Approximation Algorithms for the Capacitated Traveling
Salesman Problem with Pickups and Deliveries

Shoshana Anily} Julien Bramel®
! Faculty of Management, Tel-Aviv University, Tel-Aviv, Israel 69978

2 Columbia Business School, 406 Uris Hall, Columbia University, New York, NY 10027

Received December 1997; revised December 1998; accepted 2 March 1999

Abstract: We consider the Capacitated Traveling Salesman Problem with Pickups and Deliv-
eries (CTSPPD). This problem is characterized by a setmékup points and a set ofdelivery

points. A single product is available at the pickup points which must be brought to the delivery
points. A vehicle of limited capacity is available to perform this task. The problem is to
determine the tour the vehicle should follow so that the total distance traveled is minimized, each
load at a pickup point is picked up, each delivery point receives its shipment and the vehicle
capacity is not violated. We present two polynomial-time approximation algorithms for this
problem and analyze their worst-case bour@sl999 John Wiley & Sons, Inc. Naval Research
Logistics 46: 654—670, 1999

1. INTRODUCTION

The Capacitated Traveling Salesman Problem with Pickups and Deliveries (CTSPPD) con-
sists of n pickup points (hereafter called “blue” points) amddrop-off (delivery) points
(hereafter called “red” points) and one vehicle of limited capakity 1. One blue point is
designated as the starting and ending point, from which any solution must start and end. At each
blue point is a load of unit size that can be delivered to any red point, each of which requests
a load of unit size. The problem is to determine a minimum length feasible tour that picks up
and delivers all loads and does not violate the vehicle capacikyunfits.

The problem of transporting a commodity from a set of suppliers to a set of demand points
with a fleet of limited capacity vehicles is called the Capacitated Vehicle Routing Problem with
Pickups and Deliveries (CVRPPD). This model can capture many real-life transportation and
distribution problems. Casco Golden, and Wasil [6] discuss applications of a special case (the
Vehicle Routing Problem with Backhauls) in the grocery industry where the supermarkets are
the delivery points and the grocery suppliers are the pickup points. In fact, Casco et al. [6] report
that combining deliveries and pickups on a route has led to industry wide savings in distribution
costs upwards of $160 million a year. Clearly, problems involving multiple depots or pickup
points (e.g., [12]) and multiple dropoff points (such as school bus routing, see [5], or express
mail delivery and pickup, messenger services etc.) can be modeled using the CVRPPD. There
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are also applications in robotics, automated guided vehicle systems and industrial drilling (see
[4, 7).

One important application of the CVRPPD (and the CTSPPD) occurs in the context of
inventory repositioning. Assume a set of retailers (owned and operated by the same firm) are
geographically dispersed in a region. Often, due to the random nature of demands, some retailers
have an excess of inventory while others have such strong sales that they are in need of
additional stock. In many cases, the firm may decide to transfer inventory at retailers that have
experienced below average sales to those that have experienced above average sales. For the one
product problem, determining the cheapest way to execute a given stock transfer is exactly the
CVRPPD (or, for the one vehicle case, the CTSPPD).

The assumption of unit size loads, in many cases, can be made without loss of generality. This
is when each delivery or pickup load is allowed todpdit. For instance, a delivery (or pickup)
of size 7 units can be delivered (or picked up) in two parts, one for 3 units and later one for 4
units. Under this assumption, the CTSPPD (or CVRPPD) can handle essentially any load size
since a delivery (pickup) af units can be replaced by red (blue) points at the same physical
location. If we consider the inventory repositioning example above, since the retailers are owned
by the firm, multiple visits may be tolerated. Imposing a constraint that a customer be visited
only once is clearly more important when the customexxternalto the firm. In those cases,
multiple visits to the same customer is clearly an unsatisfactory service policy.

We will concentrate on the CTSPPD and point out in which instances our algorithm can be
used for the CVRPPD. The CTSPPD has received scant attention in the literature in spite of its
relevance in a variety of distribution systems. The worst-case analysis of heuristics for this
problem has been limited to very special cases of the problem mainly because of tractability. For
example, the case where the vehicle capacity is 1, or infinite, as well as the case where all blue
(or red) points are at the same physical location have been analyzed. However, the more general
problem of limited capacity and general locations for delivery and pickup customers has not
been sufficiently studied mainly because of its complexity.

The CTSPPD is NP-hard since it includes the Traveling Salesman Problem (TSP) as a special
case (i.e., if all red points are at the same locationlaeeln). This implies that the existence
of a polynomial-time algorithm providing the optimal solution for each instance of the CTSPPD
is unlikely to be found. We therefore concentrate our efforts on finding heuristics which have
certain desirable properties. One such property is worst-case effectivenessapjmoximation
algorithmfor a problem is an algorithm that guarantees that the length of the solution it creates
is at mosta times the length of the optimal solution. Alternatively, arapproximation
algorithm provides a solution withworst-case boundf «. Our goal is to develop polynomial-
time heuristics with worst-case bounds. Below, we review a number of well-known versions of
the CTSPPD that can be solved by using the algorithms proposed in this paper. We also review
some worst-case results that have been obtained for related versions of the CTSPPD.

Consider the Capacitated Vehicle Routing Problem (CVRP). In this problem, a central depot
serves as the supply point for all shipments. Vehicles of limited capacity start and end their tours
at the central depot and must bring product from the depot to the customers. Each customer
requests a unit of product. This situation can be modeled using the CTSPPD by simply putting
all the blue points at the depot’s location and having each customer represented by a red point.
Any solution to the CTSPPD corresponds to a solution to the CVRP and vice versa. For the
CVRP, numerous worst-case results exist, including [1, 9]. In the conclusion, we describe the
conditions under which our algorithms improve the best worst-case bounds known for the
CVRP.

