
THE JOURNAL OF CHEMICAL PHYSICS 139, 164909 (2013)

Dipolar Poisson-Boltzmann approach to ionic solutions: A mean field
and loop expansion analysis

Amir Levy,1 David Andelman,1 and Henri Orland2

1Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University,
Ramat Aviv 69978, Tel Aviv, Israel
2Institut de Physique Théorique, CE-Saclay, CEA, F-91191 Gif-sur-Yvette Cedex, France

(Received 11 August 2013; accepted 4 October 2013; published online 31 October 2013)

We study the variation of the dielectric response of ionic aqueous solutions as function of their ionic
strength. The effect of salt on the dielectric constant appears through the coupling between ions and
dipolar water molecules. On a mean-field level, we account for any internal charge distribution of
particles. The dipolar degrees of freedom are added to the ionic ones and result in a generalization
of the Poisson-Boltzmann (PB) equation called the Dipolar PB (DPB). By looking at the DPB equa-
tion around a fixed point-like ion, a closed-form formula for the dielectric constant is obtained. We
express the dielectric constant using the “hydration length” that characterizes the hydration shell of
dipoles around ions, and thus the strength of the dielectric decrement. The DPB equation is then
examined for three additional cases: mixture of solvents, polarizable medium, and ions of finite size.
Employing field-theoretical methods, we expand the Gibbs free-energy to first order in a loop expan-
sion and calculate self-consistently the dielectric constant. For pure water, the dipolar fluctuations
represent an important correction to the mean-field value and good agreement with the water di-
electric constant is obtained. For ionic solutions we predict analytically the dielectric decrement that
depends on the ionic strength in a nonlinear way. Our prediction fits rather well a large range of
concentrations for different salts using only one fit parameter related to the size of ions and dipoles.
A linear dependence of the dielectric constant on the salt concentration is observed at low salinity,
and a noticeable deviation from linearity can be seen for ionic strength above 1 M, in agreement with
experiments. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826103]

I. INTRODUCTION

The electrostatic interactions between charges in aque-
ous solutions play an important role in chemistry, biology,
and materials science. The Poisson-Boltzmann (PB) theory
gives a simple yet powerful description for such systems, tak-
ing into account only the Coulombic forces on a mean-field
level.1, 2 Despite its limitations, the PB theory succeeds in cap-
turing the main features of the underlying physics for mono-
valent ions and weak surface charges.

Since the PB theory is a mean-field approximation, it
does not take into account neither the correlations between
the charges, nor the fluctuations around the mean-field so-
lution, and over the years several alternatives and exten-
sions of this theory have been proposed. They include sig-
nificant corrections in the cases of multivalent ions and high
charge density, especially near surfaces and membranes, and
the effects of correlations and fluctuations.3–7 For very high
ionic densities, steric effects prevent ions from accumulat-
ing near charged surfaces, and lead to a modified PB (MPB)
equation.8–10 Other interactions such as van der Waals can be
added to the electrostatic ones, resulting in the well known
DLVO (Deryagin-Landau-Verwey-Overbeek) theory,11 which
successfully explains stability of charged colloidal suspen-
sions. More recently, molecular dynamics (MD) simulations
have been used to study the behavior of aqueous solutions, al-
lowing the study of very specific models for solvent and solute
molecules.12–17

Another shortcoming of the PB theory is that it fails to
account for the dielectric constant decrement of ionic solu-
tions. The overall change in the dielectric constant of an ionic
solution can be large, and lead to significant differences in the
behavior of ionic solutions near interfaces and surfaces and to
other ion-specific effects.18–23

The ions affect the dielectric constant via two princi-
pal mechanisms. The first is the polarizability of the ions
themselves.24 The second and more important is due to the
hydration shell21, 25 as shown in Fig. 1. The hydration shell
is created by the interactions between the molecules of the
dielectric medium (water) and the ions. The strong electric
field around each ion is greater than the external electric field,
and re-orients the dipoles in its vicinity. The total response
of dipoles to the external field is thus smaller and leads to a
reduction in the dielectric constant.

Both of these mechanisms, at least for dilute solutions,
are linear in the ionic concentration. As long as the hydration
shell radius is smaller than the distance between neighboring
ions, each ion contributes for the decrement of the total di-
electric constant independently of the other ions. This linear
dependence of the dielectric constant on the concentration can
be written as

ε(ns) = εw + γ ns, (1)

where εw is the pure water dielectric constant, ns is
the ionic (salt) concentration, and γ is the linear term
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FIG. 1. A schematic drawing of the dipolar response to a central charge fol-
lowing Eq. (32). The arrows are aligned along the direction of the local elec-
tric field created by a positive charge placed at the origin, as well as by the
constant external field E. The hydration shell, which is the area most affected
by the charged particle, is encircled.

coefficient. The value of γ /ε0 (ε0 is the vacuum permittivity)
is ion dependent26–28 and ranges from −8M−1 to −20M−1,
for ionic concentrations up to 1 M.

In this paper, we go beyond the basic PB theory, extend-
ing and elaborating on our recent Letter.29 Three major modi-
fications of the PB theory are considered: first we relax the as-
sumption of the continuous water dielectric medium and con-
sider instead a microscopic model of dipoles. Second, we take
into account fluctuations and correlations between dipoles and
ions via a field-theoretical loop expansion. Finally, we allow
the charges to have a finite size and also consider mixtures
of dipoles and the case of polarizable dipoles. Other phe-
nomena such as non-Coulombic interactions and dynamical
effects13, 30 will not be taken into account, in order to keep the
model as simple as possible.

The outline of our paper is as follows. We begin in
Sec. II by reconstructing a generalized PB theory from a
grand-canonical ensemble of charged particles with arbitrary
internal charge distribution. We then focus in Sec. III on the
specific Dipolar Poisson-Boltzmann (DPB) equation and ex-
tract the dielectric constant for several interesting cases, fol-
lowed by a loop-expansion calculation for the influence of
correlations in Sec. IV. In Sec. V, we obtain a closed-form
formula for the dielectric constant to first order beyond mean-
field, and show its agreement with experimental data. Fi-
nally, in Sec. VI we conclude with some remarks and future
prospects.

II. THE MODEL

We consider a system with several types of charged par-
ticles. The particles can be dipoles, counter-ions, etc. Each
type of particle is characterized by its internal charge distribu-
tion. A fixed (“frozen”) charged distribution that can represent
fixed surface charges (or other boundary) is also included. The
total charge density of a mixture of different charged particles

can be written as

ρ(r) =
M∑
l=1

Nl∑
i=1

ρl(�il ; r − ril) + ρf (r), (2)

where M is the number of different types of particles,
Nl = N1, N2, . . . , NM is the number of particles of the lth
type, ρl(�il ; r − ril) is the charge density profile of the ith
particle of the lth type rotated by a spatial (solid) angle �il

and located at position ril . The spatial angle �il is composed
of an azimuth angle φil and an elevation angle θ il, so all pos-
sible rotations are accounted for. Charges of the same type
have the same charge distribution, up to changes in their lo-
cation and orientation. Finally, ρf (r) is an added fixed charge
distribution.

Assuming Coulombic interactions between any two
charges, the grand-canonical partition function can be written
as

� =
∞∑

N1=1

	
N1
1

N1!

∞∑
N2=1

	
N2
2

N2!
. . .

∞∑
NM=1

	
NM

M

NM !

