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We study the electric double layer by combining the effects of ion finite size and dielectric decrement.
At high surface potential, both mechanisms can cause saturation of the counter-ion concentration
near a charged surface. The modified Grahame equation and differential capacitance are derived
analytically for a general expression of a permittivity ε(n) that depends on the local ion concentration,
n, and under the assumption that the co-ions are fully depleted from the surface. The concentration at
counter-ion saturation is found for any ε(n), and a criterion predicting which of the two mechanisms
(steric vs. dielectric decrement) is the dominant one is obtained. At low salinity, the differential
capacitance as function of surface potential has two peaks (so-called camel-shape). Each of these two
peaks is connected to a saturation of counter-ion concentration caused either by dielectric decrement
or by their finite size. Because these effects depend mainly on the counter-ion concentration at the
surface proximity, for opposite surface-potential polarity either the cations or anions play the role
of counter-ions, resulting in an asymmetric camel-shape. At high salinity, we obtain and analyze
the crossover in the differential capacitance from a double-peak shape to a uni-modal one. Finally,
several nonlinear models of the permittivity decrement are considered, and we predict that the
concentration at dielectrophoretic saturation shifts to higher concentration than those obtained by
the linear decrement model. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906319]

I. INTRODUCTION

The behavior of ions in liquids, or more specifically, in
aqueous solutions near charged surfaces, largely contributes
to our understanding of colloidal interactions,1,2 transport
in nano- and micro-pores,3,4 and electrochemical processes.5

Traditionally, the ionic profiles have been calculated using
the Poisson–Boltzmann (PB) model,1,2 which includes elec-
trostatic interactions and entropy of mobile ions dispersed
in a continuum medium of uniform permittivity, ε. The PB
model captures the formation of the so-called electric double
layer (EDL) close to a charged surface, where the counter-
ions are loosely associated with the surface. At small surface-
charge densities, the PB model is quite successful in explaining
qualitatively many experimental results. However, at high
surface-charge densities and for multivalent counter-ions, the
PB model fails to describe the EDL even on a qualitative level,6

and other theories that take into account charge correlations
and fluctuations have been proposed.7–13

Experiments on differential capacitance at low salt con-
centrations indicate that the EDL width is a decreasing func-
tion of the surface potential at low surface charge, in accord
with the PB predictions. However, the PB does not predict
correctly the increase in the EDL width with the surface poten-
tial at higher surface charge.14–16 One attempt to explain this
qualitative non-PB change of the EDL width was to include
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steric interactions between the (solvated) ions17–24 in the PB
model. In such a sterically modified PB (smPB) model, the
saturation of the counter-ion build-up at the surface reaches
closed-packing density at high potentials. The model further
predicts an increase of the EDL width with the surface charge
(or equivalently with surface potential), at high surface charge
conditions, in qualitative accord with experiments.

A second source of counter-ion saturation is caused by
the dielectric decrement characteristic to ionic solutions and is
due to the effective polarizability of hydrated ions.17,25–30 This
effective polarizability is related to the presence of a hydration
shell around ions in addition to the dielectric hole created by
the ions themselves. Since ions usually have smaller dielec-
tric constant than water, inclusion of an ion in water creates
a dielectric hole that reduces the dielectric constant of the
solution. However, for small and simple ions such as halides,
this effect does not have a substantial contribution to the net
dielectric decrement. A more significant effect is due to the
hydration shell formed by water molecules in the immediate
proximity to an ion. In this layer, the polar water molecules
are largely oriented along the electrostatic field created by the
ion, reducing the orientational polarizability and leading to a
rather pronounced dielectric decrement.

The effective polarizability of hydrated ions in relation
with the EDL capacitance was first analyzed by Bikerman17

who predicted a shift in the electrocapillary maximum due
to the asymmetric effective polarizabilities between the cat-
ions and anions. Depletion of a polyelectrolyte caused by
dielectric decrement near the surface was pointed out by
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Biesheuvel,26 and the broadening of EDL by the dielectric
decrement in multivalent ions and mixed electrolytes was
reported in Refs. 29 and 30.

The saturation of counter-ion concentration that originates
from the reduced permittivity close to the surface is called di-
electrophoretic saturation and was analyzed for solutions con-
taining only counter-ions that balance the surface charges,27

as well as when salt was added to the solution.28 First, it
was shown that the dielectric decrement can cause a counter-
ion saturation at the surface even without including the effect
of ion finite size.27 Later, it was pointed out that when the
dielectric decrement is large, the dielectrophoretic saturation
will be the dominant effect even when the ion finite size is taken
into account. Furthermore, the non-monotonic variation of the
differential capacitance with the surface charge can be ascribed
not only to the ion finite size as predicted by the smPB model
but also to the dielectric decrement.28

Since the counter-ion saturation at high surface charge
can result from two different origins, the following two points
should be elucidated. (i) Finding a general criterion to deter-
mine the dominant mechanism (steric or dielectrophoretic) for
the counter-ion saturation for general nonlinear permittivity
decrement. (ii) Combining the effects of dielectric decrement
and ion finite size in order to analyze the differential capac-
itance, not only for the case of dielectrophoretic counter-ion
saturation but also for the sterically dominant one.

Another issue that needs further attention is the high salt
regime. As the salt concentration increases, the range of the
surface potential where the PB model can be applied becomes
smaller, and the counter-ion concentration reaches a saturation
value even at rather low values of the surface potential. Using
the smPB model,20 a uni-modal (or bell-shape) differential
capacitance was predicted at high salt concentration above a
threshold, nb > 1/(8a3), where nb is the salt concentration and
a is the lattice size, which roughly corresponds to the solvated
ion size.31 We note that a similar bell-shape differential capac-
itance has been observed experimentally in ionic liquids,32

while another type of bell-shape capacitance was predicted at
an electrified oil/water interface due to large organic ions.33,34

However, the additional effect of dielectric decrement on the
emergence of the bell-shaped differential capacitance has not
yet been explored. For ionic solutions, the dielectric decrement
at high salt concentrations can have a strong effect and, hence,
change the camel-shape to bell-shape crossover of the differ-
ential capacitance.

In this paper, we study the ionic behavior of an aqueous
electrolyte solution in the proximity of a surface having a
constant charge density or an externally controlled surface
potential. Our treatment is based on mean-field theory that
includes both steric ionic effects and dielectric decrement (di-
electrophoretic). The model is presented in Sec. II, while in
Sec. III, a criterion for the dominant saturation of counter-ion
concentration is found to be ionic specific. We also present
an expression for the modified Grahame equation in Sec. III
and for the differential capacitance in Sec. IV, as applicable
for general ε(n) and finite ionic size. We find that the EDL
width exhibits a non-monotonic variation with the surface
charge, both for steric saturation and dielectrophoretic one, as
is presented in Secs. IV A and IV B. In Sec. IV C, based on

analytic results and numerical solutions, we explore the com-
bined effect of dielectric decrement and ion finite size on the
differential capacitance behavior, ranging from a camel-shape
at low salt concentrations to bell-shape at high salt concentra-
tions. Furthermore, corrections due to nonlinear permittivity
decrement are examined in Sec. V because they can be rather
substantial at high salinity.

