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1. Introduction

Quite a number of physical, chemical, and biological systems
manifest some type of modulation in their spatial ordering.[1–3]

Such structures are stripes and bubbles in two-dimensional
(2D) systems, or lamellae, hexagonally packed cylinders, and
cubic arrays of spheres in three-dimensional (3D) cases, as well
as more complex structures such as gyroids. Examples of such
systems include ferromagnetic layers,[4] magnetic garnet
films,[5] ferrofluids,[2, 3, 6] dipolar Langmuir films,[7] rippled phases
in lipid bilayers,[8] and block copolymers.[9, 10] Modulated phases
may also occur in systems described by two (or more) coupled
order parameters, each favoring a different equilibrium state.[11]

The observed spatial patterns exhibit striking similarity even
for systems that are very different in their nature. It is generally
understood that the modulated structures are formed sponta-
neously due to the competition between short- and long-
range interactions.

In the case of 2D ferromagnetic layers, for example, the
short-range interaction arises from magnetic domain wall
energy, while the long-range interaction is due to magnetic
dipole–dipole interaction which induces a demagnetizing
field.[2, 3] Adding both contributions and minimizing the total
free energy with respect to the wavenumber q, one obtains
the most stable mode q* 6¼0. This description is valid in the
weak segregation limit (close to a critical point), where the
equilibrium domain size is given by d* ¼ 2p=q*. In general,
this quantity depends on temperature and/or other external
fields.

Herein, we consider two modulated monolayers that are
jointly coupled. Our motivation is related to recent experi-
ments by Collins and Keller[12] who investigated Montal–Muel-
ler planar bilayer membranes[13] composed of lipids and choles-
terol. With this technique, a bilayer is constructed by separate-
ly preparing two independent monolayers and then combining
them into one joint bilayer across a hole at the air/water inter-
face. The experiments specifically addressed the question of
liquid domains in the two leaflets, and the mutual influence of
the monolayers in terms of their domain phases. In the experi-

ment, asymmetric bilayers were prepared in such a way that
one leaflet’s composition would phase-separate in a symmetric
bilayer and the other’s would not. In some cases, one leaflet
may induce phase separation in the other leaflet, whereas in
other cases, the second leaflet suppresses domain formation in
the original leaflet. These results imply that two-leaflet cou-
pling is an important ingredient in determining the bilayer
phase state.

Motivated by these experiments, the coupled bilayer system
was investigated theoretically. The coupling mechanism arises
through interactions between lipid tails across the bilayer mid-
plane, and the phase behavior of such a bilayer membrane
was computed using either regular solution theory[14] or
Landau theory.[15] The theoretical results are in accord with sev-
eral of the experimental observations. It should be noted that
all previous models dealt with the coupling between two
macro-phase-separated leaflets, while it is also of interest to in-
vestigate the coupling between two micro-phase-separated
(modulated) leaflets. Furthermore, one might also consider the
interplay between a macro- and a micro-phase separation.

Herein, we suggest a model describing the coupling be-
tween two modulated systems, and, in particular, we analyze
the influence of this coupling on the phase behavior of two
coupled 2D monolayers. When the two monolayers have the
same preferred periodicity of modulation, we obtain mean-
field phase diagrams that exhibit various combinations of
micro-phase-separated structures. In some cases, the periodic
structure in one of the monolayers induces a modulation in
the other monolayer. Interesting situations take place when

We propose a model addressing the coupling mechanism be-
tween two spatially modulated monolayers. We obtain the
mean-field phase diagrams of coupled bilayers when the two
monolayers have the same preferred modulation wavelength.
Various combinations of the monolayer modulated phases are
obtained and their relative stability is calculated. Due to the

