1) into paths of exactly
k nodes each by deleting the appropriate arcs. Starting from an arbitrary point ofT*( N2), break
T*( N2) into paths of exactlyk nodes each by deleting the appropriate arcs. Each path ofk nodes
(called ak-path) is considered asupernode.Superimpose the matchingM2 onto this set of
supernodes. Note that each supernode has degree exactlyk in this graph; this property is called
k-regularity. Also, there may be several arcs between two given super-nodes; thus it is a
multi-graph.

In [7], the authors present a simple proof of the following property. Recall that a perfect
matching is a matching where each node is matched to another.

LEMMA 3: The arcs of ak-regular bipartite multigraph can be partitioned intok perfect
matchings.

If we choose one of these perfect matchings on the super-nodes, sayM*2 # M2, then we can
create a solution to the CTSPPD in the following manner. Starting fromb0, follow T*( N1) in
a clockwise direction picking up allk points in thek-path. Now go to the node in thek-path that
is in M*2 (this may require backtracking some steps) and follow the arc to ak-path ofT*( N2).
Deliver all k points in thisk-path and return through the same arc ofM*2. Now continue
following T*( N1) in a clockwise direction until the nextk-path and repeat this procedure. This
is repeated until all points are served. An alternative tour is constructed by first skipping (not
picking up) b0 and traveling in a counterclockwise direction to the lastk-path on the tour
T*( N1), and followingT*( N1) in the counterclockwise direction using the same rules as just
performed. The better of the two solutions is kept as the solution.

In fact, the worst-case bound can be improved by iterating throughk different starting points
for T*( N2) as well. This is what is done in the following.
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The Iterated Tour Matching (ITM(a)) Algorithm:

Step 1: Using ana-approximation algorithm for the TSP, find a tour throughN1 [let
Ta(N1) be the tour], and find a tour throughN2 [let Ta(N2) be the tour].

Step 2: Starting atb0, follow Ta(N1) in a clockwise direction and break it intok-paths.
Step 3: Fix an orientation forTa(N2) and pick an arbitrary point ofN2, call it r1, and

label the pointsr1, r2, . . . , rn in order of their appearance onTa(N2).
Step 4: For j 5 1, 2, . . . ,k, do:

Step 4a: Starting from r j, break Ta(N2) into k-paths following the orientation of
Ta(N2).

Step 4b: Decompose the arcs ofM2 into k perfect matchings on the supernodes (the
k-paths) of this graph. Select the cheapest of thek perfect matchings.

Step 4c: Construct a solution using these matching arcs by followingTa(N1) clock-
wise fromb0. Construct another solution by starting fromb0, not picking up
the load, and followingTa(N1) in a counterclockwise direction while serving
each of thek-paths encountered as described above (using the same matching
arcs and the samek-paths as the solution of the clockwise direction). Keep
track of the best solution found.

The worst-case bound is as follows.

THEOREM 4: LetITMk(a) designate the length of the solution provided by the Iterated Tour
Matching Algorithm. Then, for eachk $ 1:

ITMk~a!

OPTk
# 1 1 2aS2 2

1

kD .

PROOF: For eachj in Step 4 of theITMk algorithm, two solutions are created, thus a total
of 2k solutions are created. We calculate the total length of all 2k solutions and the best solution
will have length less than or equal to the average. For this purpose, consider the following:

● For eachj in Step 4, the two solutions created traverse each arc ofTa(N1) at most
4 times [those arcs between thek-paths ofTa(N1) are covered only twice]. Thus
Ta(N1) is covered a total of at most 4k times in the 2k solutions.

● Each arc ofTa(N2) is covered 4(k 2 1) times in the 2k solutions.
● For each solution constructed, the length of the matching arcs chosen is at most

,(M2)/k since there arek perfect matchings to choose from, their sum is,(M2), and
the perfect matching with minimum length is selected each time; each of these arcs
is covered twice in each solution.