Consider the Multi-Depot Capacitated Vehicle Routing Problem (MCVRP) (see [12]). In this
problem, in addition to a number of customers requesting product, there are several depots. At
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each depot there are vehicles of limited capacity as well as a supply of product. The objective
is to design routes for the vehicles such that each customer receives its shipment, the vehicle
capacity is not exceeded and the total distance traveled is minimized. Most research on this
problem (including the worst-case analysis of [12]) has assumed that thereuislianited
amount of product at each depot. If one models this problem using the CTSPPD, the model can
capture themore realistic problem where each depot haslimited supplyof product and
(without loss of generality) total supply is equal to total demand. To do this, simply Ipluie

points at a depot witls units of supply. Each customer can be represented by a red point, or a
number of red points equal to the size of the quantity demanded. In the conclusion, we describe
the conditions under which our algorithms provide the best known worst-case bounds for the
MCVRP.

The CTSPPD itself is a special case of the Swapping Problem (see [2]). There, the problem
consists of a number of different commodities or product types. Each point is associated with
the type of product currently at the point (if any) and the desired product type (if any). For each
product, total demand is assumed to be equal to total supply. Anily and Hassin [2] present a
2.5-approximation algorithm for the Swapping Problem for the case where the vehicle capacity
k = 1. This bound holds also whedrops are allowed (a drop means that an object can be
temporarily stored at an intermediate point on the vehicle route). Chalasani and Motwani [7]
consider the special case of two product types which, in the context of the Swapping Problem,
is equivalent to the CTSPPD. Fr= 1, the problem is equivalent to finding an alternating tour
between blue and red points of minimum length. The authors provide a 2-approximation
algorithm, improving the above bound, based on solving a matroid intersection problem.

The CTSPPD wittk = « is studied in Anily and Mosheiov [3]. The problem in their paper
is described in a somewhat different context. More specifically, the paper considers the
Traveling Salesman Problem with Delivery and Backhauls. In this problem, a single vehicle of
limited capacity, starting and ending at a depot, must serve customers that are partitioned into
two groups: delivery and backhaul customers. At a delivery customer, the vehicle unloads one
unit of product brought from the depot, while, at a backhaul customer, the vehicle loads one unit
of product that is to be brought to the depot. Thus, when leaving the depot, the vehicle carries
thetotal delivery requirement, whereas, when returning to the depot, the vehicle carries the total
backhaul requirement. For the case where the number of delivery customers is identical to the
number of backhaul customers and the vehicle capacity equals or exceeds the total delivery
requirement, this problem is equivalent to the uncapacitated TSPPD (the CTSPRD-=witl);
in order to see this, note that both problems reduce to finding a shortest closed tour where, at
each point of the tour, the number of blue (delivery) customers visited so far does not fall below
the number of red (back-haul) customers visited so far. Anily and Mosheiov provide a
2-approximation algorithm for this problem, based on doubling a minimum spanning tree.

The first to consider the general capacity case were Chalasani and Motwani [7]. They show
that there exists a constant-approximation algorithm for general #nitehe algorithm they
propose is a 9.5-approximation algorithm.

In this paper, we show that the same basic algorithm proposed in [7], with a slight refinement,
yields a (7 — 3/k)-approximation algorithm for the CTSPPD. In our efforts to improve this
bound, we were able to derive a second algorithm, called MAY,@¥#hose worst-case bound
is a (nonmonotone) function d&f, and turns out to yield worst-case bounds which are smaller
than 7 — 3/k for almost all practical values d&f. For example, the worst-case bound ko=
2 is 2.5 (compared to 5.5), fdt = 4 it is 3.25 (compared to 6.25), fdc = 8 it is 3.875
(compared to 6.625), and far= 16 it is 4.4375 (compared to 6.8125). The first valud dbr
which the worst-case bound of the second algorithm exceeds #i885. Up tok = 382 (with
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the exception ok = 255) thesecond algorithm provides better worst-case bounds than the first
algorithm.

Finally, we note that our bounds are stronger for relatively skallhere are many cases
wherek is naturally not very large. The transportation of cars, large appliances, industrial
machinery and handicapped childteme just a few examples where the size of the items being
transported is a reasonable fraction of the vehicle capacity. There are obviously many examples
wherek is large. For those examples, alternate methods may be better suited.

The paper is organized as follows: In Section 2 we present notation and preliminaries, several
useful bounds on the optimal solution value and structural properties which are used thereafter.
In Section 3 we present our refinement of the algorithm proposed by Chalasani and Motwani [7],
which we call the Iterated Tour Matching (ITM) Algorithm and prove its worst-case bound. In
Section 4 we present the MATCHIgorithm for the special case where the vehicle capacity is
2 and prove its worst-case bound. In Section 5 we present the MARRjdrithm for a general
vehicle capacity ofk and prove its worst-case bound. In Section 6 we describe how our
algorithm and worst-case bounds relate to other common vehicle routing problems.