coupling, a spatial modulation in one of the monolayers indu-
ces a similar periodic structure in the second one. We have
also performed numerical simulations for the case when the
two monolayers have different modulation wavelengths. Com-
plex patterns may arise from the frustration between the two
incommensurate but annealed structures.
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the two monolayers have different preferred wavelengths of
modulation. Here the frustrations between the two competing
modulated structures need to be optimized. These structures
and their dynamical behavior are examined using numerical
simulations. We note that modulated patterns of compositions
are indeed found in the experiments using giant unilamellar
vesicles formed from a ternary mixture of the lipids dioleoyl-
phosphatidylcholine (DOPC), sphingomyelin, and cholester-
ol.[16, 17] In these bilayer vesicles, a micro-phase separation
occurs between a liquid-disordered phase rich in DOPC and a
liquid-ordered phase rich in sphingomyelin and cholesterol. In
ref. [17], even a dynamical sequence of the striped-to-hexago-
nal morphological transition was observed. Although there has
been no experiment so far which directly corresponds to the
proposed model, our predictions may be verified, for example,
by constructing Montal–Mueller bilayers[13] consisting of two
lipid monolayers that exhibit a striped phase near the miscibili-
ty critical point.[18, 19]

In the next section, we present a phenomenological model
describing the coupling between two modulated lipid mono-
layers. In Section 3, we discuss the case when the two mono-
layers have the same preferred wavelength of modulation.
Monolayers having different preferred wavelengths are consid-
ered in Section 4, and some related situations are further dis-
cussed in Section 5. Although we limit our present analysis to
2D systems, the suggested model can be generalized to 3D
systems as well.

2. Model

In order to illustrate the coupling effect between two modulat-
ed systems, we imagine a pair of lipid monolayers forming a
coupled bilayer. Each of the monolayers can separately under-
go a micro-phase separation. As shown in Figure 1, we assume
that each monolayer is a mixture of two lipid species, say lipid
A and lipid B. Their area fractions are defined by �AðrÞ and

�BðrÞ, where r = (x,y) is the 2D positional vector. By assuming
that the monolayer is incompressible, �AðrÞ þ �BðrÞ ¼ 1, the
monolayer composition can be characterized by a single-order
parameter defined by the relative A/B composition
�ðrÞ ¼ �AðrÞ � �BðrÞ. Let us denote this local order parameter
of the upper and lower monolayers by f(r) and y(r), respec-
tively. The coarse-grained free-energy functional for the cou-
pled modulated bilayer is written as Equation (1):

F �;y½ � ¼ Fu �½ � þ F‘ y½ � �L

Z
dr�y

¼
Z

dr 2ðr2�Þ2 � 2ðr�Þ2 þ t

2
�2 þ 1

4
�4 � m��

�

þ2Dðr2yÞ2 � 2CðryÞ2 þ t

2
y2 þ 1

4
y4 � myy�L�y

�
ð1Þ

This is a modified Ginzburg–Landau free energy expanded in
powers of the order parameters f and y and their derivatives.
The Fu �½ � free energy has five terms depending only on f and
its derivatives. It describes the upper monolayer and its possi-
ble modulations, while the coefficients of the Laplacian
squared, the gradient squared and the �4 terms are taken to
be numbers, for simplicity. Similarly, F‘ y½ � describing the lower
monolayer contains the next five terms that are only functions
of y and its derivatives. The last term represents the coupling
between the two leaflets. The coefficients of the two gradient
squared terms are both negative (C>0), favoring spatial mod-
ulations, whereas the coefficients of the Laplacian squared
terms are positive (D>0) to have a stable modulation at finite
wavenumbers. The �2, �4, y2 and y4 terms in F are the usual
Landau expansion terms with t ¼ ðT � TcÞ=Tc being the re-
duced temperature (Tc is the critical temperature). For simplici-
ty, the two leaflets are taken to have the same critical tempera-
ture Tc (and hence the same t). Finally, the linear term coeffi-
cients, m� and my, are the chemical potentials which regulate
the average values of f and y, respectively.

In the absence of the coupling term (L= 0), each of the two
leaflets can have its own modulated phase. Free-energy func-
tionals such as Fu have been used successfully in the past to
describe a variety of modulated systems: magnetic garnet
films,[5] Langmuir films,[7] diblock copolymers,[9, 20] and amphi-
philic systems.[21] Furthermore, interfacial properties between
different coexisting phases have been investigated using a
similar model.[22–24] In the above expression for the free energy
F, the f-leaflet has a dominant wavenumber q*

� ¼ 1=
ffiffiffi
2
p

, and
so has the y-leaflet with q*

y ¼
ffiffiffiffiffiffiffiffiffiffiffi
C=2D

p
. The modulation wave-

numbers and amplitudes of the two monolayers coincide
when D = C = 1 and the average compositions are the same.