×
∫ M∏

l=1

Nl∏
i=1

d3ril

d2�il

4π

× exp

[
−β

2

∫
d3r d3r′ρ(r)v(r − r′)ρ(r′)

]
, (3)

where v(r − r′) = 1/(4πε0|r − r′|) is the Coulomb potential
between any two unit charges, β = 1/kBT is the inverse ther-
mal energy, 	l = exp (βμl) is the fugacity for the lth parti-
cle type, and μl is their chemical potential. We employ the
Hubbard-Stratonovich transformation,31 which introduces a
new auxiliary field, φ(r), coupled with the charge density
ρ(r):

exp

[
−β

2

∫
d3r d3r′ρ(r)v(r − r′)ρ(r′)

]

=
∫

Dφ(r) exp

[
−β

2

∫
d3r d3r′φ(r)v−1(r − r′)φ(r′)

−iβ

∫
d3r φ(r)ρ(r)

]
. (4)

The inverse Coulomb potential is equal to v−1 =
−ε0∇2δ(r − r′), as can be seen from Poisson equation.
The Hubbard-Stratonovich transformation is used to linearize
the interaction term in the partition function, Eq. (3). By
combining the general charge distribution, Eq. (2), the
partition function reads:

� =
∫

Dφ(r) e−βF [φ(r)], (5)

where the free energy functional F is defined as

−βF = −ε0β

2

∫
d3r [∇φ(r)]2

− iβ

∫
d3r φ(r)ρf (r) +

M∑
l=1

	l

∫
d3r

∫
d2�

4π

× exp

[
−iβ

∫
d3r′ ρl(�; r′ − r)φ(r′)

]
. (6)
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The partition function in Eq. (5) has the form of a functional
integral over all possible configurations of {φ(r)}. The elec-
trostatic potential ψ is derived from the grand-canonical par-
tition function by adding a ghost source term, ρ0:

ρ(r) → ρ(r) + ρ0(r),
(7)

ψ(r) = − 1

β

δ ln �[ρ0(r)]

δρ0(r)

∣∣∣∣
ρ0=0

.

From Eq. (6), we can see that adding a fixed charge distribu-
tion to the charge density as in Eq. (7), will add to the grand-
canonical partition function the following term:

�[ρ0(r)] =
∫

Dφ(r) exp

(
−βF − iβ

∫
d3r φ(r)ρ0(r)

)
. (8)

Let us denote the grand-canonical partition function with no
added source term (ρ0 = 0) as �0:

�0 =
∫

Dφ(r) exp(−βF ). (9)

The electrostatic potential ψ is equal to

ψ = i

�0

∫
Dφ(r) φ(r) exp (−βF ) = 〈iφ〉, (10)

where 〈. . . 〉 denotes thermodynamical averaging. In the mean-
field approximation only the saddle point of the action con-
tributes to the functional integral, and the electrostatic field
exactly equals to ψ = iφ. Similarly, it can be shown32 that on
the mean-field level the fugacity of any particle type equals to
its corresponding bulk charge density, 	l = nl.

A. PB equation and the Debye-Hückel approximation

The PB equation for the electrostatic potential can be
derived as the saddle point of the grand-canonical partition
function. Writing the Euler-Lagrange equation for the free-
energy functional F, Eq. (6), yields an equation for the mean-
field value of the auxiliary field φ(r). On the same level of
approximation, as noted before, φ(r) = −iψ(r), 	l = nl,
and the Euler-Lagrange equation is an integro-differential
equation that constitutes a generalization of the PB
equation:

−ε0∇2ψ(r) = ρf (r) +
∫

d2�

4π

M∑
l=1

	l

∫
d3r′′ ρl(�; r − r′′)

× exp

[
−β

∫
d3r′ ρl(�; r′ − r′′)ψ(r′)

]
,

(11)

where the standard PB form is recovered for point-like
charges with charge ql: ρl(r) = qlδ(r). We note that the same
general PB equation was derived in another way in Ref. 33
and was coined there Finite-Spread PB (FSPB).

An alternative and more compact way of writing Eq. (11)
is

−ε0∇2ψ(r)

= ρf (r)+
〈

M∑
l=1

	lρl(�; −r) ⊗ exp [−βρl(�; r) ⊗ ψ(r)]

〉
�

,

(12)

where 〈. . .〉� denotes orientation averaging and ⊗ stands for
the convolution operator:

f (r) ⊗ g(r) ≡
∫

d3r′ f (r − r′)g(r′). (13)

Replacing the point-like particles in the original PB model
with charged particles having a more complicated internal
charge distribution is at the origin of the non-locality of the
above Eq. (11).

In the Debye-Hückel (DH) approximation an exact
solution can be derived, in a way that would illustrate the size
effect of charged particles. The linear DH equation is calcu-
lated by expanding the exponent in Eq. (11) to first order:

−ε0∇2ψ(r) =
M∑
l=1

nlql + ρf (r)

−β

M∑
l=1

nl〈ρl(�; −r) ⊗ ρl(�; r) ⊗ ψ(r)〉�,

(14)

where nl is the bulk value of the number charge density of the
lth particle type, and ql is the total charge, ql = ∫

d3r ρl(r).
The first term in Eq. (14) can be omitted because of electro-
neutrality,

∑M
l=1 nlql = 0. Denoting ψ̃(k), ρ̃f (k) and ρ̃l(k) as

the Fourier transform of ψ(r), ρf (r), and ρl(r), respectively,
the PB equation takes the following form:

ε0k
2ψ̃(k) = ρ̃f (k) − β

M∑
l=1

nl〈|ρ̃l(k)|2〉�ψ̃(k), (15)

where f̃ (k) = ∫
d3rf (r)eik·r is the Fourier transform of f (r).

In comparison with the Fourier transform of the standard DH
equation, the key difference is that the net charge term, q2

l ,
is replaced by the charge structure factor, Sl(k) = 〈|ρ̃l(k)|2〉�.
This difference is observable only for length scale compara-
ble with the size of the particles. In the large distance limit,
r → ∞, corresponding to short wavenumbers, k → 0:

ρ̃l(k)|k=0 =
∫

d3r ρl(r) = ql, (16)

and thus the generalized DH equation goes back to the regular
DH one.

The general solution for the DH equation can be written
in an integral form for the electrostatic potential ψ :

ψ(r) =
∫

d3k
(2π )3

ρ̃f (k)

ε0k2 + β
∑M

l=1 nlSl(k)
e−ik·r. (17)

As we can see from Eq. (17), the vacuum permittivity ε0 is
the coefficient of k2 in the denominator, while the combined
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coefficient of all the k2 terms contributes to the effective over-
all dielectric constant, ε. Expanding Sl(k) in Taylor series up
to k2:

Sl(k) ≈
(∫

ρl(r) d3r
)2

+ k2

3

(∫
d3r ρl(r)r

)2

− k2

3

∫
d3r ρl(r)

∫
d3r ρl(r)r2, (18)

and substituting Eq. (18) into Eq. (17), gives us a closed-form
formula for the medium overall dielectric constant, ε:

ε = ε0 + β

3

M∑
l=1

nlp
2
l − β

3

M∑
l=1

nlql

∫
d3r ρl(r)r2, (19)

where pl is the dipole moment of the lth particle-type:

pl =
∫

d3r ρl(r)r. (20)

The second term in Eq. (19) has exactly the same form
as for point-like dipoles,3 but is derived here for any charge
distribution. The third term in Eq. (19) is an additional term
that contributes only when the net charge is non-zero, ql �= 0.
Then, its contribution is also proportional to the second mo-
ment of the charge distribution. This contribution is usually
negative and may be significant in the case of macro-ions. In
a solution of ions and dipoles of finite sizes, the ions thus
contribute to the decrement of the dielectric constant, and this
decrease depends linearly on the ionic concentration in the
dilute limit, in qualitative agreement with experimental data.

The derivation within the DH approach as presented
above offers only a minor modification to ε. The main effect
comes from the hydration shell, and can only be obtained by
treating the nonlinear PB equation and will be presented in
the following Sec. III.

III. DIPOLAR POISSON-BOLTZMANN

Using the generalized version of the (nonlinear) PB equa-
tion enables us to take into account the individual dipoles
(together with the ions), instead of the medium constant
dielectric background of the “primitive model”.34 This ap-
proach is called the Dipolar Poisson-Boltzmann (DPB),3 and
an efficient numerical scheme for its solution is presented in
Ref. 35. There are three types of charges in the DPB model:
permanent dipoles that can be conveniently modeled as pairs
of opposite charges (±e) with a small intra-pair distance b,
positive ions (e), and negative ones (−e), where e is the elec-
tron charge. Note that throughout the remaining of this paper,
we consider only monovalent ions, ql = ±e, but the model
can easily be generalized to any multi-valency. The charges
are free to move in the solution, whereas an additional fixed
charge distribution resides on the boundary, and does not ap-
pear explicitly in the equation for the bulk. The various charge
and dipole distributions can be written as

ρd (�; r) ≈ eb · ∇δ(r) ≡ p0 · ∇δ(r),

ρ+(r) = eδ(r), (21)

ρ−(r) = −eδ(r),

where p0 = eb is the individual dipole moment of each
permanent dipole, and b is its dipolar length. Inserting
ρd (�; r), ρ+(r), ρ−(r) into Eq. (11) yields:

−ε0∇2ψ(r) = 	d 〈ρd (�; −r) ⊗ exp [−βρd (�; r) ⊗ ψ(r)]〉�
+	s〈ρ+(−r) ⊗ exp[−βρ+(r) ⊗ ψ(r]〉�
+	s〈ρ−(−r) ⊗ exp[−βρ−(r) ⊗ ψ(r)]〉�,

(22)

where 	s = 	± is the ion fugacity and 	d is the dipo-
lar one. There are three integrals to evaluate. The last
two are very simple, because they are a convolution with
the Dirac δ-function: ρ±(r) ⊗ ψ(r) = ±eψ(r), and ρ±(−r)
⊗ exp[∓βeψ(r)] = ±e exp[∓βeψ(r)]. These terms give us
a charge contribution just as in the standard PB equation. The
more interesting part comes from the first term, for which
the orientation averaging is non-trivial. The spatial integral
can be solved by integration by parts. The result, before in-
tegrating over all possible orientations of the dipole p0 is
〈	dp0 · ∇ [

exp (βp0 · ∇ψ(r))
]〉�. In order to calculate the in-

tegral over the spatial angles we have the freedom to choose
any coordinate system we wish. The easiest choice would be
one where the electric field E = −∇ψ is aligned with the
ẑ axis:

〈	dp0 · ∇e−βp0·E〉�

= 1

4π

∫ 1

−1
d(cos θ )

∫ 2π

0
dϕ 	dp0 · ∇e−βp0E cos θ , (23)

where E = |E| and p0 = |p0|. The vector p0 = (p0x, p0y,

p0z) in spherical coordinates is equal to p0(sin θ sin ϕ,

sin θ cos ϕ, cos θ ). From symmetry, it is evident that the p0x

and p0y contributions (in the x̂ and ŷ directions, respec-
tively) equal to zero as we integrate over the solid angle �

= (θ , φ). The only non-zero contribution comes from p0z

component (in the ẑ direction), as can be understood in the
following way. Since ẑ is the direction of the electric field, the
dipole moment has no other preferred direction. The ẑ com-
ponent of the dipole moment p0z = p0cos θ is multiplied by
the ẑ component of the E field. Since we have chosen the
ẑ axis to be in the direction of the electric field, we can write
the unit vector ẑ as ẑ = E/E = ê. Performing the integration
in Eq. (23) over the angle ϕ yields:

〈	dp0 · ∇e−βp0·E〉�

= 1

2
	dp0∇ ·

[
ê
∫ 1

−1
d cos θ cos θ e−βp0E cos θ

]
. (24)

Defining the function G(u)

G(u) = 1

2

∫ 1

−1
dx xeux = cosh u

u
− sinh u

u2
, (25)

we can write the DPB equation as3

−ε0∇2ψ = ndp0∇ ·
[ ∇ψ

|∇ψ |G(βp0|∇ψ |)
]

− 2nse sinh [βeψ(r)] , (26)

where the fugacities 	d and 	s are replaced, respectively, by
their mean-field values (the bulk densities), nd and ns. Note
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that the function G(u) is related to the Langevin function
L(u) = coth(u) − 1/u by G(u) = L(u) sinh(u)/u.

A. Field around a point-like ion

The DPB equation, Eq. (26), is a mean-field equation,
where the contributions of the dipoles and charged particles
appear on two decoupled terms in the RHS of Eq. (26). There-
fore, the dielectric decrement that is seen in experiments can-
not be explained directly from the DPB model. However,
since the discrete nature of the medium is considered, the
model allows for a non-uniform dielectric response.

We can see how the ions affect the dielectric constant by
choosing a model where the ions are held at fixed positions in
a dielectric medium. The dipoles can move around, and will
be treated using the DPB equation with boundary conditions
set by the ions. To simplify the model, we assume that the
distance between any two ions is very large (dilute salt limit),
and calculate the dielectric constant around a single ion, while
neglecting all other ions, i.e., ns = 0, in Eq. (26).

Adding a source term ρf (r) to Eq. (26) yields

−ε0∇2ψ = ndp0∇ ·
[ ∇ψ

|∇ψ |G(βp0|∇ψ |)
]

+ ρf (r),

(27)

where the source term is to be taken later as a charge density
of a point particle at the origin, ρf (r) = eδ(r). In terms of the
electric field E = −∇ψ , the above equation becomes:

ε0∇ · E = −ndp0∇ · [êG(βp0E)] + eδ(r). (28)

An analytical solution of the above nonlinear PDE is proba-
bly too difficult to obtain. The linear DH regime results in an
effective dielectric constant: ε0 + ε1 where

ε1 = ndβp2
0

3
. (29)

The effective ε0 + ε1 plays the same role as the vacuum per-
mittivity, ε0, and thus will not give any new insight. In order to
find an analytical result that captures the interactions between
dipoles and ions, the next order in the Taylor expansion of G
should be taken into account:

ε0∇ · E ≈ −ε1∇ · E − ndβ
3p4

0

30
∇ · [EE2] + eδ(r). (30)

Denoting E1 as the solution of the linearized form of the
above equation

(ε0 + ε1)∇ · E1 = eδ(r), (31)

E1 is the known Coulomb field for a charged particle at the
origin. In order to see the response of the system to an ex-
ternal electric field E0, we can choose any external boundary
condition that would create such a field (e.g., two large ca-
pacitor plates with fixed and opposite charges). The induced
displacement field (see Fig. 1), D1 = (ε0 + ε1)E1, for this sys-
tem is equal to

D1 = (ε0 + ε1)E0 + e

4πr2
r̂, (32)

where the second term is simply the electrostatic field origi-
nating from a charge particle (Coulomb law). Replacing the

δ-function in Eq. (30) according to Eq. (31), and using the
displacement field, D = (ε0 + ε1)E, yields:

∇ · D − ∇ · D1 = − ε1β
2p2

0

10(ε1 + ε0)3
∇ · [DD2]. (33)

Integrating the above equation and assuming that D is in the
direction of D1, leads to the following equation for D:

D3 + (D∗)2[D − D1] = 0, (34)

where D∗ is a crossover field defined as

D∗ = 1

βp0

√
10(ε0 + ε1)3

ε1
. (35)

Equation (34) is a 3rd order equation in D and can be solved
analytically. It has only one real root:

D

D∗ =
⎡
⎣ D1

2D∗ +
√

1

27
+

(
D1

2D∗

)2
⎤
⎦

1/3

−
⎡
⎣− D1

2D∗ +
√

1

27
+

(
D1

2D∗

)2
⎤
⎦

1/3

, (36)

which can be written in a scaling form D = D∗h(D1/D∗). It is
also worthwhile noticing that though we focus here on spe-
cific boundary conditions of a point-like ion at the origin,
the same approximate solution of the DPB, Eq. (36), can be
obtained for any boundary conditions. Thus, any analytical
solution of the PB equation (e.g., Refs. 36–39), can be re-
cast by Eq. (36) to give an approximate solution to the DPB
problem.

If we differentiate both sides of Eq. (34) with respect to
E we get:

ε(r) = ε0 + ε1

3h2 (D1(r)/D∗) + 1
, (37)

where ε = ∂D/∂E|E0=0 and h(D1/D∗) is obtained from
Eq. (36). The ratio between D1(r) and D∗ can be expressed
as

D1

D∗ =
√

ε1

10(ε0 + ε1)

(
lh

r

)2

, (38)

where we define a new length,

lh =
√

lBb, (39)

that characterizes the spatial behavior of the dielectric field,
ε(r), in terms of the Bjerrum length, lB = βe2/4π (ε0 + ε1) and
the dipolar length, b, Eq. (21). The length lh can be thought
of as the thickness of the hydration layer within our model
since it describes a shell of dipoles surrounding an ion that
are affected by it.

Far away from the shell (r � lh), we expect the dielectric
constant to be equal to the bulk dielectric constant, ε0 + ε1.
The leading term in h(D1/D∗) for large distances is h(D1/D∗)
≈ D1/D∗, thus the dielectric constant equals:

ε(r � lh) ≈ ε0 + ε1 − 1

30
ε1

(
lh

r

)4

. (40)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.66.235.172 On: Thu, 31 Oct 2013 19:14:23



164909-6 Levy, Andelman, and Orland J. Chem. Phys. 139, 164909 (2013)

2 4 6 8
0

20

40

60

80

r[Å]

/
0

2 4 6 8
0

0.5

1

(
e

x  
-

a
p

p
)/

e
x

r [Å]

FIG. 2. Approximated analytical solution (dashed line), Eq. (37), and exact
numerical solution (solid line), Eq. (49), for the dielectric constant of dipoles
as function of the distance r from a fixed point charge. In the inset, the relative
error between the two solutions is presented. The parameter values used are:
p0 = 4.6 D, T = 300 K, and ns = 1 M.