2. NOTATION AND PRELIMINARIES

Let N* be the set of blue points (pickups) and It be the set of red points (deliveries or
dropoffs). LetN = N* U N~ be the set of all points, and I8~ | = [N*| = n and thugN|
= 2n. We assumé < n, since the cask = n is equivalent t&k = +o and was dealt with
in [3]. From here on, we denote a blue point byr b;, and a red point by orr;. Letb, €
N* be the designatestarting and ending point,e., the tour must start and end gt

We define a complete undirected graftwith node selN and edge sdil X N. The length
of arc (, j) is denoted’;; and is equal to the distance between poiand poing. The distances
¢;; are assumed to be symmetric and satisfy the triangle inequality, i.e.,

eijsgih_l—ghj’ Vh!"JEN

For any set of arcg, let €¢(E) = 2 j) ¢ e €j-

The Traveling Salesman Problem (TSP) will play a central role in our analysis. For any tour
T, let €(T) be the length of the tour. Denote By (N) a minimum length tour through. If
T*(N) is a tour of the node& found by ana-approximation algorithm for the TSP, then
€(T*(N)) = a€(T*(N)). The best knownx-approximation algorithm for the TSP is Christ-
ofides’ algorithm witha = 1.5 (see [8]).

Let %, denote an instance of the CTSPPD defined with vehicle caplcityl. Let OPT,
be the length of the optimal solution ,. Let H, be the length of the solution provided by a
heuristicH, on ?,.. The following will also be of interest in our analysis. LM, be the arcs of
a minimum weight (lengthbipartite matching where the bipartition isN(", N~). Each arc of
M, is a blue-to-red arc. Among all minimum weight (lengtf®neralmatchings on the nodes
of N, let M, be the arcs of a matching that contains the maximum number of arcs in common
with M,. Note that this solution may have arcs of any type (blue-to-red, blue-to-blue or
red-to-red). Clearly((M,,) = €¢(M,).

We now present several bounds on optimal solutions to various versions of the problem. In
what follows, let(x[0denote the smallest integer greater than or equal to

1 For example, in New York City vans holding at most 16 children are used (see [5]).
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LEMMA 1: The following relations hold:

(1) 2¢(My) = €(T*(N)) = OPT,, Vk =1,
(2) ¢(My) + €(M,) = OPT,,

(3) OPT, = KjOPT,, Vk=j =1,

(4) 2¢(M,)/k = OPT,, Vk = 1.

PROOF: (1) The optimal traveling salesman tour is clearly a lower bout@Rn, for all k =
1. The optimal traveling salesman tour also defines two matchings on the nodes (by taking every
other arc).

(2) Any feasible solution tdP, can be separated into a feasible solution to the bipartite
matching problem and a feasible solution to the general matching problem. This is true since the
loads on the vehicle over two consecutive arcs differ by exactly one unit and in any solution to
%, the loads cannot be greater than 2 or less than 0. Starting at an arc with load 1, it must be
that everyother arc, in either direction, has load 1. On the complement set of arcs the load is
either 0 or 2. Each arc whose load is 0 or 2 must connect a red point and a blue point; thus this
set of arcs is a bipartite matching betweé¢h andN ™. The complement of this set is a general
matching onN.

(3) Any solution to?, can be traversetk/j (times with a vehicle of capacity(for 1 = =
k) creating a solution t&;. To see this, consider the solution’fg and, starting fronb,, label
eachbluepoint encountered with the load of the vehicle immediately after serving the point. For
example, points that are served when the vehicle is empty will have the label 1, points served
when the vehicle has load 1 will be labeled 2, etc. Then in the first traversal of the solution to
P, pick up only blue points labeled 1, 2, . .. and drop them off at the red points where they
are dropped off at in the solution #,. In the second traversal of the solution%g, pick up

only blue points labelegd + 1, + 2, ..., 3 and drop them off at the red points where they
are dropped off at in the solution #,. Continuing in this manner, thigk/j Ctraversal will pick
up only blue points labeled¥k/j00— 1)j + 1, ...,k and drop them off similarly. It is clear

that each of these traversals is feasible for a vehicle of capacity

(4) Itis obvious that 2(M,) = OPT, since any optimal solution t#, can be separated into
two feasible solutions to the bipartite matching problem. Also, from the previous bound,
OPT, = kOPT..

The next lemma will be useful in the sequel.

LEMMA 2: Given m blue points anan red points located on a cycle and a vehicle of capacity
k = 1, suppose that the vehicle can feasibly serve these points in a single clockwise
(counterclockwise) traversal of the cycle starting from different blue points. Then,

(1) the load of the vehicle on each of the cycle’s arcs on all feasible clockwise (counter-
clockwise) traversals of the cycle is independent of the starting point of the traversal, and
(2) there exists a feasible traversal for a vehicle of capdcity the opposite direction.

PROOF: (a) Without loss of generality, we prove this for clockwise traversals. Take a feasible
clockwise traversal of the cycle by a vehicle of capakity et b, be its starting point. The last
point of the traversal must be a red one, sayThe load of the vehicle on arc, b;) is 0 and
along the arcs of the cycle the load is between Olar8Lppose by contradiction that there exists
a different feasible clockwise traversal of the cycle starting at a blue jpgist b, and this
traversal associates loads with the cycle’s arcs which are not identical to the ones of the first
traversal. Since the load of the vehicle is solely determined by the difference between the
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number of blue points and the number of red points visited so far, it must be that the second
traversal assigns a load> 0 to (r,, b;) and, moreover, that the load on any arc of the cycle

in the second traversal is greatersbyhan the respective load in the first traversal. As a result,

the vehicle never travels empty on the second traversal, even on the last arc of the traversal. This
contradicts the assumption that the second traversal is feasible.