The solution provided by theITMk(a) algorithm is at most the average of the 2k solutions,
hence:

ITMk~a! #
1

2k
~4k,~Ta~N1!! 1 4~k 2 1!,~Ta~N2!!! 1

2,~M2!

k

5 2,~Ta~N1!! 1 2S1 2
1

kD,~Ta~N2!! 1
2,~M2!

k
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# 2a,~T* ~N1!! 1 2S1 2
1

kDa,~T* ~N2!! 1
2,~M2!

k

# 2a,~T* ~N!! 1 2S1 2
1

kDa,~T* ~N!! 1
2,~M2!

k

# 2aOPTk 1 2S1 2
1

kDaOPTk 1 OPTk,

where the last inequality follows from property four of Lemma 2.1.

When Christofides’ heuristic is used to construct the initial traveling salesman tours (in Step
1) (a 5 1.5), the ITM algorithm is a (72 3/k)-approximation algorithm. In this case, the
complexity of the algorithm isO(n3) since Step 1 (Christofides’ heuristic) isO(n3) (see [11])
and solving the bipartite matching problem is alsoO(n3) (see [10]).

4. THE MATCH 2 ALGORITHM

We now present an algorithm called MATCH2 for the special case where the vehicle capacity
k is 2. The ideas here will be generalized in the next section to the casek . 1.

The MATCH2 algorithm is based on superimposing the two matchingsMall andM2. Let E
represent the set of arcs defined byE [ Mall ø M2. NoteE is a set of disjoint cycles, along
with possibly some pairs of nodes, consisting of one blue and one red node, that are connected
by two arcs (one fromMall and one fromM2). We call thesesimplecycles. We next study
several structural properties of the setE.

LEMMA 5: Each cycle ofE has zero total weight, i.e., the number of blue points equals the
number of red points.

PROOF: Since the cycles ofE are those formed by the setsMall andM2, every other arc is
a blue-to-red arc.

LEMMA 6: A cycle of E is either a simple cycle or contains a blue-to-blue arc.

PROOF: A simple cycle ofE must be made up of a blue and a red point hence cannot contain
a blue-to-blue arc. If a cycle is not simple, then we show that it contains at least two consecutive
blue points. Otherwise the cycle consists of the superposition of two different bipartite match-
ings (from blue points to red points) on the same set of nodes. If one of the two is cheaper than
the other, it should appear in both the bipartite matching and the general matching. Therefore,
the two must have the same length, but this contradicts the property assumed forMall (that its
intersection withM2 was largest).

A blue point of a cycle is called afeasible starting pointif it is possible to traverse the cycle
(in at least one of two directions) starting with an empty vehicle from the point.

LEMMA 7: It is possible to feasibly traverse each cycle ofE with a vehicle of capacity 2 in
either direction. Moreover, each blue point in a nonsimple cycle is a feasible starting point for
exactly one of the two directions.
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PROOF: The lemma is clearly true for simple cycles. We now prove it for nonsimple cycles.
By Lemma 6, any nonsimple cycle must contain an arc connecting two blue points, say (bi, bj).
We will show thatbi andbj are feasible starting points in opposite directions.

Let bi be adjacent tobj and the red pointr,. Starting atbi, it is clear that the last arc of the
cycle must be (r,, bi) in order for the vehicle to terminate the cycle empty. Select the direction
according to which (r,, bi) is the last arc of the cycle and suppose it is the clockwise direction.
We will show now that starting atbi and following the clockwise direction results in a feasible
traversal. According to this traversal of the cycle the load on the first arc of the cycle (bi, bj) [
Mall is 1. Also, every traversal of any other arc of the cycle inMall will be with a vehicle of load
1 as well (since the change in load is zero between the traversals of arcs ofMall). Arcs of M2

must be traversed with a vehicle of load either 0 or 2. Therefore, the above clockwise direction
is feasible.

Starting atbj, it is clear that the first arc to be traversed is (bj, bi) [ Mall which, by following
the same arguments as above, induces a counterclockwise feasible direction. This proves the first
part of the lemma.