II. MODEL

We consider a monovalent 1:1 electrolyte solution with
bulk salt concentration nb = n+

b
= n−

b
. The aqueous solution

occupies the z > 0 region and is in contact with a planar surface
located at z = 0. This plane has a constant charge density (per
unit area),σ, or equivalently is held at a constant surface poten-
tial, ψs. The mean-field free energy is expressed in terms of the
ion number densities (per unit volume), n±(z), and electrostatic
potential, ψ(z), and reads19,27

F[n±,ψ] =
 ∞

0
dz


−1

2
ε0ε(n±)|ψ ′|2+e(n+−n−)ψ



+kBT
 ∞

0
dz

�
n+ln(n+a3)+n−ln(n−a3)�

+
kBT
a3

 ∞

0
dz φw lnφw, (1)

where ψ ′= dψ/dz, e is the electronic charge, ε0 is the vacuum
permittivity, ε(n±) is the relative permittivity that depends in
our model on the local ion density n±(z), and, hence, implicitly
on the distance z from the surface, φw(z)= 1−a3

α=±nα is the
solute (water) volume fraction, a is the lattice spacing that is
roughly equal to the solvated ion diameter, kB is the Boltzmann
constant, and T is the temperature.

The Euler–Lagrange equations determining the electro-
static potential and ion concentrations are obtained by taking
the variation with respect to n± and ψ of the excess free energy
defined from Eq. (1) to be ∆F = F[n±,ψ] − F[nb,0]. These
equations are written as

ln
nb

φb
= ln

n±
φw
± eψ

kBT
− ε0

2kBT
∂ε

∂n±
|ψ ′|2, (2)

d
dz

(
ε0ε(n±(z))ψ ′

)
=−e(n+−n−), (3)

where the volume fraction of bulk water is

φb = 1−2a3nb. (4)

From the electro-chemical potential equality of Eq. (2), the ion
concentrations can be expressed as

n±(z) = ρ±

φb+a3(ρ++ ρ−) , (5)

ρ±(z) = nbexp
(
∓ eψ

kBT
+

ε0

2kBT
∂ε

∂n±
|ψ ′|2

)
, (6)

where ρ±(z) is another ionic profile defined to make the above
expressions look simpler. The boundary condition at the z = 0
surface is obtained from the charge neutrality condition

−ε0εsψ
′
s =σ, (7)

where σ is the surface charge density, εs = ε(n±(0)) is the
extrapolated value of the permittivity at the z = 0 surface, and
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ψ ′s = dψ/dz |s is also evaluated at the same surface. Moreover,
ψ ′= 0 is imposed at z→ ∞ (no electric field at infinity).

One of the well-known attempts to go beyond the PB
treatment was to consider a surface layer called the Stern
layer35 with reduced dielectric constant and also to account
for specific adsorption of ions on the surface due to non-
electrostatic ion-surface interactions. The Stern proximity
layer was introduced to explain some experimental obser-
vations which cannot be explained by the conventional PB
model that are magnitude of the capacitance36,37 and its non-
monotonic ψs dependence.36 For precise description of the
Stern layer, the layer width and the dielectric profile should be
determined by explicit modeling of the molecular interactions
between ions, solvent, and the surface.

We note that such a successful attempt has been reported
in Ref. 37. The Stern layer parameters extracted from molec-
ular dynamic simulations were combined with a PB model
and resulted in a quantitative agreement with experiments
of the differential capacitance at vanishing surface potential.
In contrast to this, non-monotonic ψs-dependence of experi-
mental differential capacitance is supposed to be largely due
to the ionic profile in the diffuse layer.6,17,20,21,28

In our above described model, the Stern layer is not taken
into account, although, in principle, it can be incorporated by
introducing a layer with given thickness and low dielectric
constant adjacent to the surface. We leave this refinement to
future studies because the main thrust of the present work is
to study the interplay between finite ionic size and dielectric
decrement and their effect on ionic profiles and differential
capacitance, especially dependence on nb and ψs.

It is experimentally known38 that the relative permittivity
of a bulk electrolyte solution decreases linearly with salt
concentration, at low salinity, nb . 2M. This dependence is
written as ε = εw−γbnb, where εw is the relative permittivity
of the solvent (water) and γb is a coefficient measured in units
of M−1. At higher nb values, however, the dielectric decrement
shows a more complex nonlinear dependence,12,13 which levels
off and has a smaller decrement than the linear one.

As we are interested in the EDL behavior where the distri-
bution of counter-ions and co-ions is highly inhomogeneous,
we will explicitly take into account the local variation of ε(n±)
with n±(z). Since no direct experiment reported so far the local
variation of ε(n±) inside the EDL, we will first use a linear
decrement model, which linearly superimposes the separate
contributions of each ionic species27,28,39

ε(n±)= εw−γ+n+(z)−γ−n−(z), (8)

where γ± is the coefficient of the ± ion, respectively. These
coefficients are not known but can be determined by assuming
a simple relationship γb = γ++γ− and using the experimentally
known values of γb as in Ref. 38. Such values of γ± are
summarized in Table I for several monovalent cations and
anions.28,38

In the numerical calculations presented below (within the
linear decrement model of Eq. (8)), we will often use as an
example the parameters of a monovalent KCl aqueous solution
with γK+ = 8 M−1, aK+ = 0.662 nm for K+ and γCl− = 3 M−1,
aCl− = 0.664 nm for Cl− (see Table I). In addition, the water
dielectric constant is εw = 78.3 at T = 25 ◦C.

TABLE I. Experimentally obtained coefficients of dielectric decrement,38 γ,
and hydration diameter,40 a, for several monovalent cations and anions. The
ratio d/a serves as our criterion to determine the mechanism of counter-ion
saturation for the linear permittivity decrement (see text). The error bars of γ
were reported in Ref. 38 to be about ±1 M−1.

γ (M−1) a (nm) d/a γ (M−1) a (nm) d/a

H+ 17 0.564 1.59 F− 5 0.704 0.85
Li+ 11 0.764 1.02 Cl− 3 0.664 0.76
Na+ 8 0.716 0.97 I− 7 0.662 1.01
K+ 8 0.662 1.05 OH− 13 0.6 1.37
Rb+ 7 0.658 1.01

III. STERIC VS. DIELECTROPHORETIC COUNTER-ION
SATURATION

At high surface-charge densities, the counter-ions accu-
mulate at the surface due to their strong electrostatic attrac-
tion to the oppositely charged surface. However, at some
point a saturation concentration is reached as a result of
two possible mechanisms: a steric counter-ion saturation or
a dielectrophoretic one. The steric effect is due to finite ion
size and causes the ionic concentration to saturate at closed
packing, estimated as 1/a3 where a is the ionic size, while
the dielectrophoretic saturation is determined by the coupling
between the local dielectric decrement and the ionic profile.