(b) Without loss of generality, suppose we have a feasible traversal in the clockwise direction.
Start from the red point of the last arc of this feasible traversal and follow the counterclockwise
direction. At each arc, record the cumulative load since the start. It is easy to see that the
cumulative load on any arc in this traversal is minus the cumulative load on this arc in the
clockwise traversal. Thus the arcs of this tour are associated with cumulative loads betiween
and 0 (inclusive). Find an arc with the minimum cumulative load. This arc must have one red
and one blue end, call ib¢, r*). Therefore starting fronb* and traversing the cycle in the
direction so thatl§*, r*) is traversed last (which must be counterclockwise) is feasible for a
vehicle of capacityk.

3. THE ITERATED TOUR MATCHING (ITM) ALGORITHM

We present here an algorithm whose worst-case error is bounded by 7. This is a refinement
of a result of [7]. There, the authors present a 9.5-approximation algorithm.

We first present this heuristic in an informal manner. To simplify the presentation we assume,
in this section, that is divisible byk. This is without loss of generality, sincerifis not divisible
by k, it is always possible to add pairs of blue and red points located at the starting Ipgint (
without increasing the length of any solution.

The heuristic starts by finding a minimum length tath(N™) and a minimum length tour
T*(N7). Starting from the blue poirtt, [in T*(N™)], break upT*(N™) into paths of exactly
k nodes each by deleting the appropriate arcs. Starting from an arbitrary paithf ), break
T*(N7) into paths of exactlk nodes each by deleting the appropriate arcs. Each pathades
(called ak-path) is considered aupernodeSuperimpose the matching, onto this set of
supernodes. Note that each supernode has degree exattlyis graph; this property is called
k-regularity. Also, there may be several arcs between two given super-nodes; thus it is a
multi-graph.

In [7], the authors present a simple proof of the following property. Recall that a perfect
matching is a matching where each node is matched to another.

LEMMA 3: The arcs of ak-regular bipartite multigraph can be partitioned iltgerfect
matchings.

If we choose one of these perfect matchings on the super-nodeldlsayM,, then we can
create a solution to the CTSPPD in the following manner. Starting fignfollow T*(N™) in
a clockwise direction picking up al points in thek-path. Now go to the node in thepath that
is in M% (this may require backtracking some steps) and follow the arcktpath of T*(N™).
Deliver all k points in thisk-path and return through the same arch¢f. Now continue
following T*(N™) in a clockwise direction until the nektpath and repeat this procedure. This
is repeated until all points are served. An alternative tour is constructed by first skipping (not
picking up) b, and traveling in a counterclockwise direction to the lkgiath on the tour
T*(N™), and followingT*(N™) in the counterclockwise direction using the same rules as just
performed. The better of the two solutions is kept as the solution.

In fact, the worst-case bound can be improved by iterating thré&utdjfierent starting points
for T*(N™) as well. This is what is done in the following.



660 Naval Research Logistic¥ol. 46 (1999)

The Iterated Tour Matching (ITM{)) Algorithm:

Step 1: Using ana-approximation algorithm for the TSP, find a tour through [let
T(N™) be the tour], and find a tour througti [let T*(N™) be the tour].

Step 2: Starting atb,, follow T*(N™) in a clockwise direction and break it intepaths.

Step 3: Fix an orientation foiT*(N~) and pick an arbitrary point o, call it r,, and
label the pointg 4, r,, ..., r, in order of their appearance arf(N™).

Step 4: Forj =1, 2, ...,k do:

Step 4a: Starting fromr;, break T*(N™) into k-paths following the orientation of
T*(N7).

Step 4b: Decompose the arcs &, into k perfect matchings on the supernodes (the
k-paths) of this graph. Select the cheapest ofktmerfect matchings.

Step 4c: Construct a solution using these matching arcs by followlifgN ™) clock-
wise fromb,. Construct another solution by starting frdig, not picking up
the load, and following“(N ™) in a counterclockwise direction while serving
each of the&k-paths encountered as described above (using the same matching
arcs and the samepaths as the solution of the clockwise direction). Keep
track of the best solution found.

The worst-case bound is as follows.

THEOREM 4: LetITM, (@) designate the length of the solution provided by the Iterated Tour
Matching Algorithm. Then, for eack = 1:

ITM ()

1
OPT, =1+ 201(2—).

k

PROOF: For eachin Step 4 of thed TM, algorithm, two solutions are created, thus a total
of 2k solutions are created. We calculate the total length oflaid®utions and the best solution
will have length less than or equal to the average. For this purpose, consider the following:

e For eachj in Step 4, the two solutions created traverse each af¢@fi") at most
4 times [those arcs between tkgaths ofT*(N™) are covered only twice]. Thus
T(N™) is covered a total of at mostk4imes in the X solutions.

e Each arc ofT*(N™) is covered 4K — 1) times in the R solutions.

e For each solution constructed, the length of the matching arcs chosen is at most
£(M,)/k since there ark perfect matchings to choose from, their suni(d,), and
the perfect matching with minimum length is selected each time; each of these arcs
is covered twice in each solution.

The solution provided by thEl'M,(«) algorithm is at most the average of thke Qolutions,
hence:

1 _ 2¢(My)
= ﬂ(4k€(T“(N+)) + 4k — D)E€(T*(NY))) + K

ITM(a)

2¢(M,)
k

= 26(T*(N") + 2(1 - i)mam» +
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1 o 20(My
= 2a6(T*(NY)) + 2(1 - k>a€(T*(N D+
1 2¢(M,)
= 2a20(T*(N)) + 2(1 — k) Qb (TH(N)) +

1
= 2a0PT, + 2(1 - k)aOPTk + OPT,

where the last inequality follows from property four of Lemma 2.1.