Next we address the physical origin of the coupling term
�Lfy. We first note that this quadratic term is invariant under
the exchange of �$ y. When L>0, this term can be ob-
tained from a �� yð Þ2 term,[14, 15] which represents a local
energy penalty when the upper and lower monolayers have
different compositions. In the case of mixed lipid bilayers, such
a coupling may result from the conformational confinement of
the lipid chains, and hence would have entropic origin.[14] By
estimating the degree of the lipid chain interdigitation, the

Figure 1. Schematic illustration of two coupled modulated monolayers form-
ing a bilayer membrane. Each monolayer is composed of a binary A/B lipid
mixture, which can have a spatial modulation. The relative composition of
the two lipids in the upper and the lower leaflets are defined by f and y, re-
spectively. In general, the average composition in the two monolayers can
be different. The lipid tails interact across the bilayer midplane. The phe-
nomenological coupling term between these two variables are assumed to
be bilinear of the form �Lfy in the free-energy Equation (1).
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magnitude of the coupling parameter L was recently estimat-
ed by May.[25] In general, the coupling constant L can also be
negative depending on the specific coupling mechanism.[25]

However, it is explained later that the phase diagram for L<0
can easily be obtained from the L>0 one. Hence, it is suffi-
cient to consider only the L>0 case without loss of generality.
Although the microscopic origin of the coupling may differ be-
tween systems, we will regard L as a phenomenological pa-
rameter and investigate its role on the structure, phase behav-
ior and dynamics of coupled modulated bilayers.

The phase behavior for uncoupled case, L= 0, can be ob-
tained from the analysis of Fu �½ �[11] and is only briefly reviewed
here (see also Figure 2). For a 2D system, the mean-field phase
diagram can be constructed by comparing the free energies of
striped (S) and hexagonal (H) phases. In terms of the f order
parameter, the stripe phase is described by Equation (2):

�SðrÞ ¼ �0 þ 2�q cosðq�xÞ ð2Þ

where �0 ¼ �h i is the spatially averaged composition (imposed
by the chemical potential m�), and �q is the amplitude of the
q*-mode in the x-direction. Similarly, the composition of the
hexagonal phase is given by a superposition of three 2D
modes of equal magnitude, qij j ¼ q* as shown in Equation (3):

�HðrÞ ¼ �0 þ
2�qffiffiffi

3
p

X3

i¼1

cosðqi � rÞ ð3Þ

where [Eq. (4)]:

q1 ¼ q* x̂,

q2 ¼
q*

2
�x̂þ

ffiffiffi
3
p

ŷ
� �

,

q3 ¼
q*

2
�x̂�

ffiffiffi
3
p

ŷ
� � ð4Þ

and
P 3

i¼1qi ¼ 0. In the above, only the most stable wavenum-
ber q* is used within the single-mode approximation. This can
be justified for the weak segregation region close to the criti-
cal point.[5]

Averaging over one spatial period, we obtain the free
energy densities of the striped, hexagonal, and disordered
phases, respectively, shown in Equations (5)–(7):

fSð�0; �qÞ ¼
t

2
�2

0 þ
1
4
�4

0 þ ðt� 1þ 3�2
0Þ�2

q þ
3
2
�4

q
ð5Þ

fHð�0; �qÞ ¼
t

2
�2

0 þ
1
4
�4

0 þ ðt� 1þ 3�2
0Þ�2

q þ
4ffiffiffi
3
p �0�

3
q þ

5
2
�4

q

ð6Þ

fDð�0Þ ¼
t

2
�2

0 þ
1
4
�4

0
ð7Þ

In Figure 2 a, we reproduce the original phase diagram of
refs. [7, 11]. The striped, hexagonal, and disordered phases are
separated by first-order phase-transition lines. Regions of two-
phase coexistence do exist, but are omitted from the Figure
for clarity’s sake.[26] Thus, the transition lines indicate the locus
of points at which the free energies of two different phases
cross each other, and are not the proper phase boundaries (bi-
nodals). The critical point (*) is located at �0; tð Þ= (0,1).