In the vicinity of the central charge, r � lh, the leading term
is h(D1/D∗) ≈ (D1/D∗)1/3, which yields:

ε(r � lh) ≈ 101/3

3
(ε0 + ε1)

(
ε0 + ε1

ε1

)1/3 (
r

lh

)4/3

.

(41)

The approximate analytical behavior of ε(r) around a point-
like particle is illustrated on Fig. 2 (dashed line). Very close
to the charged particle the external electric field does not af-
fect the dipoles, leading to zero contribution to the dielectric
constant. Within the hydration layer, as the distance r grows,
the leading behavior is ε(r) ∼ r4/3. Farther away from the
charge, r � lh, ε(r) asymptotes the bulk value of the dielectric
constant.

We may calculate the effective dielectric constant and ex-
tract the average decrement. The correction term is given by

�ε(r) = ε − ε0 − ε1 = − 3(ε0 + ε1)

3 + 1/h2 (D1(r)/D∗)
. (42)

In a dilute solution, the ions are unaffected by each other, and
the effective dielectric constant can be evaluated by averaging
ε in a sphere around each ion. The diameter of this sphere is
set by equating it to the distance between nearest-neighbors
residing on an equivalent simple cubic lattice. For 1:1 salt
with ionic density of ns, the radius of the sphere equals to
R = (2ns)−1/3/2, and

ε(ns) = ε0 + ε1 + 〈�ε〉, (43)

where

〈�ε〉 = 3

4πR3

∫
d3r �ε(r). (44)

We can evaluate the integral in Eq. (44) numerically for differ-
ent values of ns and calculate the dielectric constant ε(ns). The
result of the numerical integration is plotted in Fig. 3 for ionic
concentrations of up to 4 M, and compared with the linear
decrement approximation of Eq. (45) that is presented next.

1 2 3 4
30

40

50

60

70

80

n
s
[M]

/
0

FIG. 3. Numerical evaluation (solid line) of the average dielectric constant,
according to Eq. (44), and approximate solution (dashed line) for the dilute
limit, Eq. (45), for ionic concentration of up to 4 M. The values of the
parameters are ε1 = 77ε0 and lh = 2.7 Å.

For concentration above 1 M, a substantial deviation from lin-
earity can be seen.

We note that for pure water at room temperature,
T = 300 K, and for dipolar moment p0 = 1.8 D and den-
sity nd = 55 M, the obtained value of ε1 is 11.1ε0. Hence,
εw = ε0 + ε1 � 12.1ε0. Note that this value is much smaller
than the measured one, εw = 78ε0 (at room temperatures).
This is not surprising since the model uses a dilute gas ap-
proximation, which does not capture the correlation effects of
dense liquid water. To overcome this problem, the dipole mo-
ment p0 is treated as a fitting parameter, and is set to be p0 =
4.6 D, in order to match the value of pure water, εw = 78ε0.
We also note that for water with lB = 7 Å and b = 1 Å, the size
of the hydration shell equals lh � 2.6 Å, which is comparable
to the size of water molecules.

In the very dilute ionic limit, R → ∞, the integration
in Eq. (44) can be evaluated analytically. We expressed it in
terms of the γ defined in Eq. (1):

ε = ε0 + ε1 + γ ns,
(45)

γ = −η(ε0 + ε1)

(
ε1

ε0 + ε1

)3/4

l3
h,

where η is a dimensionless numerical pre-factor,

η = 24 · 10−3/4
∫ ∞

0

3x−5/2

3 + 1/h2(x)
dx ≈ 13.87. (46)

B. Numerical solution of the DPB equation

The results in Sec. III A were based on the assumption
that expanding G to third order will be sufficient to capture
the interaction between the ion in the origin and the dipoles.
However, in the vicinity of the ion, the electric field diverges
and, thus, the approximation may not be valid anymore.

Let us extend our results and examine a numerical so-
lution of the full DPB equation in comparison with the
approximate solution of Eq. (42). The DPB equation,
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Eq. (26), can be written in terms of the displacement field
D:

∇ ·
{

ε0

ε0 + ε1
D + ndp0

[
êG

(
βp0

ε0 + ε1
D

)]}
= ∇ · D1.

(47)

By the same argument used in Sec. III A, we integrate both
sides of Eq. (47) and get a nonlinear equation:

ε0

ε0 + ε1
D + ndp0G

(
βp0

ε0 + ε1
D

)
− D1 = 0. (48)

There are many ways to solve numerically such nonlinear
equations, and we chose the fast converging Newton-Raphson
method.40 The approximate analytical solution of Eq. (36)
was chosen as the starting point for the numerical iterative
process. The dielectric constant is derived by differentiating
Eq. (47) with respect to E0, and then substituting the numeri-
cal solution for D(r):

ε(r) = (ε0 + ε1)2

ε0 + 3ε1G ′
(

βp0

ε0+ε1
D(r)

) , (49)

where G ′(u) = dG(u)/du is equal to

G ′(u) = sinh u

u

(
1 + 2

u2

)
− 2 cosh u

u2
. (50)

In Fig. 2, we compare the exact (numerical) and the ap-
proximate results for the dielectric constant. As expected, in
the vicinity of the ion the electric field is strong and the ap-
proximation deviates from the numerical solution (see inset
of Fig. 2), though both calculations show that the dielectric
constant goes to zero at the origin. For distances ∼2 Å, there
is less that 5% difference between the approximate and ex-
act (numerical) solutions; namely, our approximate solution
works rather well.

After showing the validity of the approximate solution
(Fig. 2), we can extend the DPB formalism to incorporate
other physical details. In particular, three cases are exam-
ined: finite size ions, binary mixtures of dipolar solvents, and
polarizability effects.

C. Field around a finite-size ion

For ions with finite size, the solution of the DPB equation
depends only on the local electrostatic field. Thus, the solution
for a sphere-like particle is the same as that of a point-like ion.
If we neglect the inner dielectric properties of the ions, the
only difference is in the calculation of the average dielectric
constant, 〈ε〉. In case of finite-size ions, the averaging over
the dielectric constant starts from the radius of the sphere,
denoted by a. The upper limit, as in Eq. (44), is defined by the
ionic concentration, R = (2ns)−1/3/2:

〈ε(ns, a)〉 =
∫ R

a
d3r ε(r)

4π
3 (R3 − a3)

. (51)

Assuming that the ionic size a is small compared to the hydra-
tion length lh, the approximation of ε(r) for small distances,
Eq. (41), can be used to obtain a closed-form formula for

〈ε(ns, a)〉, as a function of the expression obtained in Eq. (44)
for point-like particles 〈ε(ns, a = 0)〉:

〈ε(ns, a)〉 = 3

4π
(
R3 − a3

) (∫ R

0
d3r ε(r) −

∫ a

0
d3r ε(r)

)

= R3

R3 − a3
〈ε(ns, 0)〉 − 3

∫ a

0 d3r ε(r)

4π (R3 − a3)
. (52)

The assumption that a � lh implies also that a � R, so within
this approximation only the first-order term in a/R is taken
into account. Using the relation between R and ns yields the
following approximation for the dielectric constant of finite-
size ionic solution:

〈ε(ns, a)〉 ≈ 〈ε(ns, 0)〉 + 16〈ε(ns, 0)〉a3ns

−48

13
(ε0 + ε1)

(
10(ε0 + ε1)

ε1

)1/3

l
−4/3
h a13/3ns.

(53)

As was seen for standard parameter values at room tempera-
ture, the hydration length equals to lh � 2.6 Å, and is quite
comparable with size of large ions. Thus, Eq. (53) is valid
only for small ions, (a < lh).41 For larger a we have to evalu-
ate the full integral in Eq. (52), using ε(r) from Eq. (37). The
results of a numerical integration are plotted in Fig. 4. As ex-
pected, large ions cause a smaller decrement of the dielectric
constant.