When Christofides’ heuristic is used to construct the initial traveling salesman tours (in Step
1) (@« = 1.5), the ITM algorithm is a (7— 3/k)-approximation algorithm. In this case, the
complexity of the algorithm i©(n®) since Step 1 (Christofides’ heuristic) &(n°) (see [11])
and solving the bipartite matching problem is aBm?®) (see [10]).

4. THE MATCH ? ALGORITHM

We now present an algorithm called MATEFor the special case where the vehicle capacity
k is 2. The ideas here will be generalized in the next section to thelcasd..

The MATCH? algorithm is based on superimposing the two matchiMgs andM.,. Let E
represent the set of arcs definediby= M,, U M,. NoteE is a set of disjoint cycles, along
with possibly some pairs of nodes, consisting of one blue and one red node, that are connected
by two arcs (one fromM,,, and one fromM,). We call thesesimplecycles. We next study
several structural properties of the &et

LEMMA 5: Each cycle ofE has zero total weight, i.e., the number of blue points equals the
number of red points.

PROOF: Since the cycles & are those formed by the sé,,, andM,, every other arc is
a blue-to-red arc.

LEMMA 6: A cycle of E is either a simple cycle or contains a blue-to-blue arc.

PROOF: A simple cycle dE must be made up of a blue and a red point hence cannot contain
a blue-to-blue arc. If a cycle is not simple, then we show that it contains at least two consecutive
blue points. Otherwise the cycle consists of the superposition of two different bipartite match-
ings (from blue points to red points) on the same set of nodes. If one of the two is cheaper than
the other, it should appear in both the bipartite matching and the general matching. Therefore,
the two must have the same length, but this contradicts the property assunig, fthat its
intersection withM, was largest).

A blue point of a cycle is called &easible starting poinif it is possible to traverse the cycle
(in at least one of two directions) starting with an empty vehicle from the point.

LEMMA 7: It is possible to feasibly traverse each cyclefofvith a vehicle of capacity 2 in
either direction. Moreover, each blue point in a nonsimple cycle is a feasible starting point for
exactly one of the two directions.
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PROOF: The lemma is clearly true for simple cycles. We now prove it for nonsimple cycles.
By Lemma 6, any nonsimple cycle must contain an arc connecting two blue points; shy (

We will show thatb; andb; are feasible starting points in opposite directions.

Let b; be adjacent td; and the red point,. Starting ath;, it is clear that the last arc of the
cycle must ber(,, b;) in order for the vehicle to terminate the cycle empty. Select the direction
according to whichr,, b;) is the last arc of the cycle and suppose it is the clockwise direction.
We will show now that starting d3; and following the clockwise direction results in a feasible
traversal. According to this traversal of the cycle the load on the first arc of the ¢yclgX
M.y is 1. Also, every traversal of any other arc of the cycl#/fig, will be with a vehicle of load
1 as well (since the change in load is zero between the traversals of avtg pfArcs of M,
must be traversed with a vehicle of load either O or 2. Therefore, the above clockwise direction
is feasible.

Starting aby;, it is clear that the first arc to be traversedlis ;) € M, which, by following
the same arguments as above, induces a counterclockwise feasible direction. This proves the first
part of the lemma.

It remains to prove that any blue point on a nonsimple cycle which is adjacent to two red
points is a feasible starting point in exactly one direction. yebe adjacent to two red points
r. andr, in the cycle. Suppose without loss of generality that the syrcl() € M. The load
of the vehicle on(,, b;) is 1; therefore, starting & and following the direction according to
which (r,, b;) is the last arc of the cycle is infeasible, the vehicle will be nonempty at the end
of the cycle. The other direction must be feasible for the same reasons as above.

A consequence of the above proof is the following corollary.

COROLLARY 8: (a) In any feasible traversal of a cyclethe load of the vehicle on arcs
of M, is 1 and on the arcs d¥l, is either O or 2.

(b) If the load on a given ara( b) € M, of a nonsimple cycle oE is 0 (2) in all feasible
clockwise traversals of the cycle, then

e the load is 2 (0) in all the feasible counterclockwise traversals of the cycle; and
e b (r) follows r (b) when the cycle is traversed in a clockwise direction.

PROOF: Part (a) follows directly from the proof of Lemma 7. Regarding (b), suppose that the
load on an arclf, r) € M, is 0 in any feasible clockwise traversal of the cycle (see Lemma 2
for this assumption). According to Lemma [3,is a feasible starting point for a clockwise
traversal wherer( b) is the last arc traversed; therefore, the load onk) is O, andb
immediately followsr (in the clockwise direction). Thus, in any feasible counterclockwise
traversab is visited before; therefore, the load orb( r) cannot be 0, and, sincé,(r) € M,,
the load must be 2. The proof is analogous for the case where the lodd ojpi§ 2 in any
feasible clockwise traversal.

We now present the MATCHAIgorithm.

The MATCH(«) Algorithm:

Step 1: Find a minimum weight (length) bipartite matching where the bipartitiorNi$,(
N7), and letM, be the arcs of the matching.

Step 2: Find a minimum weight (length) general matching on theNsethich contains the
maximum number of arcs dfl,. Let the arcs of this matching bd,,. LetE =
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Uj=o { C;}, where C; are the cycles (including simple cycles)df, U M, and
C, is the cycle containind, (recall thatb, is the designated starting point).