In the high surface-charge limit, we can estimate the
concentration at the dielectrophoretic saturation using the
following argument. When the dielectrophoretic saturation
is reached before closed packing of the ions, the distance
between ions is larger than the inter-ion closest approach and
the steric effect can be neglected in Eq. (5) such that ρ±= n±. In
the counter-ion plateau region, the condition for a counter-ion
saturation given by ∂n+/∂z = 0 leads also to ∂ϵ(n+(z))/∂z = 0.
Taking the z derivative on both sides of Eq. (6) yields

0=ψ ′
(
e−ε0

∂ε

∂n+
ψ ′′

)
. (9)

For large enough |σ |, the co-ions are almost completely ex-
cluded from the EDL, n− ≈ 0, and the Poisson equation then
becomes

ε0εsψ
′′≈−en+s , (10)

where n±s = n±(0) are the extrapolated ion concentrations at the
surface, and εs = ε(n+s ,n−s = 0). Combining Eqs. (9) and (10),
we define a new function ∆εs(n+s ) that should vanish at the
saturation condition of n+,

∆εs(n+s )≡ εs+n+s
∂ε

∂n+

�����s
= 0. (11)

In order to solve this equation and obtain n+s at dielec-
trophoretic saturation, an explicit dependence of the permit-
tivity on the counter-ion concentration is required. The simplest
model to employ is the linear decrement model introduced in
Eq. (8), where ∂ε/∂n±=−γ±. As mentioned above, the linear
decrement model is a good approximation for bulk electrolytes
of concentration up to about 2M. Close to the surface, where
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the counter-ion concentration can be quite high, one needs to
consider corrections to linearity as will be presented in Sec. V.

Returning to the linear decrement case, the above condi-
tion, Eq. (11), for dielectrophoretic saturation reduces to

n+s = εw/2γ+,
εs = εw/2.

(12)

Note that although a linear decrement is assumed, εs at dielec-
trophoretic saturation does not approach zero for high n+s . The
limiting values of Eq. (12) are identical to those derived earlier
in the salt-free case27 because even with added salt, the co-ions
are taken to be fully depleted from the highly charged surface
proximity and do not contribute to the permittivity variation.

A. The generalized Grahame equation

More detailed analysis of counter-ion saturation at the sur-
face can be obtained through the contact theorem or Grahame
equation.1,2 To derive the contact theorem, we first calculate
the osmotic pressure from the free energy, Eq. (1),

P(z)=−ε0

2


ε(n±)+


α=±

nα
∂ε

∂nα


|ψ ′|2− kBT

a3 lnφw(z). (13)

At equilibrium, P(z) is a constant independent of z. Equating
the pressure at the charged surface, z = 0, with the pressure
in the bulk, P(∞), gives the modified Grahame equation. Fur-
thermore, when the co-ions are fully depleted from the surface,

FIG. 1. Dielectrophoretic saturation of counter-ion concentration dominated
by the K+ counter-ions with d/a ≃ 1.05. The counter-ion concentration, n+s
= n+(0), at the proximity of a charged surface, is plotted as a function of the
negative surface charge density, σ < 0. The thicker lines are calculated
numerically for KCl with bulk values nb = 10 mM (solid red line), 0.5M
(dashed black line), and 1M (dotted blue line). The K+ and Cl− parameters
are shown in Table I, T = 25 ◦C and εw = 78.3. The thinner blue and black
lines are the analytical approximated n+s obtained from the Grahame equa-
tion (16) with the same bulk values of nb, respectively, as for the thick lines,
and by setting n−s = 0. Note that for the red line of 10 mM, the analytical
line is indistinguishable from the numerical one. The concentration at the
dielectrophoretic saturation, εw/2γK+≃ 4.89M, is indicated by a horizontal
dashed line.

n−s → 0, and we obtain

σ2≃ ε0(εs)2
∆εs

2kBT
a3 ln

(
φb
φs

)
, (14)

where ∆εs was defined in Eq. (11), φb = 1− 2a3nb and φs
≃ 1−a3n+s are, respectively, the solute (water) volume fraction
evaluated in the bulk and at the surface. In the linear decrement
case, ∆εs is

∆εs = εs−γ+n+s = εw−2γ+n+s (15)

and the modified Grahame equation reduces to

σ2≃
ε0
�
εw−γ+n+s

�2

εw−2γ+n+s

2kBT
a3 ln

(
φb
φs

)
. (16)

When the permittivity does not depend at all on the ion
concentrations, ε(n±) = εw, the above Grahame equation re-
covers the smPB result.19 It diverges logarithmically at ionic
closed-packing, n+s → 1/a3, which is the maximal value of the
ion concentration.

From the generalized Grahame equation (16), it can be
seen that the limiting saturation value of n+s is either εw/2γ+
for the dielectrophoretic saturation or 1/a3 for closed packing.
As the surface charge density increases, n+s reaches the smallest
value between εw/2γ+ and 1/a3. To determine which of the two
mechanisms prevails, we define an effective size associated
with the concentration at dielectrophoretic saturation,

d =
(

2γ
εw

)1/3

. (17)

FIG. 2. Sterical saturation of counter-ion concentration dominated by Cl−

counter-ions with d/a ≃ 0.76. The counter-ion concentration, n−s = n−(0), at
the proximity of a charged surface, is plotted as a function of the positive
surface charge density, σ > 0. The thicker lines are calculated numerically
for KCl with bulk values nb = 10 mM (solid red line), 0.5M (dashed black
line) and 1M (dotted blue line). The K+ and Cl− parameters are shown in
Table I, T = 25 ◦C and εw = 78.3. The thinner lines are the approximate n−s
as obtained from the Grahame equation (16) with the same nb bulk values,
respectively, and by setting n+s = 0. Note that for the red line of 10 mM, the
analytical line is indistinguishable from the numerical one. The concentration
at closed packing, 1/a3

Cl−
≃ 5.67M, is indicated by a horizontal dashed line.
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For ions with d/a > 1 the dielectrophoretic saturation prevails,
while for ions with d/a < 1 the sterically dominant saturation
predominates. This ion-dependent parameter d/a is shown in
Table I for several monovalent cations and anions.