D. Mixture of dipoles

The solvent in the usual DPB theory, as well as in other
PB generalizations, is usually taken as water.3, 11, 42, 43 How-
ever, it can be of interest to investigate the behavior of other
solvents as well as binary mixtures of solvents.46–51

On the mean-field level, the dielectric constant of a
mixture of solvents equals to the weighted average of the

0 2 4

50
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70

80

n
s
[M]

0

FIG. 4. The spatial average dielectric constant ε/ε0 = 〈ε〉/ε0, Eq. (52), as
a function of salt concentration for four ionic radii: 2 Å (black, solid line),
a = 1.5 Å (red, dot-dashed line), a = 1 Å (green, dotted line), and
a = 0.1 Å (blue, dashed line). The decrement is more pronounced for small
ionic radii, where the ion size is much smaller than the hydration length,
lh = 2.7 Å.
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dielectric constants of each of the solvents, weighted by their
relative volume fraction, as is appropriate from Eq. (19). Let
us consider in more detail the DPB of a binary mixture of sol-
vents, and derive the “hydration length” of the mixture. This
is the length scale that determines the dielectric decrement, as
was shown in Eq. (37).

The DPB equation for an A/B solvent mixture is a gener-
alization of Eq. (27) and reads:

ε0∇2ψ = −ρf (r) − φndpA∇ ·
[ ∇ψ

|∇ψ |G(βpA|∇ψ |)
]

−(1 − φ)ndpB∇ ·
[ ∇ψ

|∇ψ |G(βpB |∇ψ |)
]

, (54)

where φA = φ is the volume fraction of the A solvent,
φB = 1 − φ is the volume fraction of the B solvent, and pA

and pB are the dipole moments of the two solvents. We need
to expand Eq. (54) at least to 3rd order, because the 1st or-
der will simply give an effective average contribution to the
dielectric constant. Setting ρ f = eδ(r) yields an equation with
the same structural form of the DPB as in Eq. (30):(
ε0 + 1

3
βnd〈p2〉φ

)
∇ · E = − 1

30
ndβ

3〈p4〉φ∇ · [EE2] + eδ(r),

(55)

where 〈. . . 〉φ denotes averaging by volume fraction, and the
2nd and 4th moments are

〈p2〉φ = φp2
A + (1 − φ)p2

B,
(56)

〈p4〉φ = φp4
A + (1 − φ)p4

B.

From the analogy with the DPB equation for a single solvent,
Eq. (38), we get the following hydration length:

lh =
√

lBb

√〈p4〉φ
〈p2〉φ , (57)

where the effective (averaged) Bjerrum length lB is

lB = βe2

4π
(
ε0 + 1

3ndβ〈p2〉φ
) , (58)

and similarly b = √〈p2〉φ/e2.
In Fig. 5, the effective hydration length, lh, is plotted as

a function of the A/B volume fraction φ, for different ratios
of pB/pA. In the limits φ → 0 and φ → 1, we get the single-
solvent hydration length, as expected. The trend however is
not linear, and the larger of the two dipole moments becomes
the dominant one rapidly as its concentration increases. Even
a small volume fraction of highly polar molecules can change
the hydration length greatly. The dielectric decrement at the
dilute limit is proportional to the hydration length, Eq. (45),
and can be manipulated by changing the relative A/B volume
fraction.

E. Polarizability effects: A spring-dipole model

To conclude this section, we consider a variation of the
DPB model that incorporates polarizability in addition to

0 0.5 1
0.5

1

1.5
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2.5
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3.5

l h
/(

l hA
 l hB

)1
/2

FIG. 5. The ratio between the hydration length of a binary mixture of

dipoles, lh, and the geometric mean of the pure A and B ones:
√

lAh lBh ,
as a function of the relative A/B concentration, φ. Because of the nor-

malization factor, lh(φ = 0)/
√

lAh lBh = (pB/pA)1/4 and lh(φ = 1)/
√

lAh lBh

= (pA/pB )1/4. Four different mixtures are considered with relative dipole
moments: pB = 0.2pA (red solid line), pB = 0.5pA (blue dashed line),
pB = 2pA(green dash-dot line), and pB = 5pA (black dotted line).

permanent dipole moment.43–45 For polarizable molecules,
the external electric field induces a dipole moment and
changes the internal charge distribution. In the general de-
scription of the charge distribution used so far, Eq. (2), we
allowed only for rotations and translations of the same charge
distribution, but for polarizable media, an additional degree of
freedom exists. We also note that another variant model was
introduced recently in Ref. 52, where the model included po-
larizable counterions instead of polarizability of the dipolar
molecules as is done here.

For simplicity, we limit our discussion only to spring-
like dipoles, where two opposite charges are connected with a
variable length spring, while the ions are taken as point-like.
Taking the dipole length, b, as the new degree of freedom,
the free energy can be written as a sum over the electric and
elastic free energies of Nd dipoles. The elastic contribution
due to spring deformation is equal to

Felastic = κ

2

Nd∑
i=1

(bi − b0)2, (59)

where κ is the spring constant, b0 is the rest length, and bi

is the length of the ith spring-dipole. The dipole moment
p0 = eb0 plays the role of the permanent dipole moment, be-
cause it exists even in the absence of an external field. For
reasons that will become apparent shortly, the dipole moment
that corresponds to the polarizability equals to pα =

√
e2/βκ .

Thus, the elastic energy can be recast as

βFelastic =
Nd∑
i=1

(pi − p0)2

2p2
α

. (60)

Once adding the elastic term, Eq. (60), to the grand-canonical
partition function, Eq. (5), the Euler-Lagrange equation
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becomes:

−ε0∇2ψ = nd∇ ·
[ ∇ψ

|∇ψ | 〈pG(βp|∇ψ |)〉p
]

−2nse sinh [βeψ(r)] , (61)

where 〈. . . 〉p denotes averaging over the dipole moment p:

〈f (p)〉p =
∫ ∞

0 dp f (p)e−(p−p0)2/2p2
α∫ ∞

0 dp e−(p−p0)2/2p2
α

. (62)

Equation (61) has the same structure as the standard DPB
equation (26), where the function G is replaced with a more
complicated function that has no simple analytical form. Nev-
ertheless, it can be expanded to 3rd order in a Taylor series:(

ε0 + 1

3
βnd〈p2〉p

)
∇ · E

= − 1

30
ndβ

3〈p4〉p∇ · [EE2] + eδ(r). (63)

Note that Eq. (63) is exactly the same as Eq. (55), with a dif-
ferent interpretation of the averaging operation. The averages
in Eq. (63) can be expressed using the error function (erf):

〈p2〉p = (
p2

α + p2
0

) +
√

2

π

pαp0e−p2
0/2p2

α

1 + erf(p0/
√

2pα)
(64)

and

〈p4〉p = p4
0 + 6p2

0p
2
α + 3p4

α+
√

2

π

(
p3

0pα+5p3
αp0

)
e−p2

0/2p2
α

1 − erf(p0/
√

2pα)
.

(65)

Consequently, the dielectric constant in the mean-field level
is equal to

ε = ε0 + 1

3
ndβ

(
p2

α + p2
0 +

√
2

π

pαp0e−p2
0/2p2

α

1 + erf(p0/
√

2pα)

)
.

(66)

We can connect now pα to the polarizability, α, defined
as the relation between the induced dipole moment and the
external electric field E0, p = p0 + αE0. In the spring-dipole
model, we can extract this relationship via minimization of
the free energy:

βF = βpE0 − (p − p0)2

2p2
α

,

∂F

∂p
= E0 − (p − p0)

βp2
α

= 0,

(67)
p = p0 + βp2

αE0,

pα =
√

α

β
.

Indeed, the spring-dipole model predicts a linear depen-
dence of the induced dipole on the external field. However,
taking into account the thermodynamical average leads to a
more complex behavior. Both the dielectric constant, Eq. (66),
and the hydration length [according to Eq. (57)] are plotted in
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FIG. 6. The relative hydration length, lh/ l0
h, as a function of the relative po-

larizability, pα /p0, where l0
h = lh(pα=0) and pα = 0 is the permanent-dipole

only case. In the inset, the relative dielectric constant, ε/ε(pα = 0) is plotted
as function of pα .