3. Two Coupled Leaflets with the Same q*

Having introduced the free energy and explained the phase
behavior of the uncoupled case, we now explore the equilibri-
um and non-equilibrium properties of two coupled modulated
monolayers, L¼6 0.

3.1. Free-Energy Densities

First we consider the case when D = C = 1 so that the preferred
wavenumbers are the same for
both monolayers,
q*
� ¼ q*

y ¼ q* ¼ 1=
ffiffiffi
2
p

. The
mean-field phase diagram is cal-
culated within the single-mode
approximation. Various combina-
tions of 2D modulated structures
appearing in the two monolay-
ers are possible. The first exam-
ple is the striped–striped (SS)
phase, in which both monolay-
ers exhibit the striped phase.
This can be expressed by Equa-
tions (8) and (9):

�SðrÞ ¼ �0 þ 2�q cosðq*xÞ ð8Þ

ySðrÞ ¼ y0 þ 2yq cosðq*xÞ ð9Þ

where �0 ¼ �h i and y0 ¼ yh i
are the average compositions, �q

Figure 2. a) Mean-field phase diagram of a single monolayer with a modulated structure in the vicinity of the criti-
cal temperature, computed using a model as in Equations (5)–(7). �0 is the average composition and t is the re-
duced temperature. The three phases are: striped (S), hexagonal (H), and disordered (D). These phases are separat-
ed by first-order transition lines, while for clarity we omit showing coexistence regions. (*) located at
�0; tð Þ ¼ 0; 1ð Þ indicates the critical point. Note the shift of the critical temperature from zero to unity when the

modulated phases are considered. b) Mean-field phase diagram of decoupled (L= 0) modulated monolayers at
t = 0.8. �0 and y0 are the average compositions in the two leaflets. The notations of the different phases are de-
scribed in Section 3.1. All the phases are separated by first-order transition lines.
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and yq are the respective amplitudes. These composition pro-
files are substituted into the free energy of Equation (1). Aver-
aging over one spatial period, we obtain the free-energy densi-
ty of the SS phase, given by Equation (10):

fSS¼ fSð�0; �qÞ þ fSðy0;yqÞ �Lð�0y0 þ 2�qyqÞ ð10Þ

where fS is defined in Equation (5). We then minimize fSS with
respect to both �q and yq for given �0, y0, t and L. When
either �q or yq vanishes, the corresponding monolayer is in its
disordered phase and the mixed bilayer state will be called the
striped–disordered (SD) or the disordered–striped (DS) phase.
Note that we use the convention that the first index is of the
f-leaflet and the second of the y-one. When both �q and yq

are zero, the free energy density of the disordered–disordered
(DD) phase is given by Equation (11):

fDD ¼ fDð�0Þ þ fDðy0Þ �L�0y0 ð11Þ

where fD is defined in Equation (7). This free energy fDD was an-
alyzed in ref. [15] in order to investigate the macro-phase sepa-
ration of a bilayer membrane with coupled monolayers. It was
shown that the bilayer can exist in four different phases, and
can also exhibit a three-phase coexistence.

Similar to the stripe case, the order parameters of the hexag-
onal–hexagonal (HH) phase can be represented by Equa-
tions (12) and (13):

�HðrÞ ¼ �0 þ
2�qffiffiffi

3
p

X3

i¼1

cosðqi � rÞ ð12Þ

yHðrÞ ¼ y0 þ
2yqffiffiffi

3
p

X3

i¼1

cosðqi � rÞ ð13Þ

where the basis of the three qi is defined in Equation (4). By re-
peating the same procedure as for the SS phase, the free-
energy density of the HH phase is obtained as Equation (14):

fHH ¼ fHð�0; �qÞ þ fHðy0;yqÞ �Lð�0y0 þ 2�qyqÞ ð14Þ

where fH is defined in Equation (6). When either �q or yq van-
ishes, one of the monolayers is in the disordered phase and
the bilayer will be called the hexagonal–disordered (HD) phase
or the disordered–hexagonal (DH) phase.