As an example, we show in Fig. 1 results for potassium
(K+) ions with the ratio d/a ≃ 1.05 > 1, and in Fig. 2 results
for chloride (Cl−) ions with the ratio d/a ≃ 0.76 < 1 (ionic
parameters are shown in Table I). The (extrapolated) surface
value, n±s = n±(z→ 0), is plotted as function of σ for several
values of nb. For large |σ |, the approach of n+s towards the limit-
ing value of εw/2γ+≃ 4.89 M is clearly observed (Fig. 1 with
d/a > 1), whereas for d/a < 1, n−s approaches 1/a3≃ 5.67M as
σ increases (Fig. 2). In Figs. 1 and 2, we also compare Eq. (16),
where co-ions are completely depleted, with the full numerical
calculation. Indeed, a very good agreement is observed in the
high |σ | limit, confirming the applicability of Eq. (16) in this
limit, as expected.

IV. DIFFERENTIAL CAPACITANCE

Irrespective of the underlying mechanism, when counter-
ion saturation occurs, the EDL width will grow. This effect
can be shown by considering the differential capacitance,
C(ψs)= ∂σ/∂ψs.

We derive an analytic expression for C under the assump-
tion that co-ions are fully depleted from the surface, n−s = 0.
As was shown earlier, this gives a simplified expression for the
surface permittivity, εs ≃ εw−γ+n+s and ∆εs ≃ εw−2γ+n+s . The
results are presented here within the linear decrement model,
and later (Sec. V), they will be generalized to the non-linear
case. The relation between ψs and n+s is obtained from the
equilibrium distribution, Eqs. (5) and (6), at the surface by
eliminating ψ ′ with σ(n+s ) from Eq. (16) and the boundary
condition, Eq. (7), and ρ+s = n+s (φb/φs)

Ψs = ln
(

nb

n+s

)
− ∆εs+γ+a

−3

∆εs
ln

(
φb
φs

)
, (18)

where Ψs ≡ eψs/kBT is the dimensionless surface potential to
be used hereafter. Next, the differential capacitance is obtained
as the parametric function of n+s ,

C =
e

kBT
∂σ

∂n+s

(
∂Ψs

∂n+s

)−1

, (19)

where

∂Ψs

∂n+s
=− 1

n+s
− ∆εs+γ+a

−3

∆εs

(
a3

φs

)
−

2γ2
+

a3(∆εs)2
ln

(
φb
φs

)
(20)

and

∂σ

∂n+s
=

1
∆εs

(
kBTε0ε

2
s

φsσ
+
σn+sγ

2
+

εs

)
. (21)

Figures 3 and 4 shows the numerically calculated C as
a function of Ψs for KCl concentration nb = 10 mM, along
with several analytic results. At this salt concentration, the
calculated C shows two peaks, one forΨs < 0 and the other for
Ψs > 0. This characteristic shape of the differential capacitance
is called camel-shape or double-hump20 and is often observed
in experimental differential capacitance14–16,36 at relatively low

FIG. 3. Comparison of the differential capacitance C calculated for KCl
(parameters as in Table I) with nb = 10 mM. The red solid line corresponds
to the exact numerical solution, the blue dotted line is the regular PB result,
Eq. (22), and the black solid line is the smPB result, Eq. (23). The peaks of the
red curves are located at Ψs = 6.98 and Ψs =−6.15, and those of the black
curves are at Ψs =±7.25.

salt concentrations. It is quite different from the well-known
capacitance of the standard PB model, CPB, which is obtained
in our model by setting γ±= a = 0,

CPB= ε0εwλ
−1
D cosh(Ψs/2), (22)

where λD =

ε0εwkBT/2nbe2 is the Debye-Hückel screen-

ing length. The PB capacitance is applicable to small sur-
face potentials and has a minimum at Ψs = 0. However, as is
seen in Fig. 3, it does not reproduce the two peaks for larger

FIG. 4. Comparison of the analytic differential capacitance C with the nu-
merical one calculated for KCl (parameters as in Table I) with nb = 10 mM.
The red solid line (just as in Fig. 3) corresponds to the full numerical
solution, while the blue dashed line denotes the approximate analytic ex-
pression of Eqs. (18)–(21). The analytical results reproduce the numerical
ones in all range of |Ψs | & 2, including the two asymmetric peak heights at
Ψs = 6.98 and Ψs =−6.15, while CPB reproduces well the C behavior for
small |Ψs | . 2.
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|Ψs |. In contrast, the capacitance calculated from the analyt-
ical expressions, Eqs. (18)–(21), is found to reproduce well
the full (numerical) dependence of C(Ψs), including the two
asymmetric peaks in C (Fig. 4). A deviation of this analytical
expression from the numerical one is noticed at small values
of the potential, |Ψs | . 2, and C from Eqs. (18)–(21) even
diverges for |Ψs |→ 0 because the assumption that co-ions are
fully depleted from the surface is not valid anymore.

It is possible to describe the full dependence of C =C(Ψs)
by two analytical expressions: (i) CPB of Eq. (22) for small
Ψs and (ii) the expression of Eqs. (18)–(21) for large Ψs.
Using the approximate two-patch expressions for C, we can
reproduce a line that is almost indistinguishable from the red
line of Fig. 4, which was obtained numerically from the full
expression. The crossover between the two regions occurs at
about the same Ψs where C (derived from Eqs. (18)–(21))
starts to sharply increase above CPB. Below the crossover Ψs,
the co-ion concentration at the surface, n−s , becomes signifi-
cant. As n−s reduces the capacitance, Eqs. (18)–(21) that do
not include their presence, start to deviate sharply from the
behavior described by CPB.

We note that the two peaks at the two surface-polarities,
Ψs ≶ 0, have different origins resulting in non-equal peak
heights. The build-up of the EDL is dominated by the cations
for Ψs < 0 and by the anions for Ψs > 0. In the particular
example for KCl (Fig. 3), K+ is the counter-ion for Ψs < 0
with d/a > 1 (dielectrophoretic-dominant case), while Cl− is
the counter-ion for Ψs > 0 with d/a < 1 (sterically dominant
case), and this explains the asymmetry of the two peaks.

In order to check the effect of dielectric decrement, we
also plot in Fig. 3 the analytic differential capacitance for the
smPB model, CsmPB, which was derived previously20,21

CsmPB=
CPB

1+4a3nbsinh2(Ψs/2)


4a3nbsinh2(Ψs/2)

ln
�
1+4a3nbsinh2(Ψs/2)�

.

(23)

The peak position within the smPB model can be roughly esti-
mated21,41 by substituting the closed-packing concentration,
ns = 1/a3 into the Boltzmann distribution, n±s = nbexp(∓Ψstr),
yielding |Ψstr| ≃ −ln

�
a3nb

�
. For the case of Fig. 3, it gives

|Ψstr| ≃ 6.34 with aCl− = 0.664 nm. Although CsmPB also ex-
hibits double-hump shape, the peak positions (in Ψs) and their
corresponding heights differ from the ones in our model, as
will be discussed in detail in Secs. IV A–IV B.