Step 3: For each cycl&€; (j = 1) of E, letb; be an arbitrary blue point &,. LetV = U;_,
{b;}. Using an a-approximation algorithm, find a tour“(V) through the set of
pointsV.

Step 4: Starting atb,, traverseC, in a feasible direction, and, after returninglig follow
T*(V). When the vehicle encounters a poijpt(j = 1) on T*(V), traverse that
cycle (C)) in a feasible direction. Upon completion of the cycle, continue along
T*(V) visiting each cycle untib, is reached.

It should now be clear that:
THEOREM 9: The MATCH Algorithm constructs a feasible solution .
The worst-case bound is given by the following theorem.

THEOREM 10: LetMATCH(«) be the length of the solution generated by the MAFCH
Algorithm. Then,

MATCH{(a) _

opT, ~— 1T

PROOF: Note that(T*(V)) = af(T*(V)) = af(T*(N)). Then
MATCH{(a) = ((My) + €(M,) + €(T(V))
= {(My) + €(Mp) + af(T*(N))

= OPT, + «OPT,,

where the last inequality uses properties one and two of Lemma 1.

Note that if the Christofides’ heuristic is used for the TSP of Step 3, then the MATCH
Algorithm provides a 2.5-approximation. The complexity of the algorithi®(s?), since it is
dominated by the time taken to find the general matching and to find the traveling salesman tour,
which are bothO(n®) (see [10] and [11], respectively).

5. THE MATCH* ALGORITHM

We now generalize this idea to the cdse> 2. The algorithm is based on recursively
applying the ideas from the MATCHalgorithm. The MATCHf algorithm is as follows:

The MATCHf(a) Algorithm:

Step 1. Let m = [og, kO
Step 2: Find a minimum weight (length) bipartite matching on the bipartitibii (N 7).
Let G, be the set of arcs in the matching and color trgneen.Note G, = M,,.
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Step 3:

Step 4:
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Find a minimum weight (Ilength) general matching on theNe&thich contains
the maximum number of arcs @,. Let these arcs ba,. NoteA; = M,,,. Let
E, =G, UA;.

Letl = 1 andi = 1. Whilei = m — 1 do begin:

Step 4a: Lett be the number of disjoint cycles making &p.
Step 4b: Foreach cycl€;, 1 =] < t, let Bj+ be the green arcs @; that are oriented

with the blue end immediately clockwise from the red end. Bgtbe the
green arcs o€; oriented in the opposite way. L& be the set, eithe}Bj+ or
B; , with thelargesttotal length (wheref is the measure used). That is, if
€(B;") = €(B)"), then letB; = B;"; else letB; = B; .

Step 4c: LetB; = thzl B;. When the green ar®' are removed fronk;, the setE,

Step 5:

Step 6:

is a set of paths, andif> 1, also possibly a number of cycles with no green
arcs. Consider the paths only and find an optimal general matching on the
endpoints of the paths which has the maximum intersectionBlithet A, | ,
be the arcs of this matching. SEt,, < (E,~B') U A,,, andG,,; <
G,~B'. The edges oB' N A, , ; are no longer consideragteen,i.e., the only
green arcs remaining are those@f, ;. If G;,; = 0 (no green arcs are left)
ori =m-— 1, setl =i + 1 and go to Step 5. Otherwise, et i + 1.
For each cycle oE,, sayC; (j = 1), letb; be a feasible starting point &; for
a vehicle of capacity 2< k. (If b, is a feasible starting point for its cycle, select
it as the starting point for the cycle.) Lst= U;_, {b;}. Using an «-approx-
imation algorithm, find a tou“(V) through the set of pointy.
Starting ath,, follow T*(V). When the vehicle encounters a popt(j = 1),
traverse the cycleC; in a feasible direction. Upon completion of the cycle,
continue alongr“(V) visiting each cycle untib, is reached. I, is a feasible
starting point for its cycle then serve this cycle in the feasible direction bgtil
is reached.

We now prove that the above algorithm provides a feasible solutiéh,to

DEFINITION 11: Given a cycle oE;, fori = 1, 2, ...,l, with at least one green arb,(
r), define acanonical traversato be one that starts from the blue pdirénd traverses the cycle
in the direction so thath| r) is traversed last.

LEMMA 12: Each cycle ofg;, fori = 1, 2, ...,1, has the following properties:

(a) Its total weight is O.

(b) If the cycle has a green arc, then all canonical traversals are feasible for a vehicle of
capacity 2. In addition, in any canonical traversal the load on a green arc is either 0 or
2" (depending on its orientatién Specifically, if the canonical traversal startsbaand

ends atr, then all green arcs arcs with the same orientatiorr ab)(are traversed with

an empty vehicle. All other green arcs (with the opposite orientation), if such exist, are
traversed with a load of'2

(c) If the cycle has no green arcs, then there exists a feasible traversal for a vehicle of
capacity 2.

2 Here “orientation” is meant in the sense that the red end point is immediately clockwise from the blue
end point, or vice versa.



Anily and Bramel: Capacitated Traveling Salesman Problem 665

PROOF: We prove this by induction enFori = 1, first note that Lemma 6 implies that all
nonsimple cycles oE, have green arcs with both orientations. The claim then follows by
Lemmas 5 and 7 and Corollary 8.

Suppose by induction that the claim holds Egr 1 = i = h < | and we prove it folg,, , ;.