Fig. 6 as a function of the ratio pα/p0. As expected, the dielec-
tric constant increases with the polarizability, while the hy-
dration length decreases. The treatment here is similar to the
one done by Frydel43 and independently by Buyukdagli and
Als-Nissila,44, 45 but is cast in our general DPB framework.

IV. ONE-LOOP EXPANSION OF THE DPB

In Sec. III, we used the DPB equation on a mean-field
level to calculate the decrement of the dielectric constant. In
order to capture the interactions between ions and the di-
electric medium, we treated the ions as fixed charges, and
not as mobile particles in thermodynamical equilibrium. In
this section, we present a more complete model that goes be-
yond mean-field. The dielectric decrement is calculated in a
complete statistical mechanical manner, by a direct derivation
from the grand-canonical partition function. Since the parti-
tion function is a functional integral we approximate it using
the loop expansion method.

The method of loop expansion53, 54 is a special resum-
mation of Feynman diagrams corresponding to a systematic
saddle-point expansion. It is used in Quantum Field Theory
(QFT) as a way of calculating quantum-mechanical ampli-
tudes of different physical processes. The amplitude is writ-
ten as a functional integral where each field configuration is
weighted by its classical action, and the diagrams provide an
elegant way of expanding the solution as a function of a small
parameter. The analogy between functional integrals of the
partition function in statistical mechanics and path integrals
of QM amplitudes54, 55 enables us to use similar tools in our
calculation.

We start with a general functional integral of the form,
Eq. (5):

� =
∫

Dφ(r)e−βF [φ(r)], (68)

where φ(r) is a field, and F is a functional of the field φ(r).
The first-order correction of Eq. (68) is given by the one-loop
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order in the expansion:4

� � N exp

{
−βF [φMF(r)] − 1

2
ln

[
det

(
δ2F [φ(r)]

δφ(r′)δφ(r)

)]}
,

(69)

where φMF is the solution of the mean-field DPB equation (as
was presented in Sec. III) and N is a normalization constant.
Since we are interested in the bulk value of the dielectric con-
stant, the DPB solution is simply φMF = 0.

For the DPB model, the functional F and its sec-
ond functional derivative (the Hessian), F (2) = δ2F [φ(r)]/
δφ(r′)δφ(r), are given by

−βF =
∫

d3r
{

− ε0β

2
[∇φ(r)]2 + 2	s cos [βeφ(r)]

+	d

∫
d2�

4π
eiβp0·∇φ(r)

}
(70)

and

F (2) = −ε0∇2δ(r − r′) + 2	sβe2 cos [βeφ(r)] δ(r − r′)

+	dβ

∫
d3r′′

∫
d2�

4π
eiβp0·∇φ(r′′)

× [p0 · ∇δ(r − r′′)][p0 · ∇δ(r′ − r′′)]. (71)

The determinant of any operator is equal to the product
of its eigenvalues. Evaluation of the logarithm of this determi-
nant leads to divergences. Fortunately, we are not interested in
the value of the grand-canonical partition function itself, but
only in its derivatives at φ = 0. Keeping this in mind, we can
use a general formula for matrices and operators that depends
on a parameter α:

∂ ln(det A)

∂α
=

∫
d3r

∫
d3r′A−1(r, r′)

∂A

∂α
. (72)

Using Eq. (72) allows us to avoid calculating the determinant
explicitly. Instead, we need to know the inverse of the F(2)

operator (the Green’s function) at φMF = 0. It is denoted by g
and given by

g(r, r′) = 1

4πβ(ε0 + ε1)

e−κD|r−r′|

|r − r′| , (73)

where ε1 = βp2
0nd/3 was defined in Eq. (29) and κD is the

inverse Debye length:

κD = 1

λD
=

√
2nsβe2

ε0 + ε1
. (74)

The dielectric constant can be derived as a thermodynam-
ical average from the grand-canonical partition function. The
dielectric response is obtained by taking the second functional
derivative of the free energy F with respect to the electrostatic
field E. The dielectric constant for an isotropic homogeneous
medium is given by

ε =
∫

d3r
δ2F

δEi(r)δEi(r′)
. (75)

Due to isotropy, the direction of the electric field Ei is ar-
bitrary, and translational invariance implies that the second

functional derivative is only a function of r − r′. On a mean-
field level, this results in ε1 = βndp

2
0/3 that is a function of

the bulk concentration of dipoles, nd. Hence, both the dielec-
tric constant and the densities have to be calculated consis-
tently up to 1st order in the loop expansion.

The average number of particles can be derived from the
grand-canonical partition function as

〈N〉 = 	
∂ ln �

∂	
. (76)

This equation is valid both for the dipole number Nd, and for
the charge number Ns, with corresponding 	d and 	s. In the
mean-field approximation, 	d = nd and 	s = ns. The one-
loop correction is given by

ns = 	s + 	s

4V

∂ ln [det(F (2))]

∂	s

∣∣∣∣
φMF=0

= 	s + 	s

2V
(βe)2

∫
d3r

∫
d3r′ g(r, r′)δ(r − r′)

= 	s + 	s

2
(βe)2g(0). (77)

The correction for nd is calculated in a similar manner, and
results in

nd = 	d − β	d

2

βp2
0

3
∇2g(0). (78)

The correction terms for the fugacities depend on the diverg-
ing Green’s function value g(r) at r → 0. In order to avoid this
divergence, we need to consider a minimal cutoff distance a
between particles. Alternatively, one can use self-energy reg-
ulation techniques.56 The cutoff distance a corresponds to a
maximal wavenumber kmax = 2π /a. By considering the solu-
tion in Fourier space, the value of the Green’s function and its
Laplacian at r → 0 are approximated by

2π2β(ε0 + ε1)g(0) = kmax − κD tan−1 kmax

κD
,

(79)

2π2β(ε0 + ε1)∇2g(0) = −k3
max

3
+ kmaxκ

2
D − κ3

D tan−1 kmax

κD
.

Substituting Eq. (79) into Eqs. (77) and (78), we can write the
first-order correction to the fugacities 	d and 	s:

	s = ns

{
1 − 1

2

βe2

2π2(ε0 + ε1)

[
kmax − κD tan−1 kmax

κD

]}
,

(80)

	d = nd

{
1 − 1

4π2

ε1

nd (ε0 + ε1)

[
k3

max

3
− kmax(κD)2

+ (κD)3 tan−1 kmax

κD

]}
.

The correction for the dielectric constant can be calculated by
the same way as for the fugacity:

ε = ε0 + ε1 + 1

2β

∫
d3rb

δ2 ln[det(F (2))]

δEi(ra)δEi(rb)

∣∣∣∣
φMF=0

. (81)
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The detailed calculation is presented in the Appendix and
results in

ε = ε0 + ε1 − 3βε2
1

2	d

∇2g(0). (82)

Substituting ∇2g(0) from Eq. (79), we get

ε = ε0 + ε1

+ 3κ3
Dε2

1

4π2	d (ε0 + ε1)

[
k3

max

3κ3
D

− kmax

κD
+ tan−1 kmax

κD

]
. (83)

Adding the correction in the fugacity 	d, Eq. (80), to Eq. (83)
yields:

ε = ε0 + ε1

+ (ε1)2

2π2(ε0 + ε1)nd

[
k3

max

3
− kmaxκ

2
D + κ3

D tan−1 kmax

κD

]
.

(84)

And finally, using the minimum cutoff length a, Eq. (84)
yields:29

ε = ε0 + ε1

+ (ε1)2

(ε0 + ε1)

4π

3nda3

[
1 − 3

4π2
(aκD)2

+ 3

8π3
(aκD)3 tan−1

(
2π

aκD

)]
. (85)

Equation (85) constitutes the principal result of this section
for the dielectric decrement obtained using the one-loop ex-
pansion.

Before analyzing the effect of salt, let us discuss the ef-
fect of one-loop corrections on the dielectric constant of wa-
ter. The dielectric constant εw of pure water is obtained by
setting ns = 0 in Eq. (85)

εw = ε0 + ε1 + ε2
1

(ε0 + ε1)

4π

3nda3
(86)

Equation (86) yields a reasonable value for εw when the ex-
perimental value of the dipolar moment of water p0 = 1.8 D
is used. Indeed, using nd = 55 M for the density of water and
taking the cutoff length a to be equal to the size of a water
molecule 2.7 Å, we obtain εw = 77.6. This very good approx-
imation for the dielectric constant of water leads us to fix the
dipolar moment of water p0 to its physical value of 1.8 D even
in presence of salt, and use the cutoff length a as the only
fitting parameter in our model.