For KCl with nb = 10 mM as in Fig. 3, C at Ψs = 0 is
22.9 µF cm−2, and it overestimates typical experimental data.37

This discrepancy is probably due to the omission of the Stern
layer. For quantitative description of experimental differen-
tial capacitance, appropriate modeling of the Stern layer is
required in addition to the EDL.

From the differential capacitance, we can estimate the
EDL width as

l(nb,σ(ψs))= ε0εs/C. (24)

In Fig. 5, l is plotted as a function ofΨs for several values of nb.
For small nb (nb = 10 mM in Fig. 5), l first decreases with |Ψs |
due to the increasing electrostatic attraction between the sur-
face and the counter-ions. Note that the regular PB theory is

FIG. 5. The width of the electric double layer estimated from the differential
capacitance, l = ε0εs/C , as a function of dimensionless surface potential,
Ψs, for KCl (parameters as in Table I) with nb = 10 mM (solid red line),
0.1M (dashed black line), and 1M (dotted blue line).

valid for such small |Ψs | and gives similar results. For larger
|Ψs |, aftersaturationof thecounter-ionconcentration is reached,
l starts to increase with |Ψs | as ns reached saturation and the
accumulated counter-ions contribute to thickening the EDL.

As nb increases (nb = 0.1M in Fig. 5), ns can reach satu-
ration at even smaller |Ψs |, and the range of Ψs where the
PB theory can be applied diminishes. When nb increases even
further (nb = 1M in Fig. 5), ns immediately reaches saturation
even for small applied Ψs. Therefore, the increase of l with
|Ψs | already starts from Ψs = 0. In this high salinity range, the
regular PB theory cannot be applied at all. The crossover from
low- to high-salinity will be further discussed in Sec. IV C.

A. The dielectrophoretic saturation for d > a

For the case of KCl in contact with a negatively charged
surface, the counter-ion is K+ (potassium) with d/a > 1, where
d has been already defined in Eq. (17) as the effective size
at the dielectrophoretic saturation concentration. The EDL of
this counter-ion exhibits a dielectrophoretic saturation. The
location of the peak in C, Ψdie< 0, can be estimated similarly
to the way Ψstr was estimated after Eq. (23) above. We substi-
tute n+s = εw/2γ+ into the Boltzmann distribution and obtain
Ψdie= eψdie/kBT ≃−ln(εw/2γ+nb). For the case in Fig. 3, this
estimation gives Ψdie≃−6.19.

For ions with d/a > 1, the threshold surface potential for
dielectrophoretic counter-ion saturation is smaller than that
for steric saturation. Namely,

�
Ψdie� < |Ψstr|, and the peak in

C originates from the dielectrophoretic counter-ion satura-
tion. In Fig. 6, we plot the K+ counter-ion profile, n+(z), and
the corresponding permittivity variation, ε(z), as function of
the distance z from the surface, for nb = 10 mM. For this
case27,28 with d/a > 1, n+s approaches the concentration at the
dielectrophoretic saturation, which is smaller than the closed-
packing concentration, εw/2γ+< 1/a3 (see Fig. 6(a)).
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FIG. 6. (a) Counter-ion density profile, n+(z), as function of the distance
z from a negatively charged surface with σ =−0.5 C/m2, for KCl concen-
tration nb = 10 mM (red solid line). The K+ values of a and d are taken
from Table I. The dotted (blue) line represents the profile of the regular
PB that includes the dielectrophoretic effect, ε = ε(n(z)), but without the
steric effect (a = 0). The dashed (black) line corresponds to closed-packing
concentration 1/a3 = 5.72M for K+ and is bigger than the actual saturation
concentration here. (b) The relative permittivity profile, ε(z) (red solid line).
The dotted blue line represents the profile of the regular PB that includes the
dielectrophoretic effect. The dashed line corresponds to the permittivity at the
limiting dielectrophoretic saturation, εs = εw/2.

For comparison, the results of the regular PB model
(a = 0), which, nevertheless, includes the dielectrophoretic
effect via ε(n(z)), are also plotted in Fig. 6 (dotted blue line).
The steric effect slightly suppresses the concentration near the
surface, but the width of the diffuse layer is almost unaffected.
The surface permittivity εs approaches εw/2, which is half that
of the bulk. Hence, the differential capacitance for counter-
ions with d/a > 1 is considerably lower than that derived for
the smPB model. In Fig. 3, the C-value at the Ψs < 0 peak of
the full model is 111.9 µF cm−2, while that of the smPB is
173.1 µF cm−2.

For |Ψs | > �
Ψdie�, the differential capacitance starts to

decrease due to the increasing EDL width, l. At very high
surface potentials, |Ψs |≫ �

Ψdie�, the asymptotic form of the
differential capacitance for the dielectrophoretic saturation can
be derived from Eqs. (20) and (21),

C∞die≃


ε0εwe2

4d3kBT
1 |Ψs |+ ln(d3nb)

. (25)

The inverse-square-root decay of C is similar to that observed
in the sterically dominant saturation,20,21 but with the difference
that the effective size d replaces a, and the limiting surface
permittivity εs = εw/2 replaces εw.

As a conclusion of the above discussion we would like to
state that for ions with d/a > 1, the stronger mechanism is the
dielectric decrement, and the peak positions of the differential

FIG. 7. (a) Counter-ion density profile, n−(z), as function of the distance
z from a positively charged surface, σ = 0.5 C/m2, for KCl concentration
nb = 10 mM (red solid line). The Cl− values of a and d are taken from
Table I. The dashed line corresponds to closed-packing concentration for
Cl−, n−s = 1/a3≃ 5.67M. (b) Corresponding permittivity profile, ε(z) (red
solid line). The dashed line corresponds to the permittivity at the limiting
dielectrophoretic saturation, εw/2.

capacitance occur at lower values of |Ψs | than for the smPB
model. The peak heights in C are reduced because of the
dielectrophoretic saturation and corresponding reduction of
the surface permittivity.

B. The sterically dominant saturation for d < a

For ions with d/a < 1, the hydration size, a, is larger
than the effective size at dielectrophoretic saturation, d, the
magnitude of the threshold surface potential is smaller for
the sterically dominant saturation of counter-ion concentration
than for the dielectrophoretic one. Namely, |Ψstr| < �

Ψdie�, and
the peak in C originates from the sterically dominant counter-
ion saturation. This is seen for large values of Ψs > 0 in Fig. 3,
where the behavior in C is dominated by the Cl− counter-ion
with d/a < 1, and the EDL exhibits the sterically dominant
counter-ion saturation (Fig. 2).