Recall that in the set of cyclds,,, a subset of the green ardd") is removed and a new set of
arcs (A, ,) is added to fornE, . ,. We concentrate for a moment on the graph-B". The
graphE,~B" consists of a set of paths and possibly some cycles with no green arcs. We show
the following:

1. Each path has a total weight of 0.

2. Each path has one blue and one red end point.

3. Ifthere is a green arc on a path, it must be oriented in such a way that the arc’s blue
end is between the arc’s red end and the path’s blue end.

4. A vehicle of capacity 2 can feasibly serve the path starting empty (full) from its
blue (red) end.

5. Ifthere is a green arc on a path, the cumulative load, starting empty, from the path’s
blue (red) end point to the blue (red) end point, inclusive, of each green arc of the
path is exactly 2 (—2").

Property 1 follows from part (b) of the inductive assumptionEn That is, if all

green arcs in one orientation are traversed with the same load, then removing them

results in paths with zero total weight. Property 2 follows from the definitioB'bf

Property 3 holds since all green arcs having the opposite orientation were removed

(they are inB"). Given a pattP in E,,~B" whose blue end point is and its red end

point isr, then the path is part of a cycle &, in which (7, b) and ¢, b) are green

arcs for some noddsandb. (We note that = r andb = b is possible.) The green

arcs §, b) and ¢, b) have the same orientation i, since both arcs are members of

B". Consider a canonical traversal startingpgsuch that ¢, b) is traversed last]; then

the traversal oP is feasible for a vehicle of capacity' it follows from the inductive

assumption part (b) oB,]. Reversing the argument, it is clear that the pattan be

feasibly traversed starting atwith a full vehicle (a load of 2). This proves 4. IP
contains green arcs, then these green arcs must have the opposite orientdtidm to (
and (, b), and thus, according to part (b) of the inductive assumptioB,grstarting
empty atb, the load on these green arcs is exactly Reversing the argument, it is
clear that starting atwith a full vehicle (a load of ?), the green arcs will be traversed

with an empty vehicle. This proves 5.

We now prove (a)—(c) for the cycles &, ,: The cycles ofE, . ; are of several types. There
may be cycles irE,, ; with no green arcs that were also cyclesHn Induction with (a) and
(c) confirms that the total weight of these cycles is 0 and that there exists a feasible traversal for
a vehicle of capacity 2< 2"**. The other cycles o, . , (those that were not cycles B,)
are formed by matching the end points of path&jn-B" each having total weight 0. L& be
such a cycle of,, , ;, and letA be the arcs o€ that are inA,, ;. The cycleC is made up by
combining paths each of weight 0, and theref®rkas total weight 0 which completes the proof
of (a). We distinguish between the case wh@reontains green arcs and the case wit2does
not contain any green arcs.

To prove (b), consider a cycle formed by combining paths with green arcs and possibly
some paths with no green arcs. Pick a green e ) of C and letP, be the path of ,~B")
N C that containslg, r). Now consider a canonical traversal startingpaBy 5, the first arc
of A encountered is traversed with a load of exactlyanhd, by 1, each arc dfis traversed with
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a load of exactly 2. We now show that the traversal is feasible for a vehicle of capatity.2
Consider the traversal of pal. If the first node ofP; is blue (red), then, by 4, the load on the
vehicle is always at most™2+ 2" = 2"*1 (at least 2 — 2" = 0). Upon completing the path,
the load is again 2(on the arc ofA). Thus the canonical traversal is feasible for a vehicle of
capacity 2. We now consider the load on the green arc€off P, has a green arc in an
opposite orientation tay, r), then, by 3, the traversal &; starts at its blue end point; thus, by
5, the green arc will be traversed with a load of exactly+22" = 2"*1, If P, has a green arc
with the same orientation ab,(r), then, by 3, the traversal &; starts at its red end point, and
thus, by 5, the green arc will be traversed with a load of exactly- 2" = 0. This proves (b)
for cycles ofE,, , ; that contain green arcs.

To prove (c), consider a cyclé with no green arcs (that was not also a cyclégf. In the
cycle, we need only find a feasible traversal for a vehicle of capatity.2Starting from an arc
(b, r) in A, follow the cycle in the direction such thhtis served first and the arc,(b) is the
last traversed. On each arc record the total cumulative load since the moment fidsytd.,
each arc ofA in this cycle will be traversed with a cumulative load of zero. By 4, while
traversing each path, the cumulative load always stays betweed" and 2'. After completing
this (not necessarily feasible) traversal, note the arc that had the smallest cumulative load. This
arc must have one red and one blue end, calbtt (r*). Therefore, starting fromb* and
traversing the cycle in the direction so thht( r*) is the last traversed is feasible for a vehicle
of capacity 2**. This proves (c).

As a direct consequence, we obtain the following theorem:

THEOREM 13: The MATCH Algorithm constructs a feasible solution far om), form =
Oog, kO and thus for,.

Note that when the algorithm terminates witk: m this signifies that MATCH terminates with
a solution that does not use all the capacity of the vehicle and indeed the maximum load of the
vehicle in the resulting solution is'2where 2 < 2™ = k < 2M*1,

The complexity of the algorithm is dominated by Step 4. Each iteration of Step 4@(ké¥
since it is dominated by the time to perform the general matching of Step 4c. Step 4 is performed
Oog, kOtimes and thus the overall complexity of the MATEWRIgorithm is O(n® - log, k).
Since we can assume= n, the complexity isO(n® log n).

The next lemma is helpful in the derivation of the worst-case bound for MATCH

LEMMA 14: In the application of MATCH, for anyi, 1 =i = I,
€(B) = 3(G).