It remains to prove that any blue point on a nonsimple cycle which is adjacent to two red
points is a feasible starting point in exactly one direction. Letbi be adjacent to two red points
r, andrm in the cycle. Suppose without loss of generality that the arc (r,, bi) [ Mall. The load
of the vehicle on (r,, bi) is 1; therefore, starting atbi and following the direction according to
which (r,, bi) is the last arc of the cycle is infeasible, the vehicle will be nonempty at the end
of the cycle. The other direction must be feasible for the same reasons as above.

A consequence of the above proof is the following corollary.

COROLLARY 8: (a) In any feasible traversal of a cycle ofE the load of the vehicle on arcs
of Mall is 1 and on the arcs ofM2 is either 0 or 2.

(b) If the load on a given arc (r , b) [ M2 of a nonsimple cycle ofE is 0 (2) in all feasible
clockwise traversals of the cycle, then

● the load is 2 (0) in all the feasible counterclockwise traversals of the cycle; and
● b (r ) follows r (b) when the cycle is traversed in a clockwise direction.

PROOF: Part (a) follows directly from the proof of Lemma 7. Regarding (b), suppose that the
load on an arc (b, r ) [ M2 is 0 in any feasible clockwise traversal of the cycle (see Lemma 2
for this assumption). According to Lemma 7,b is a feasible starting point for a clockwise
traversal where (r , b) is the last arc traversed; therefore, the load on (r , b) is 0, andb
immediately followsr (in the clockwise direction). Thus, in any feasible counterclockwise
traversalb is visited beforer ; therefore, the load on (b, r ) cannot be 0, and, since (b, r ) [ M2,
the load must be 2. The proof is analogous for the case where the load on (b, r ) is 2 in any
feasible clockwise traversal.

We now present the MATCH2 Algorithm.

The MATCH2(a) Algorithm:

Step 1: Find a minimum weight (length) bipartite matching where the bipartition is (N1,
N2), and letM2 be the arcs of the matching.

Step 2: Find a minimum weight (length) general matching on the setN which contains the
maximum number of arcs ofM2. Let the arcs of this matching beMall. Let E [
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øj$0 { Cj}, where Cj are the cycles (including simple cycles) ofM2 ø Mall, and
C0 is the cycle containingb0 (recall thatb0 is the designated starting point).

Step 3: For each cycleCj ( j $ 1) of E, let bj be an arbitrary blue point ofCj. Let V [ ø j$0

{ bj}. Using an a-approximation algorithm, find a tourTa(V) through the set of
pointsV.

Step 4: Starting atb0, traverseC0 in a feasible direction, and, after returning tob0, follow
Ta(V). When the vehicle encounters a pointbj ( j $ 1) on Ta(V), traverse that
cycle (Cj) in a feasible direction. Upon completion of the cycle, continue along
Ta(V) visiting each cycle untilb0 is reached.

It should now be clear that:

THEOREM 9: The MATCH2 Algorithm constructs a feasible solution to32.

The worst-case bound is given by the following theorem.

THEOREM 10: LetMATCH2(a) be the length of the solution generated by the MATCH2

Algorithm. Then,

MATCH2~a!

OPT2
# 1 1 a.

PROOF: Note that,(Ta(V)) # a,(T*( V)) # a,(T*( N)). Then

MATCH2~a! # ,~Mall! 1 ,~M2! 1 ,~Ta~V!!

# ,~Mall! 1 ,~M2! 1 a,~T* ~N!!

# OPT2 1 aOPT2,

where the last inequality uses properties one and two of Lemma 1.

Note that if the Christofides’ heuristic is used for the TSP of Step 3, then the MATCH2

Algorithm provides a 2.5-approximation. The complexity of the algorithm isO(n3), since it is
dominated by the time taken to find the general matching and to find the traveling salesman tour,
which are bothO(n3) (see [10] and [11], respectively).

5. THE MATCH k ALGORITHM

We now generalize this idea to the casek . 2. The algorithm is based on recursively
applying the ideas from the MATCH2 algorithm. The MATCHk algorithm is as follows:

The MATCHk(a) Algorithm:

Step 1: Let m [ log2 k.
Step 2: Find a minimum weight (length) bipartite matching on the bipartition (N1, N2).