In Fig. 7, we plot the Cl− counter-ion profile, n−(z), and
the corresponding permittivity variation, ε(z), for nb = 10 mM.
At the surface, n−s reaches the closed-packing value of 1/a3

because the latter is smaller than the dielectrophoretic value,
1/a3< εw/2γ−. For comparison, the results of the smPB model
with γ± = 0 are also calculated. However, it turns out that
the ion density profiles with or without γ± are almost iden-
tical (and their slight difference is below the resolution of the
figure). As the Cl− concentration is below the concentration
at the dielectrophoretic saturation for d/a < 1, the dielectric
decrement is smaller (Fig. 7(b)), as compared with the K+ case
of Fig. 6(b).
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Although the counter-ion concentration, n−(z), is barely
affected by the dielectric decrement, the smPB model overes-
timates the peak position (in Ψs) and the height of C (Fig. 3).
The dielectric decrement in the diffuse layer (with ε decreas-
ing from 78.3 to about 61.3) is not so large, but the effect
of dielectric decrement prevails even for d/a < 1. For the
sterically dominant saturation, the asymptotic expression for
|Ψs |≫ |Ψstr| can be derived from Eqs. (20) and (21),

C∞str≃


e2

2a3kBT


ε0(εw−γ−/a3)
|Ψs |+ ln(a3nb) . (26)

In comparison,20,21 the asymptotic expression of CsmPB from
Eq. (23) is just like Eq. (26) but with γ−= 0. As compared to
the smPB model, C∞str is reduced by the effect of the permittivity
decrement at the surface, εs < εw.

C. Crossover from camel-shape to bell-shape
at high salt

As the salt concentration nb increases, the threshold in
|Ψs | either for the dielectrophoretic saturation,

�
Ψdie�, or for

the sterically dominant saturation, |Ψstr|, decreases and the
position of the two peaks in C approaches Ψs = 0. Simulta-
neously, the differential capacitance at Ψs = 0, estimated as
C(0) ≈ CPB(0) = ε0εw/λD, increases as nb increases, until at
some value of nb, C becomes uni-modal (bell shape) with
a single peak at Ψs ≈ 0. Clearly that for these high salinity
conditions, the standard PB is not valid even for small Ψs.

We would like to get an estimation for nb at the crossover
from camel-shape to bell-shape. At this n∗

b
value, the differ-

ential capacitance at Ψs = 0 becomes comparable to the lower
of the two peaks (located at Ψs ≶ 0). The C-values at the two
peaks can be roughly estimated by using the expression of CPB
of Eq. (22), where εw in CPB is replaced with εs,

C(Ψs)=


2ε0εse2nb

kBT
cosh(Ψs/2). (27)

For ions with d/a > 1 where the dielectrophoretic satu-
ration is dominant, C at the peak is estimated by substituting
|Ψdie| ≃ ln(εw/2γnb) and εs = εw/2 into Eq. (27)

C(Ψdie)≃ C(0)
√

8


εw

2γnb
. (28)

Namely, for ions with d/a > 1 the crossover is expected to
occur around n∗

b
≃ εw/16γ, and for K+ it gives n∗

b
≃ 0.61M.

For the other case of ions with d/a < 1, where the steric
saturation is dominant, C at the peak is estimated by substitut-
ing Ψstr≃−ln(a3nb) and εs = εw−γ/a3 into the C expression
from Eq. (27)

C(Ψstr)≃C(0)


2− (d/a)3
8a3nb

, (29)

and the crossover salt concentration occurs at

n∗b ≃
2− (d/a)3

8a3 . (30)

For Cl−, this salt concentration is estimated to be n∗
b
≃ 1.1M.

Therefore, combining the results for K+ and Cl−, we find

that the crossover from camel-shape to bell-shape for KCl is
expected at the smallest of the n∗

b
estimates for K+ and Cl−.

And in our case, n∗
b
. 0.61M.

In Fig. 8, the numerically calculated C for KCl concen-
tration of nb = 0.1M and 1M is plotted. For the lower salt
concentration of 0.1M, a double-hump C is observed, while
for the higher salt concentration of 1M, C becomes uni-modal,
as the two peaks merge together. We remark that for the smPB
model, the uni-modal (bell-shape) differential capacitance has
been already derived in Ref. 20, while in the present work
the changeover from double-hump to bell-shape capacitance is
investigated, by considering the combined ion finite-size and
dielectric decrement effects. The value of n∗

b
at the crossover,

as obtained from our numerical calculations, is about 0.6M,
which is comparable to n∗

b
estimated above.

For high salinity, the bell-shaped C is skewed and its peak
is located at slightly positive surface potential, Ψs & 0 (Fig. 8
with nb = 1M), in contrast to lower salt concentration, where
the minimum in C always occurs at Ψs = 0. When the bell-
shaped C occurs at high nb, the EDL width increases with |Ψs |.
Consequently, it always contributes to a decrease in C as |Ψs |
increases because of the relation, C = ε0εs/l. Accordingly, the
increase of C implies an increase of εs with |Ψs |.

In Fig. 9, εs is plotted as a function of Ψs. The figure
clearly shows that for Ψs > 0, εs first increases from Ψs

= 0, then has a peak at small and finite Ψs and afterwards it
decreases. From this observation, we assert that the peak of
the bell-shaped C originates from the increase of εs for small
Ψs > 0. When finite |Ψs | is applied, an EDL develops and the
counter-ion ns increases. However, it does not always mean
that εs decreases with |Ψs |. With the built-up of EDL, ns of the
co-ions decreases, which contribute to increasing εs from the
value εw− (γ++ γ−)nb at Ψs = 0. To understand the observed

FIG. 8. Differential capacitance C as a function of dimensionless surface
potential, Ψs, calculated for KCl (parameters in Table I). For nb = 0.1M (red
solid line)C exhibits a double-humped camel-shape, while for nb = 1M (blue
dotted line) it exhibits skewed bell-shape. The peaks of the red line are located
at Ψs = 4.56 and Ψs =−3.67, while the peak of the uni-modal C occurs at
Ψs = 0.46.
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FIG. 9. Surface permittivity, εs, as a function of the dimensionless surface
potential, Ψs, for KCl (parameters in Table I). The solid (red) line corre-
sponds to nb = 0.1M, with a peak at Ψs = 0.46, while the dotted (blue) line
corresponds to nb = 1M, with a peak at Ψs = 0.81.

non-monotonic change of εs with Ψs > 0, the asymmetry of
γ± should be considered, in addition to the ionic concentration
change between the bulk and the surface, n±s −nb.

For the specific case of KCl, γK+ > γCl−, and for Ψs > 0,
the contribution from the K+ co-ions dominates over that of the
Cl− counter-ions, resulting in a net increase of εs as in Fig. 9.
This phenomenon is more prominent for higher nb because
εs(Ψs = 0) is further reduced, leading to a more substantial
permittivity increase due to the decrease in the K+ co-ion
concentration (Fig. 9).