When the normal hexagonal phase in one leaflet is coupled
to the inverted hexagonal phase in the other leaflet, it is ener-
getically favorable to have a particular phase shift of 2p/3 be-
tween the two hexagonal structures. The order parameters
which represent such a different type of hexagonal–hexagonal
(HH*) phase can be written as Equations (15) and (16):

�HðrÞ ¼ �0 þ
2�qffiffiffi

3
p

X3

i¼1

cos qi � rð Þ ð15Þ

yH* ðrÞ ¼ y0 þ
2yqffiffiffi

3
p

X3

i¼1

cos qi � rþ
2p

3

� �
ð16Þ

The free energy density of the HH* phase is then obtained as
Equation (17):

fHH* ¼ fHð�0; �qÞ þ fHðy0;yqÞ �Lð�0y0 � �qyqÞ ð17Þ

Another combination which should be considered in the
present model is the asymmetric case where one monolayer
exhibits the striped phase and the other the hexagonal phase.
This striped–hexagonal (SH) phase is expressed as Equa-
tions (18) and (19):

�SðrÞ ¼ �0 þ 2�q cosðq*xÞ ð18Þ

yHðrÞ ¼ y0 þ
2yqffiffiffi

3
p

X3

i¼1

cosðqi � rÞ ð19Þ

The free energy density of this SH phase is calculated to be
[Eq. (20)]:

fSH ¼ fSð�0; �qÞ þ fHðy0;yqÞ �L �0y0 þ
2ffiffiffi
3
p �qyq

� �
ð20Þ

The phase in which �S and yH in Equations (18) and (19) are
interchanged with �H, yS is called the hexagonal–striped (HS)
phase, and its free energy is obtained from the SH phase by
noting the �$ y symmetry. In addition to these phases, we
have also taken into account the square–square (QQ) phase ex-
pressed by Equations (21) and (22):

�QðrÞ ¼ �0 þ
2�qffiffiffi

2
p ½cosðq*xÞ þ cosðq* yÞ� ð21Þ

yQðrÞ ¼ y0 þ
2yqffiffiffi

2
p ½cosðq*xÞ þ cosðq* yÞ� ð22Þ

Then its free energy density is given by Equation (23):

fQQ ¼ fQð�0; �qÞ þ fQðy0;yqÞ �Lð�0y0 þ 2�qyqÞ ð23Þ

where [Eq. (24)]:

fQð�0; �qÞ ¼
t

2
�2

0 þ
1
4
�4

0 þ ðt� 1þ 3�2
0Þ�2

q þ
9
4
�4

q
ð24Þ

However, we show below that this QQ phase cannot be more
stable than the other phases.

3.2. Bilayer Phase Diagrams

Minimizing Equations (10), (14), (17), (20) and (23) with respect
to both �q and yq, we obtain the phase diagram for the cou-
pled bilayer. As a reference, we first show in Figure 2 b the
phase diagram in the decoupled case (L= 0) for t= 0.8. This
can easily be obtained from Figure 2 a by combining its two
cross-sections (one for �0 and one for y0) at t= 0.8. Figure 3
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gives the phase diagram for a coupled bilayer when a) L=

0.02 and b) L= 0.2, while the temperature is fixed to t= 0.8 as
before. On the ð�0;y0Þ-plane, we have identified the phase
which has the lowest energy, whereas possible phase coexis-
tence regions between different phases were ignored. All the
boundary lines indicate first-order transitions. Since the free-
energy Equation (1) is invariant under the exchange of �$ y,
the phase diagrams are symmetric about the diagonal line
�0 ¼ y0 as the upper and lower leaflets have been chosen ar-
bitrarily. These phase diagrams are also symmetric under rota-
tion of 180 degrees around the origin because Equation (1) is
invariant (except for the linear terms) under the simultaneous
transformations of �! �� and y! �y. This is reasonable as
the labels of “A” or “B” for the two lipids were assigned arbitra-
rily. As a consequence, the phase diagrams are also symmetric
about the diagonal line �0 ¼ �y0. The symmetries with re-
spect to both �0 ¼ 0 and y0 ¼ 0 in Figure 2 b for L= 0 are
now broken because of the coupling between the two leaflets.