Let G1 be the set of arcs in the matching and color themgreen.NoteG1 5 M2.
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Step 3: Find a minimum weight (length) general matching on the setN which contains
the maximum number of arcs ofG1. Let these arcs beA1. NoteA1 5 Mall. Let
E1 [ G1 ø A1.

Step 4: Let I 5 1 and i 5 1. While i # m 2 1 do begin:
Step 4a: Let t be the number of disjoint cycles making upEi.
Step 4b: For each cycleCj, 1 # j # t, let Bj

1 be the green arcs ofCj that are oriented
with the blue end immediately clockwise from the red end. LetBj

2 be the
green arcs ofCj oriented in the opposite way. LetBj be the set, eitherBj

1 or
Bj

2, with the largest total length (where, is the measure used). That is, if
,(Bj

2) # ,(Bj
1), then letBj 5 Bj

1; else letBj 5 Bj
2.

Step 4c: Let Bi 5 ø j51
t Bj. When the green arcsBi are removed fromEi, the setEi

is a set of paths, and ifi . 1, also possibly a number of cycles with no green
arcs. Consider the paths only and find an optimal general matching on the
endpoints of the paths which has the maximum intersection withBi. Let Ai11

be the arcs of this matching. SetEi11 4 (Ei;Bi) ø Ai11 and Gi11 4
Gi;Bi. The edges ofBi ù Ai11 are no longer consideredgreen,i.e., the only
green arcs remaining are those ofGi11. If Gi11 5 À (no green arcs are left)
or i 5 m 2 1, setI 5 i 1 1 and go to Step 5. Otherwise, seti 5 i 1 1.

Step 5: For each cycle ofEI, sayCj ( j $ 1), let bj be a feasible starting point ofCj for
a vehicle of capacity 2I # k. (If b0 is a feasible starting point for its cycle, select
it as the starting point for the cycle.) LetV [ ø j$0 { bj}. Using ana-approx-
imation algorithm, find a tourTa(V) through the set of pointsV.

Step 6: Starting atb0, follow Ta(V). When the vehicle encounters a pointbj ( j $ 1),
traverse the cycleCj in a feasible direction. Upon completion of the cycle,
continue alongTa(V) visiting each cycle untilb0 is reached. Ifb0 is a feasible
starting point for its cycle then serve this cycle in the feasible direction untilb0

is reached.

We now prove that the above algorithm provides a feasible solution to3k.

DEFINITION 11: Given a cycle ofEi, for i 5 1, 2, . . . , I , with at least one green arc (b,
r ), define acanonical traversalto be one that starts from the blue pointb and traverses the cycle
in the direction so that (b, r ) is traversed last.

LEMMA 12: Each cycle ofEi, for i 5 1, 2, . . . , I , has the following properties:

(a) Its total weight is 0.
(b) If the cycle has a green arc, then all canonical traversals are feasible for a vehicle of

capacity 2i. In addition, in any canonical traversal the load on a green arc is either 0 or
2i (depending on its orientation2). Specifically, if the canonical traversal starts atb and
ends atr , then all green arcs arcs with the same orientation as (r , b) are traversed with
an empty vehicle. All other green arcs (with the opposite orientation), if such exist, are
traversed with a load of 2i.

(c) If the cycle has no green arcs, then there exists a feasible traversal for a vehicle of
capacity 2i.

2 Here “orientation” is meant in the sense that the red end point is immediately clockwise from the blue
end point, or vice versa.
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PROOF: We prove this by induction oni . For i 5 1, first note that Lemma 6 implies that all
nonsimple cycles ofE1 have green arcs with both orientations. The claim then follows by
Lemmas 5 and 7 and Corollary 8.