In summary, the non-monotonic dependence of εs on |Ψs |
is expected to occur when the dielectric decrement of the co-
ions is larger than that of the counter-ions, γK+> γCl−. At high
salt concentrations, when the PB model becomes invalid at
any surface potential, this effect leads to a skewed bell-shape
differential capacitance, and the occurrence of the peak of bell-
shaped C at Ψs , 0.

V. EFFECTS OF NONLINEAR DECREMENT

The linear decrement model38 is a good approximation
for salt concentrations up to about, nb . 2M. Close to the
surface, where the counter-ion concentration is high, nonlinear
dependence on the counter-ion concentration is expected and
the permittivity decrement usually becomes weaker than for
the linear decrement. Because there are no direct experiments
that reported the local variation of ε(n±) inside the EDL, we
investigate the effect of nonlinear decrement by comparing
several available models.

A. Effect of quadratic term in ε(n)
To study the effect of nonlinear correction to the permit-

tivity decrement, we expand the permittivity up to second order

in n±,

ε(n±)= εw−

α=±

(
γαnα(z)− 1

2
βαn2

α

)
, (31)

with γ±=−∂ε/∂n±|s as before and β±= ∂
2ε/∂n2

±|s, evaluated
at the same z = 0 surface. Because the bulk permittivity, ε(nb),
is known from experiments to be a concave function,12,13,42,43

we assume β± ≥ 0.
Analytical results can be obtained as before with the

assumption that the co-ions are completely depleted from
the negatively charged surface, n−s → 0. This is a very good
approximation as long as |Ψs | is not too small. Using it we get

εs ≃ εw−γ+n+s +
1
2
β+(n+s )2. (32)

We define (as before) a related surface permittivity ∆εs as

∆εs = εs+n+s
∂ε

∂n+

�����s
= εw−2γ+n+s +

3
2
β+(n+s )2

= εs−γ+n+s + β+(n+s )2. (33)

From the osmotic pressure expression, Eq. (13), it is easy to
derive the modified Grahame equation1,2 as applied to the non-
linear ε(n±),

σ2≃ ε0(εs)2
∆εs

2kBT
a3 ln

(
φb
φs

)
. (34)

Note that it has exactly the same form as Eq. (16) (the linear
decrement) but with different εs and ∆εs as in Eqs. (32) and
(33) for the non-linear case.

The differential capacitance C also depends on β+. It is
obtained as the parametric function of n+s (just as in Eq. (19)),
where

Ψs = ln
(

nb

n+s

)
−
∆εs+

�
γ+− β+n+s

�
a−3

∆εs
ln

(
φb
φs

)
, (35)

and

∂Ψs

∂n+s
= − 1

n+s
−
∆εs+

�
γ+− β+n+s

�
a−3

∆εs

(
a3

φs

)

+
εs β+−2

�
γ+− β+n+s

�2

a3(∆εs)2 ln
(
φb
φs

)
, (36)

∂σ

∂n+s
=

kBT
σφs

ε0ε
2
s

∆εs
+

σn+s
2εs∆εs


2
�
γ+− β+n+s

�2−εs β+

. (37)

Nonlinear correction of the permittivity decrement at high
counter-ion concentration implies that the concentration at the
dielectrophoretic saturation should change, as is clearly seen
from the modified Grahame equation, Eq. (34). By solving
Eq. (33) with non-zero β+ > 0, the concentration at dielec-
trophoretic saturation becomes

n+s =
2γ+−2


γ2
+−3β+εw/2

3β+

≃ εw
2γ+

(
1+

3β+εw
8γ2
+

)
, (38)
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where we assume that the quadratic term represents a small
correction, 0< β+≪ 2γ2

+/3εw. It shows that the dielectropho-
retic saturation concentration shifts to higher values of n+s
as compared with those predicted by the linear decrement.
The effective size of the dielectrophoretic saturation for the
nonlinear decrement (denoted as dNL) becomes smaller than
that of the linear decrement, dNL< d.

In Fig. 10, we plot n+s at dielectrophoretic saturation for K+

ions, as a function of the quadratic coefficient, β+. The figure
shows that n+s at the dielectrophoretic saturation increases with
β+. Moreover, when the quadratic coefficient is considerably
large, β+> 2γ2

+/3εw, the dielectrophoretic saturation does not
occur, and dNL→ 0 in this extreme case. The increase of the
dielectrophoretic saturation concentration implies a possible
change of the working saturation mechanism towards the steri-
cally dominant one. For the K+ ions, the dielectrophoretic
saturation is predicted for the linear decrement model because
d/a > 1 (see Table I). This can also be observed for β+ = 0
in Fig. 10. The change of the saturation mechanism occurs
for β+ & 0.27, where n+s & 1/a3 and the condition dNL/a < 1
is satisfied.

In general, weakening the permittivity decrement (β+> 0)
at higher ion concentration increases the value of n+s at the di-
electrophoretic saturation and may even lead to disappearance
of this saturation. The latter scenario depends on the specific
type of the nonlinear decrement model as will be demonstrated
next.

B. Non-linear ε(n) of a one-loop expansion

An analytic expression for bulk permittivity of electro-
lyte solutions has been derived in Refs. 12 and 13 using the
dipolar Poisson–Boltzmann (DPB) model. The free energy of
the electrolyte solution takes into account the ionic and dipolar
degrees of freedom. The field-theoretical calculation employs

FIG. 10. The concentration at the dielectrophoretic saturation for the
quadratic permittivity model, Eq. (32), as a function of the quadratic coeffi-
cient, β+. The parameters are εw = 78.3 and γ+= 8 (K+ ions). The dotted line
indicates the closed-packing concentration for the K+ ions.

a one-loop expansion of the free energy beyond mean-field
theory and accounts for the fluctuations in ion and dipolar sol-
vent concentrations. At high salinity, the permittivity function,
ε(nb), has a nonlinear dependence on the salt concentration
nb and fits nicely experiments that also observed nonlinear
behavior of ε(nb) in that high salt range. The ionic solution
permittivity ε(nb) was found to be

εw = εDPB+
(εDPB−ε0)2

εDPB

4π
3cdb3 ,

εDPB = ε0+
p2

0cd
3kBT

, (39)

ε(nb) = εw− (εDPB−ε0)2
εDPB

κ2
D

πcdb

(
1− κDb

2π
tan−1 2π

κDb

)
,

where p0 = 1.8 D is the water dipolar moment, cd = 55M is
the water molar density, κD =

√
8πlBnb is the inverse Debye-

Hückel length, lB = e2/(4πεDPBkBT) is the Bjerrum length,
T = 300 K, and b is the microscopic cutoff length. The latter
incorporates into its value the distance of closest approach
between all types of ions and dipoles and is used as a fitting
parameter to experimental results. Note that in the DPB model,
εw of Eq. (39) is a function of the water dipolar moment (p0)
and density (cd). The permittivity of the ionic solution, ε(nb),
depends in addition on the ions and their interactions with the
dipoles.