The correction to the dielectric constant with salt, Eq.
(85), is composed of three terms. The first one discussed in
Eq. (86) and represents the fluctuation effect of the water
dipoles themselves beyond the mean-field DPB level. It varies
as ∼1/(nda3). In the dilute salt limit, κDa � 1, we can further
expand Eq. (85) to linear order in the salt concentration ns,
ε(ns) = εw + γ ns , and get the coefficient γ [as in Eq. (1)]:

γ = − ε2
1

ε0 + ε1

8lB

nda
, (87)

where lB = βe2/4π (ε1 + ε0) is the Bjerrum length. The nu-
merical value of γ /ε0 is estimated to be −25 M−1, which is

rather high, and indicates the importance of the additional
nonlinear term.

The two additional correction terms in Eq. (85) account
for water-ion correlations. The leading term in the dilute so-
lution limit, κDa � 1, depends linearly on the salt concen-
tration. When the Debye length κ−1

D is of the same order of
magnitude as a, the last term in Eq. (85) starts to dominate
and the dielectric decrement becomes smaller until eventu-
ally it will reverse the trend and cause a dielectric relative in-
crement, as seen in some experiments27 for high enough salt
concentrations.

V. COMPARING ONE LOOP RESULTS
TO EXPERIMENTS

The static dielectric constant of an aqueous solution can-
not be measured directly. The effect of the static dielectric
constant is measured by fitting high frequency data, and ex-
tracting the static dielectric constant as a fit parameter. Most
experiments measure the dielectric response in microwave
and RF frequencies, ranging from 100 MHz to 40 GHz,26–28

with temperature in the range of 0 ◦C−60 ◦C. The frequency-
dependent permittivity is a complex function, which can be
approximated by19

ε(ω) = ε∞ + εs − ε∞
1 + iωτ

− i
σdc

ε0ω
, (88)

where ε∞ is the dielectric constant in the high frequency limit
(ω → ∞), εs = ε(ω → 0) is the static dielectric constant that
is of interest to us, τ is the dielectric relaxation time, defined
as the time that it takes for the dielectric response to reach
equilibrium, σdc is the DC conductivity, and ε0 is the vacuum
permittivity.

The frequency-dependent permittivity can be measured
and εs can be obtained from a least-square fit. Table I lists few
such examples of the static εs for LiCl and RbCl salt solutions,
in concentrations of 0.5M, 1M, and 2M.

We compare our loop-expansion prediction for the di-
electric constant ε, Eq. (85), to experimental values of the
static εs

27 for seven different ionic solutions in a concentra-
tion range of 0–4 M. We separate the seven salts into four
subgroup according to the size of the alkaline cations, and
present the results in Figs. 7 and 8. In each of the figure parts,
the parameter a is fitted separately. We treat a as a free pa-
rameter and find its value by the best fit of our prediction,
Eq. (85), to experimental data, while keeping the physical
known value of the water dipolar moment, p0 = 1.8 D.

The largest ionic size of Cs+ and Rb+ gives the best
results [Fig. 7(a)], and the fit remains good even for high

TABLE I. The static dielectric constant, εs, for aqueous salt solutions as
fitted from ε(ω) measurements for different salts and concentrations. Adapted
from Ref. 27.

ns(M) εs(LiCl) εs(RbCl)

0.5 71.2 73.5
1 64.2 68.5
2 51 58.5
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FIG. 7. Comparison of the dielectric constant, ε, from the one-loop expansion, Eq. (85), with experimental data for the static εs from Ref. 27, as function of
ionic concentration, ns, for various salts with larger ionic radii. The theoretical prediction (solid line) was calculated using the parameter a as a fitting parameter.
In (a), the best fit for RbCl and CsCl salts gives a = 2.66 Å while in (b), the best fit for KF and KCl gives a = 2.64 Å. The dashed lines are the linear fit to
the data in the low ns ≤ 1 M range. The slope of the linear fit is γ /ε0 = −11.7 M−1 in (a) and −9.0 M−1 in (b). The value of γ for each salt varies by about
10%–20% and the linear fit should be taken as representative of the combined low ns behavior.

concentrations of about 3–4 M. In Fig. 7(b), the fit for K+

ions (for two solutions with anions F− and Cl−) is also quite
good, although some deviations are seen, especially in the
dilute limit. We also show for comparison a linear fit to the
data. Note that this linear fit is done without any modeling
or external parameter. It is not the same as the linearized
term obtained from our model, Eq. (87). The latter gives γ /ε0

� −25 M−1, and does not fit the data so well. In Fig. 8,
the fit for the two smaller cations Li+ and Na+ (for LiCl,
NaCl and NaI solutions) works well only up to ns = 2 M,
but for higher ns the fit over-estimates the experimental ε. We
also get a good fit for pure water εw � 78, which is an im-
portant result since we are using only one fitting parameter,
a � 2.7 Å. For the K+ case, the fit for the low salt limit does
not fit so well and for pure water the best fit overestimates the
water value, εw � 83.

The ionic size effect can be understood from a micro-
scopic point of view. As the field in the vicinity of the ion is
high, an approximate calculation, such as the one-loop expan-
sion, is more likely to fail. It can be related to the significant
deviation we have seen in comparing numerical and approxi-
mate analytical solution of the DPB equation (Fig. 2). More-
over, note that our formula takes into account only in a broad
sense the finite size of ions (and the distance of closest ap-
proach between them) via a single parameter, a, which effec-
tively combines the dipole and ion sizes. It is beyond the level
of the theory to give more specific ionic predictions. Hence,
the obtained value of a � 2.7 Å is not very sensitive to the
type of salt. Rather, its main contribution comes from the wa-
ter dipoles themselves whose diameter is about 2.7 Å.57 On
the other hand, as can be clearly seen from Figs. 7 and 8, im-
portant cooperative effects of ions and dipoles are accounted
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FIG. 8. Comparison of the dielectric constant, ε, from the one-loop expansion, Eq. (85), with experimental data for the static εs from Ref. 27, as a function
of ionic concentration, ns, for various salts with smaller ionic radii. The theoretical prediction (solid line) was calculated using the parameter a as a fitting
parameter. In (a), the best fit for NaI and NaCl gives a = 2.695 Å; while in (b), the best fit for LiCl salt gives a = 2.7 Å. The dashed lines are the linear fit to the
data in the low ns ≤ 1 M range. The slope of the linear fit is γ /ε0 = −13.65 M−1 in (a) and −15.1 M−1 in (b).
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for in our nonlinear expression for ε(ns). For small ns, the
dashed line represents the best linear fit and works well only
when ns ≤ 1 M, while the nonlinear prediction (solid line) of
Eq. (85) succeeds in fitting the large concentration range as
well.

VI. CONCLUSIONS

The decrement of the dielectric constant in ionic solu-
tions is a well-observed phenomena, studied both theoreti-
cally and experimentally. Since the pioneering works of De-
bye, Onsager and Kirkwood,19, 58, 59 to more recent works us-
ing molecular dynamics (MD),14–16 different approaches were
advanced to explain this effect. In this paper, we addressed
the dielectric constant of an ionic solution from a field-theory
point of view. Starting from a general system composed of
different types of charges and dipoles interacting via electro-
static Coulomb interactions, we modeled the ionic solution
as a system of charged particles surrounded by dipoles. After
writing the grand-canonical partition function as a functional
integral on the electrostatic potential, it was possible to ex-
tract physical quantities on the mean-field level and also to
find corrections that go beyond mean-field and include cor-
relations and fluctuations on the one-loop level. Furthermore,
we investigated how these different effects give rise to varia-
tions in the dielectric constant of different ionic solutions.

The assumptions of the model are the following: (i) the
water molecules are treated as point-like dipoles, (ii) the size
of the ions is comparable to that of water molecules, (iii) we
neglect steric interactions between ions and dipoles, and (iv)
we neglect the polarizability of ions and their electrostatic
distortion.