Suppose by induction that the claim holds forEi, 1 # i # h , I and we prove it forEh11.
Recall that in the set of cyclesEh, a subset of the green arcs (Bh) is removed and a new set of
arcs (Ah11) is added to formEh11. We concentrate for a moment on the graphEh;Bh. The
graphEh;Bh consists of a set of paths and possibly some cycles with no green arcs. We show
the following:

1. Each path has a total weight of 0.
2. Each path has one blue and one red end point.
3. If there is a green arc on a path, it must be oriented in such a way that the arc’s blue

end is between the arc’s red end and the path’s blue end.
4. A vehicle of capacity 2h can feasibly serve the path starting empty (full) from its

blue (red) end.
5. If there is a green arc on a path, the cumulative load, starting empty, from the path’s

blue (red) end point to the blue (red) end point, inclusive, of each green arc of the
path is exactly 2h (22h).

Property 1 follows from part (b) of the inductive assumption onEh. That is, if all
green arcs in one orientation are traversed with the same load, then removing them
results in paths with zero total weight. Property 2 follows from the definition ofBh.
Property 3 holds since all green arcs having the opposite orientation were removed
(they are inBh). Given a pathP in Eh;Bh whose blue end point isb and its red end
point is r , then the path is part of a cycle inEh in which (r̃ , b) and (r , b̃) are green
arcs for some nodesr̃ andb̃. (We note thatr̃ 5 r andb̃ 5 b is possible.) The green
arcs (r̃ , b) and (r , b̃) have the same orientation inEh since both arcs are members of
Bh. Consider a canonical traversal starting atb [such that (r̃ , b) is traversed last]; then
the traversal ofP is feasible for a vehicle of capacity 2h [it follows from the inductive
assumption part (b) onEh]. Reversing the argument, it is clear that the pathP can be
feasibly traversed starting atr with a full vehicle (a load of 2h). This proves 4. IfP
contains green arcs, then these green arcs must have the opposite orientation to (r̃ , b)
and (r , b̃), and thus, according to part (b) of the inductive assumption onEh, starting
empty atb, the load on these green arcs is exactly 2h. Reversing the argument, it is
clear that starting atr with a full vehicle (a load of 2h), the green arcs will be traversed
with an empty vehicle. This proves 5.

We now prove (a)–(c) for the cycles ofEh11: The cycles ofEh11 are of several types. There
may be cycles inEh11 with no green arcs that were also cycles inEh. Induction with (a) and
(c) confirms that the total weight of these cycles is 0 and that there exists a feasible traversal for
a vehicle of capacity 2h , 2h11. The other cycles ofEh11 (those that were not cycles inEh)
are formed by matching the end points of paths inEh;Bh each having total weight 0. LetC be
such a cycle ofEh11, and letA be the arcs ofC that are inAh11. The cycleC is made up by
combining paths each of weight 0, and thereforeC has total weight 0 which completes the proof
of (a). We distinguish between the case whereC contains green arcs and the case whereC does
not contain any green arcs.

To prove (b), consider a cycleC formed by combining paths with green arcs and possibly
some paths with no green arcs. Pick a green arc (b, r ) of C and letP1 be the path of (Eh;Bh)
ù C that contains (b, r ). Now consider a canonical traversal starting atb. By 5, the first arc
of A encountered is traversed with a load of exactly 2h, and, by 1, each arc ofA is traversed with
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a load of exactly 2h. We now show that the traversal is feasible for a vehicle of capacity 2h11.
Consider the traversal of pathPi. If the first node ofPi is blue (red), then, by 4, the load on the
vehicle is always at most 2h 1 2h 5 2h11 (at least 2h 2 2h 5 0). Upon completing the path,
the load is again 2h (on the arc ofA). Thus the canonical traversal is feasible for a vehicle of
capacity 2h11. We now consider the load on the green arcs ofC. If Pi has a green arc in an
opposite orientation to (b, r ), then, by 3, the traversal ofPi starts at its blue end point; thus, by
5, the green arc will be traversed with a load of exactly 2h 1 2h 5 2h11. If Pi has a green arc
with the same orientation as (b, r ), then, by 3, the traversal ofPi starts at its red end point, and
thus, by 5, the green arc will be traversed with a load of exactly 2h 2 2h 5 0. This proves (b)
for cycles ofEh11 that contain green arcs.