PROOF: For each s&, in Step 4b, by definition we havg," N B;” = @ for all j, and thus
G, = Uj_, [B]" U B ]. At the end of Step 4bB; is selected as eithéd;" or B, according
to which has the largest length. Therefore, for eaelnd]j,

€(By) =3¢(G, N C).
Since this is done for eagh 1 = j = t, we obtain
t

€(B) = €(U!;B) = 2(G,NC) =2(G).

j=1
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Table 1. Worst-case bounds for MATCHand ITM whena = 1.5.

k 2 3 4 5 6 7 8 10 16 32
MATCH* (1.5) 25 35 325 375 375 425 3875 4125 4438 4.969
ITM (1.5) 55 60 625 64 6.5 6.571 6.625 6.7 6.813  6.906

In the next theorem, we provide a worst-case bound for the MAT@lgorithm. Before
presenting the theorem, Table 1 below lists the worst-case bounds for the MAZIRHTM
algorithms for the case where Christofides’ heuristic is used to find a traveling salesman tour

(e = 1.5):

THEOREM 15: LetMATCH(a) be the length of the solution generated by the MATCH
Algorithm. Then, for eactk = 2,

MATCH(a) log, kO 20k/20— 1
oPT, ~ T 2 T gmwa @)

PROOF: NoteG, is the set of green arcs present in the solution at the end of the algorithm.
This is the total length of the arcs of the matchig (performed in Step 2) remaining in the
solution at the completion of the algorithm. Then

|
MATCH(a) = €(G)) + 2, £(A) + €(T*(V)). )

i=1

Recallm = [og, kO

CASE 1:1 < m. ThenG, = §. SinceA, is a set of arcs from a general matching on some
subset ofN, we have, for ali = 1:

€(A) = 3¢(T*(N)) = JOPT,. (3)
Combining (2) and (3), we get

MATCH{(a) = €(G)) + >, €(A) + €(T*(V))

i=1

<OPT(; + a)

m-—1
= OPTk(2+ a).

In this case, the bound is better than the one of (1).

CASE 2:1 = m. Define
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{31
B=l2] 2

Recall (from Lemma 1, property 4):
€(M,) = foPT,.
We consider two subcases.
CASE 2a:¢(M,) = B,OPT,. Observe that

£(M,
€(Gm)s%.

This is true since in each round of Step 4 at least half of the total length of the remaining green
arcs is removed from the solution. Thus, from (2),

MATCH{(a) = £(G,) + >, £(A) + £(T%(V))

= €(M)/12™ 1+ me(T*(N))/2 + al(T*(N))

= BkoPTk/Zmil + mOP-IL/Z + CYOPTk.

Hence

MATCH(@) _ B m

opT, ~—onitota

and with some algebra we obtain (1).

CASE 2b:B,0PT, < ¢(M,) = k/2 OPT,. Note this implies thak is even. Using Lemma
1 (properties 2 and 3):

((My) + €M) = OPT,= [ £ JoPT, = koPT,

Using the fact that the largest half of the green arcs (fMg), i.e., B, is at leas{3,OPT,/2,
and this, along with at least half of the remaining green arcs, Re.lU B2, is at least
3BOPT, /4, etc.,

(M) + €60 =| 5 - 81 5] [oP,

Thus the bound becomes:
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Table 2. Worst-case bounds for MATCHon MCVRP whena = 1.5.
k 2 3 4 5 6 7 8 10 16 32
MATCHK (1.5) 1.0 2.0 1.75 225 225 275 2375 2625 2938 3.469

MATCH{(a) = €(G,) + >, €(A) + £(T4V))

i=1

= 0(Gy) + €(A) + 2 €(A) + €(T(V))

= 0(Gy) + €(My) + E C(A) + £(TYV))

k 1 £(T*(N))
= [2— Bk(l — 2ml):|OPTk+ (m— 1)?

By usingk/2 = B, + 1/2 (sincek is even), we get

MATCH(a) _ B, m
opT, ~—onitota

and we obtain (1).

6. CONCLUSION

We remark here that the MATCHhlgorithm also provides an improved worst-case bound for
a special case of the CVRP discussed in the introduction. For the CVRP, the best approximation
algorithm is the Iterated Tour Partitioning (ITP) Heuristic of Altinkemer and Gavish [1]. Their
worst-case bound is ¥+ «(1 — 1/k), wherek is the vehicle capacity and is, again, the
worst-case bound of the TSP heuristic used. For the CVRP, the worst-case bound of the
MATCH* Algorithm is reduced byx since there is no need to connect all cyclesEgj with
a traveling salesman tour (all cycles include the depot). For this problem, the MATCH
Algorithm strictly improves on the best worst-case bound for the case Werd. Our bound
is 1.75, the ITP ¢ = 1.5) heuristic provides a 2.125 worst-case bound. Incidentally, for the case
of k = 2, the MATCH" Algorithm provides the optimal solution to the CVRP (see [11]).

In the case of the MCVRP with limited supply (discussed in the Introduction), the worst-case
bound of the MATCHf Algorithm is reduced byr under the standard assumption that there is
a vehicle at each depot and each vehicle must start and end its route at its depot (called the
fixed-destination cas@& [12]). The bounds are then given in Table 2. If this assumption cannot
be made, then the worst-case bounds are as in Sections 4 and 5. In either case, the“"MATCH
Algorithm provides the best worst-case bound for the problem liiifted supply.
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