In Sec. III, the model is treated at Mean-Field level, and
the dipolar moment of water molecules is the only fitting pa-
rameter. In order to fit the actual value of the dielectric con-
stant of pure water, εw = 78 , the dipolar moment is taken as
4.6D (instead of the actual value of 1.8 D). With this value,
good agreement with experimental data can be obtained for
the dielectric decrement as function of salt concentration (e.g.,
Figs. 3 and 4). One of the key features of our model is that
it can account for any internal charge distribution of parti-
cles, rather than only point-like or rod-like particles.60 A gen-
eralized PB equation is derived, and serves as a convenient
starting point for our discussion of ionic solutions. The DPB
equation is a special case of the generalized PB equation that
is explored in great detail. By looking at the DPB equation
around a point-like ion at the origin, a closed-form formula for
the dielectric constant is obtained. We expressed the dielectric
constant using several physical length scales. The most impor-
tant one is the “hydration length” lh, which characterizes the
hydration shell of dipoles around ions, and thus the strength
of the dielectric decrement. From the DPB equation, the di-
electric response is then calculated for three additional cases:
mixture of polar solvents, polarizable medium, and ions of
finite size.

Beyond mean-field theory, using loop-expansion analy-
sis, we are able to derive analytically the dielectric constant.
When these corrections are included, we may take the wa-
ter dipolar moment to be equal to its actual value 1.8 D, and

our calculated water dielectric constant is then close to 78. In
this approximation, a short distance cutoff a is the only fit-
ting parameter. Physically, a should be of the same order of
magnitude as the minimal distance between water molecules,
of about 2.7 Å, and this is indeed the optimal value obtained
from the fit. The expression for the dielectric constant is found
to be in good agreement with the experimental data, in a wide
range of ionic concentrations. However, specific behavior of
different salts, which can be accounted for in other frame-
works such as MD simulations, cannot be predicted by our
model.

Correlations are evidently a key mechanism in under-
standing the electrostatic behavior of ionic solutions, and the
loop-expansion technique of field theory is a useful tool for
investigating them. Removing some of the underlying limi-
tations of our theory may reveal more interesting phenom-
ena. One of the model limitations is that only first-order cor-
rections to mean-field theory were considered. Taking addi-
tional terms beyond the one-loop expansion might be useful
to assess the validity of the approximation. However, as water
molecules are modeled as point-like dipoles, the neglect of the
finite size of the water dipoles might be of greater importance
than higher-order loop corrections.

Another remark on the one-loop expansion is that it has a
single free parameter, the cutoff distance a, which was added
in order to avoid the divergence of the integrals. A more ele-
gant way of regulating the divergence is to consider explicitly
the self-energy in the partition function.56

A further interesting application of our model is to exam-
ine the dielectric constant near a charged surface. We restrict
ourselves only to bulk properties, where we could extract ana-
lytical solutions. However, interesting physical processes oc-
cur near charged membranes of biological cells, and the ex-
trapolation from the bulk is far from being straightforward.21

Finally, we propose possible extensions to include ion-
specific effects. We have started with a generalized model of
ionic solutions that allows any kind of charge distribution,
while focusing only on ionic solutions composed of point-
like or sphere-like particles. This assumption did not allow
for major ionic specific effects. Hence, it may be of interest to
expand the finite-size effects to the one-loop approximation
as well. Another venue of interest may be to include addi-
tional non-Coulombic interactions that can lead to significant
corrections and interesting modifications, going beyond the
scope of the present work.
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APPENDIX: DIELECTRIC CONSTANT CORRECTION

Calculating the correction of the dielectric constant is less
straightforward than that of the fugacity, and will be explained
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in detail in this appendix. The correction term about the MFT
result, εMF = ε0 + ε1 , was given by Eq. (81):

�ε = ε − εMF = 1

2β

∫
d3rb

δ2 ln
[
det(F (2))

]
δEi(ra)δEi(rb)

∣∣∣∣∣
φ=φMF

.

(A1)

The second functional derivative F(2), Eq. (71), can be
rewritten using the electrostatic potential ψ , and the electric
field E:

F (2)(r, r′) = −ε0∇2δ(r − r′)

+ 2	sβe2 cosh [βeψ(r)] δ(r − r′)

+	dβ

∫
d3r′′

∫
d2 �

4π
[p0 · ∇δ(r − r′′)]

× e−βp0·E[p0 · ∇δ(r′ − r′′)]. (A2)

As the field E appears only in 3rd term of F(2), the correction
to the dielectric constant will be derived from it:

�ε = −	dβ

2

∫
d3rb

× δ2

δEi(ra)δEi(rb)

∫
d3r

∫
d3r′ g(r, r′)

∫
d3r′′

×
∫

d2� [p0 · ∇δ(r − r′′)]e−βp0·E[p0 · ∇δ(r′ − r′′)]

= −	dβ
3

2

∫
d2�

4π
p2

0i

∫
d3r

∫
d3r′

∫
d3r′′

×[p0 · ∇δ(r′ − r′′)]g(r, r′)[p0 · ∇δ(r − r′′)]δ(r − ra).

(A3)

Substituting φ = φMF = 0, and using integration by parts, we
get

�ε = 	dβ
3

2

∫
d3r

∫
d2�

4π

×p2
0i[(p0 · ∇)2 δ(r − ra)]g(r, ra) . (A4)

Defining

Ii = −
∫

d2�

4π
p2

0i(p0 · ∇)2δ(r − ra), (A5)

where i = x, y, z, and for isotropic systems we can restrict the
treatment to i = z. Substituting δ(r − ra) = ∫

d3k
(2π)3 eik·(r−ra ) in

(A5) yields:

Iz = −
∫

d2�

4π
p2

0z(p0 · ∇)2
∫

d3k
(2π )3

eik·(r−ra )

=
∫

d3k
(2π )3

∫
d2�

4π
p2

0z(p0 · k)2eik·(r−ra ). (A6)

We choose ẑ direction to be in the direction of r − r′, and the
scalar product between p and k depends on two sets of polar
angles: the polar angles of p defined as α and β:

p · k = pk [sin θ sin α cos(β − ϕ) + cos θ cos α] . (A7)

The integral then becomes

Iz = 1

32π4

∫
k2dk d(cos α) dβ

∫
d(cos θ ) dϕ p4

0k
2 cos2 θ

×
[

sin2 θ sin2 α cos2(β − ϕ) + cos2 θ cos2 α

+ 1

2
sin 2θ sin 2α cos(β − ϕ)

]
eik·(r−ra ). (A8)

First, we can integrate over ϕ. The integration of the first term,
cos2(β − ϕ), is equal to π . The integration of the second term
does not depend on ϕ and equals to 2π , while integrating the
third term gives zero:

Iz = 1

4(2π )3

∫
k2dk d(cos α) dβ

∫
d(cos θ ) p4

0k
2 cos2 θ

×[sin2 θ sin2 α + 2 cos2 θ cos2 α]eik·(r−ra ). (A9)

Next, the integration of cos4θ gives 8π /5 and the integration
over sin2θcos2θ is equal to 16π /15:

Iz = 1

(2π )3

∫
k2dk d(cos α) dβ

×
∫

p4
0k

2

[
1

15
sin2 α + 1

5
cos2 α

]
eik·(r−ra ). (A10)

We can rearrange the terms such that one term depends only
on k, and another depends only on kcos α:

Iz = 1

5

∫
d3k

(2π )3
p4

0k
2eik·(r−ra )

− 2

15

∫
d3k

(2π )3
p4

0(k cos α)2eik·(r−ra ). (A11)

The first term is associated with the Laplacian of the δ-
function, and the second one with the second derivative of
the δ-function with respect to r:

Iz = −p4
0

5

[
∇2δ(r − ra) + 2

3
∂2
r δ(r − ra)

]
. (A12)

We can now substitute Eq. (A12) into the correction of the
dielectric constant Eq. (A4), and get

�ε = −	dβ
3p4

0

10

∫
d3r g(r, ra)

×
[
∇2δ(r − ra) + 2

3
∂2
r δ(r − ra)

]

= −	dβ
3p4

0

10

∫
d3r g(r, ra)

×
[
∇2δ(r − ra) + 2

3
∂2
r δ(r − ra)

]

= −β3p4
0

10
	d

×
∫

d3r g(r, ra)

(
∇2 + 2

3
∂2
r

)
δ(r − ra). (A13)
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Using integration by parts twice, and the fact that g(r) depends
only on r so that ∇2g(0) = d2g(0)/dr2, we finally get

�ε = −	dβ
3p4

0

6
∇2g(0)

= −3βε2
1

2	d

∇2g(0). (A14)
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