Because we are interested in the EDL behavior, we need
to extract the explicit dependence of ε on the local counter-ion
and co-ion concentrations, n±(z). The permittivity of Eq. (39)
depends on nb through κD. As it is difficult to separate the
contributions from cations and anions in Eq. (39), we replace
nb with (n++n−)/2, and get as an approximation

ε(nb)≃ ε
( n++n−

2

)
. (40)

The function ∆εs for the dielectrophoretic saturation
condition can be calculated analytically from Eq. (40) by
setting n−s = 0. Namely, at the surface, εs(n+s , n−s = 0) and

∆εs(n+s ) = εw− (εDPB−ε0)2
ε2

DPB

n+se2

2πkBTcdb

× *
,
4−5

κDb
2π

tan−1 2π
κDb
+

1
1+ ( 2π

κDb
)2
+
-
. (41)

From Eq. (11), the condition to satisfy for dielectrophoretic
saturation is ∆εs(n+s ) = 0. However, this function in the DPB
model is concave and approaches a positive definite value,
∆εs → εDPB as n+s → ∞. Hence, as can be observed from
Fig. 11, the ∆εs(n+s ) expression is always positive, and the
dielectrophoretic saturation cannot occur for this permittivity
function. In other words, for the Levy–Andelman–Orland
permittivity model, the counter-ion saturation at high surface
charge is always sterically dominant.

Figure 12 shows a comparison between the linear decre-
ment model as shown in Sec. III A and the nonlinear decrement
model of Eqs. (39) and (40). The counter-ion concentration in
contact with a negatively charged surface, n+s , is plotted as a
function of σ for KCl with nb = 10 mM. For the linear decre-
ment model, n+s of the K+ ions approaches the concentration
of the dielectrophoretic saturation (n+s ≃ 4.89M) because for
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FIG. 11. The surface εs of the nonlinear permittivity model of Refs. 12 and
13, as in Eqs. (39) and (40) with b = 0.264 nm (solid red line), and ∆εs

(dashed blue line), Eq. (41), as a function of the counter-ion concentration at
the surface, n+s. No dielectrophoretic saturation in the counter-ion concentra-
tion is seen as ∆εs > 0 for the entire range of n+s.

K+, d/a ≃ 1.05 > 1, while for the nonlinear decrement model
of Refs. 12 and 13, the surface counter-ion concentration ap-
proaches the closed-packing one of K+, n+s ≃ 5.72M.

We conclude this section by comparing in Figure 13 the
differential capacitance, C, as obtained in the linear decrement
model, Eq. (8), and the nonlinear decrement one, of Eqs. (39)
and (40). The calculations are done as a function of Ψs < 0
for KCl with nb = 10 mM. For the nonlinear decrement model,
the peak position occurs at higher Ψs than that for the linear
decrement. This reflects the fact that the saturation of counter-
ion concentration is dominated by steric effects. Moreover,
due to the weaker permittivity decrement in the nonlinear

FIG. 12. Counter-ion concentration, n+s, in contact with a negatively charged
surface, as a function of the surface charge density, σ, for KCl with nb

= 10 mM. The dotted (blue) line corresponds to the nonlinear permittivity
decrement of Eqs. (39) and (40) with b = 0.264 nm, while the solid (red) line
corresponds to the linear permittivity decrement, Eq. (8).

FIG. 13. Differential capacitance C for KCl with nb = 10 mM, as function
of negative Ψs. The blue dotted line denotes the nonlinear permittivity decre-
ment of Eq. (39) with b = 0.264 nm, while the red solid line corresponds to a
linear permittivity decrement.

model, the C value at the peak is higher than that for the linear
decrement.

VI. CONCLUSIONS

We have presented the combined effect of ion finite-size
and dielectric decrement on the EDL properties. The two
important parameters are the surface charge density σ (or
equivalently surface potential, ψs) and the salt concentration,
nb. Analytic expressions of the modified Grahame equation
and the differential capacitance C were derived, for several
models of ionic-dependent permittivity, ε(n±).

We first treat the simpler linear decrement model,
ε(n±) = εw − γ+n+ − γ−n−. The counter-ion concentration at
the surface proximity, ns, exhibits a saturation at high σ. It
originates either from the steric or dielectric decrement effects.
Within the linear decrement model, the dominant mechanism
of the counter-ion saturation is ionic specific and is determined
by the relative size of d = (2γ/εw)1/3 and the ionic finite
size a. For d > a, the dielectric decrement dominates and the
counter-ion concentration at the surface proximity saturates
at the dielectrophoretic saturation, ns ≃ εw/2γ, which then
gives a lower and non-zero bound to the surface permittivity,
εs ≃ εw/2. For d < a, although the dominant saturation is the
steric one with ns ≃ 1/a3, the differential capacitance is found
to be strongly affected by the dielectric decrement.

At low salt concentrations, whether the dominant mecha-
nism for counter-ion saturation is dielectrophoretic or steric,
the differential capacitance C exhibits a camel-shape as a
function of ψs. This is obtained by our analytic and numerical
results. In contrast, at high salt concentrations, the differential
capacitance exhibits a skewed bell-shape, where the uni-modal
peak is shifted from ψs = 0. This shift originates from the
asymmetry between the cation and anion effective polarization
properties.
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We also discuss possible effects of nonlinear permittivity
decrement on the dielectrophoretic saturation and differential
capacitance. When a nonlinear ε(n) is considered, the concen-
tration at the dielectrophoretic saturation becomes larger than
that of the linear decrement. Therefore, the effective length
parameter d for the non-linear model becomes smaller than
for the linear decrement case. Moreover, the dielectrophoretic
saturation does not exist when the permittivity decrement is
too weak. In such a case, the peak in C always originates from
the sterically dominant saturation.

Finally, we would like to mention the possibility of direct
experimental determination of the ionic specific dielectric
decrement. In the past, measurements of the bulk permittivity
have shown that ε(nb) depends on the salt concentration, nb,
but it was not possible to separate the contributions coming
from the cations or anions. In order to evaluate the separate
contribution of each ion type, appropriate physical quantity
other than the bulk permittivity is required. The differential
capacitance of the EDL at high surface potentials is one such
candidate because it essentially depends only on the dielectric
decrement only by the counter-ions. The analytic relationship
between the counter-ion specific decrement and the differential
capacitance, Eqs. (35)–(37), would give a way to evaluate
directly the ionic-specific dielectric decrement. Because our
analytic results are valid for general nonlinear permittivity
decrement, they can be used to determine nonlinear permit-
tivity behavior for high ionic concentrations in contact with
highly charged surfaces.
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