To prove (c), consider a cycleC with no green arcs (that was not also a cycle ofEh). In the
cycle, we need only find a feasible traversal for a vehicle of capacity 2h11. Starting from an arc
(b, r ) in A, follow the cycle in the direction such thatb is served first and the arc (r , b) is the
last traversed. On each arc record the total cumulative load since the moment prior tob. By 1,
each arc ofA in this cycle will be traversed with a cumulative load of zero. By 4, while
traversing each pathPi the cumulative load always stays between22h and 2h. After completing
this (not necessarily feasible) traversal, note the arc that had the smallest cumulative load. This
arc must have one red and one blue end, call it (b*, r*). Therefore, starting fromb* and
traversing the cycle in the direction so that (b*, r*) is the last traversed is feasible for a vehicle
of capacity 2h11. This proves (c).

As a direct consequence, we obtain the following theorem:

THEOREM 13: The MATCHk Algorithm constructs a feasible solution for3(2m), for m 5
log2 k, and thus for3k.

Note that when the algorithm terminates withI , m this signifies that MATCHk terminates with
a solution that does not use all the capacity of the vehicle and indeed the maximum load of the
vehicle in the resulting solution is 2I, where 2I , 2m # k , 2m11.

The complexity of the algorithm is dominated by Step 4. Each iteration of Step 4 takesO(n3)
since it is dominated by the time to perform the general matching of Step 4c. Step 4 is performed
log2 k times and thus the overall complexity of the MATCHk Algorithm is O(n3 z log2 k).
Since we can assumek # n, the complexity isO(n3 log n).

The next lemma is helpful in the derivation of the worst-case bound for MATCHk.

LEMMA 14: In the application of MATCHk, for any i , 1 # i # I ,

,~Bi! $
1
2
,~Gi!.

PROOF: For each setEi in Step 4b, by definition we haveBj
1 ù Bj

2 5 À for all j , and thus
Gi 5 øj51

t [Bj
1 ø Bj

2]. At the end of Step 4b,Bj is selected as eitherBj
1 or Bj

2 according
to which has the largest length. Therefore, for eachi and j ,

,~Bj! $
1
2
,~Gi ù Cj!.

Since this is done for eachj , 1 # j # t, we obtain

,~Bi! 5 ,~ ø j51
t Bj! $ O

j51

t
1
2
,~Gi ù Cj! 5

1
2
,~Gi!.
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In the next theorem, we provide a worst-case bound for the MATCHk Algorithm. Before
presenting the theorem, Table 1 below lists the worst-case bounds for the MATCHk and ITM
algorithms for the case where Christofides’ heuristic is used to find a traveling salesman tour
(a 5 1.5):

THEOREM 15: LetMATCHk(a) be the length of the solution generated by the MATCHk

Algorithm. Then, for eachk $ 2,

MATCHk~a!

OPTk
# a 1

log2 k
2

1
2k/2 2 1

2log2k . (1)

PROOF: NoteGI is the set of green arcs present in the solution at the end of the algorithm.
This is the total length of the arcs of the matchingM2 (performed in Step 2) remaining in the
solution at the completion of the algorithm. Then

MATCHk~a! # ,~GI! 1 O
i51

I

,~Ai! 1 ,~Ta~V!!. (2)

Recall m [ log2 k.

CASE 1: I , m. ThenGI 5 À. SinceAi is a set of arcs from a general matching on some
subset ofN, we have, for alli $ 1:

,~Ai! #
1
2
,~T* ~N!! #

1
2
OPTk. (3)

Combining (2) and (3), we get

MATCHk~a! # ,~GI! 1 O
i51

I

,~Ai! 1 ,~Ta~V!!

# OPTk~
I
2

1 a!

# OPTkSm 2 1

2
1 aD .

In this case, the bound is better than the one of (1).

CASE 2: I 5 m. Define

Table 1. Worst-case bounds for MATCHk and ITM whena 5 1.5.

k 2 3 4 5 6 7 8 10 16 32

MATCHk (1.5) 2.5 3.5 3.25 3.75 3.75 4.25 3.875 4.125 4.438 4.969
ITM (1.5) 5.5 6.0 6.25 6.4 6.5 6.571 6.625 6.7 6.813 6.906
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bk 5
k

2
2

1

2
.

Recall (from Lemma 1, property 4):

,~M2! #
k
2
OPTk.

We consider two subcases.

CASE 2a:,(M2) # bkOPTk. Observe that

,~Gm! #
,~M2!

2m21 .

This is true since in each round of Step 4 at least half of the total length of the remaining green
arcs is removed from the solution. Thus, from (2),

MATCHk~a! # ,~Gm! 1 O
i51

m

,~Ai! 1 ,~Ta~V!!

# ,~M2!/2
m21 1 m,~T* ~N!!/2 1 a,~T* ~N!!

# bkOPTk/2
m21 1 mOPTk/2 1 aOPTk.

Hence

MATCHk~a!

OPTk
#

bk

2m21 1
m

2
1 a,

and with some algebra we obtain (1).

CASE 2b:bkOPTk , ,(M2) # k/ 2 OPTk. Note this implies thatk is even. Using Lemma
1 (properties 2 and 3):

,~Mall! 1 ,~M2! # OPT2 #
k
2

OPTk 5
k
2
OPTk.

Using the fact that the largest half of the green arcs (fromM2), i.e.,B1, is at leastbkOPTk/ 2,
and this, along with at least half of the remaining green arcs, i.e.,B1 ø B2, is at least
3bkOPTk/4, etc.,

,~Mall! 1 ,~Gm! # Fk

2
2 bkS1 2

1

2m21DGOPTk.

Thus the bound becomes:
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MATCHk~a! # ,~Gm! 1 O
i51

m

,~Ai! 1 ,~Ta~V!!

5 ,~Gm! 1 ,~A1! 1 O
i52

m

,~Ai! 1 ,~Ta~V!!

5 ,~Gm! 1 ,~Mall! 1 O
i52

m

,~Ai! 1 ,~Ta~V!!

# Fk

2
2 bkS1 2

1

2m21DGOPTk 1 ~m 2 1!
,~T* ~N!!

2

By usingk/ 2 5 bk 1 1/ 2 (sincek is even), we get

MATCHk~a!

OPTk
#

bk

2m21 1
m

2
1 a,

and we obtain (1).

6. CONCLUSION

We remark here that the MATCHk algorithm also provides an improved worst-case bound for
a special case of the CVRP discussed in the introduction. For the CVRP, the best approximation
algorithm is the Iterated Tour Partitioning (ITP) Heuristic of Altinkemer and Gavish [1]. Their
worst-case bound is 11 a(1 2 1/k), wherek is the vehicle capacity anda is, again, the
worst-case bound of the TSP heuristic used. For the CVRP, the worst-case bound of the
MATCHk Algorithm is reduced bya since there is no need to connect all cycles (ofEm) with
a traveling salesman tour (all cycles include the depot). For this problem, the MATCHk

Algorithm strictly improves on the best worst-case bound for the case wherek 5 4. Our bound
is 1.75, the ITP (a 5 1.5) heuristic provides a 2.125 worst-case bound. Incidentally, for the case
of k 5 2, the MATCHk Algorithm provides the optimal solution to the CVRP (see [11]).

In the case of the MCVRP with limited supply (discussed in the Introduction), the worst-case
bound of the MATCHk Algorithm is reduced bya under the standard assumption that there is
a vehicle at each depot and each vehicle must start and end its route at its depot (called the
fixed-destination casein [12]). The bounds are then given in Table 2. If this assumption cannot
be made, then the worst-case bounds are as in Sections 4 and 5. In either case, the MATCHk

Algorithm provides the best worst-case bound for the problem withlimited supply.

Table 2. Worst-case bounds for MATCHk on MCVRP whena 5 1.5.

k 2 3 4 5 6 7 8 10 16 32

MATCHk (1.5) 1.0 2.0 1.75 2.25 2.25 2.75 2.375 2.625 2.938 3.469
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