When the coupling parameter is small (L= 0.02), the global
topology of the phase diagram resembles that of the uncou-
pled case presented in Figure 2 b. Close to the origin,
�0 ¼ y0 ¼ 0, there is a region of SS phase surrounded by
eight other phases: two SH, two HS, two HH, and two HH*
phases. The HH phase appearing in the region of �0 < 0 and
y0 < 0 is a combination of the two inverted hexagonal struc-
tures on each monolayer. One sees that the HH* phase ap-
pears in the regions of �0y0 < 0, where the hexagonal and the
inverted hexagonal structures are coupled to each other.

A remarkable feature of this phase diagram is the existence
of the SS and HH phases in the regions where either �0j j or
y0j j are large. These outer SS and HH phases extend up to the

maximum or the minimum values of the compositions. These
regions of the SS and HH phases with L>0 roughly corre-
spond to those of the SD (DS) and HD (DH) phases, respective-
ly, in Figure 2 b with L= 0. Hence, the modulated structure in
one of the monolayers induces the same modulated phase in
the other monolayer due to the coupling term. Notice that the
SD (DS) phase and HD (DH) phase do not exist in Figure 3 a.
We further remark that the extent of the four DD phase re-

gions is almost unaffected by
the coupling. Even when the
temperature is lowered by de-
creasing t, only the phases locat-
ed close to the origin
(�0 ¼ y0 ¼ 0) would expand,
and the global topology does
not change substantially.

For a larger value of the cou-
pling parameter (L= 0.2), the
five regions of the SS phase
merge together forming one
single continuous SS region. The
four HH regions are still distinct
and separate the SS region from
four DD phase regions. Note
that in Figure 3 b, all phases
have a symmetric combination

of phase modulation such as SS or HH. The asymmetric combi-
nation such as the SH phase does not appear, because the
large coupling parameter strongly prefers symmetric phases of
equal modulations in the two monolayers, although the �q

and yq amplitudes of the two modulated monolayers are not
the same in the stripe SS phase (or the hexagonal HH phase).
As the value of L increases from 0.02 to 0.2, first the SH phase
disappears, followed by the disappearance of the HH* phase.
When the value of L increases further, the regions of the SS
and HH phases expand at the expense of the DD phase re-
gions. This means that the coupling between the monolayers
causes more structural order in the bilayer. Finally we remark
that the QQ phase was never found to be more stable than
any of the other phases considered above.

Although we have so far assumed that L is positive, the
phase diagrams for L<0 can be easily obtained from those
for L>0 by rotating them by 90 degrees around the origin.
This is because the free-energy Equation (1) is invariant under
the simultaneous transformations of either �! �� and
L! �L , or y! �y and L! �L.

3.3. Modulated Bilayer Dynamics

In order to check the validity of the obtained phase diagram
and to investigate the dynamics of coupled modulated bilay-
ers, we consider now the time evolution of the coupled equa-
tions for f and y, as shown in Equation (25):

@�

@t
¼ L�r2 dF

d�
;

@y

@t
¼ Lyr2 dF

dy
ð25Þ

Here we have assumed that both f and y are conserved order
parameters in each of the monolayers (model B in the Hohen-
berg–Halperin classification[27]). For simplicity, the kinetic coeffi-
cients L� and Ly are taken to be unity, and both the hydrody-
namic effect and thermal fluctuations are neglected. We solve
the above equations numerically in 2D using the periodic
boundary condition. Each simulation starts from a disordered
state with a small random noise around the average composi-

Figure 3. Mean-field phase diagram of coupled modulated bilayers for t = 0.8. �0 and y0 are the average compo-
sitions in the two leaflets. The coupling parameter is chosen to be a) L= 0.02 and b) L = 0.2. The notations of the
different phases are described in Section 3.1. All the phases are separated by first-order transition lines. The phase
diagram is symmetric with respect to the two principal diagonals �0 ¼ y0 and �0 ¼ �y0.
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tions �0 and y0. In Figure 4, we show typical equilibrium pat-
terns of f, y, f+y and f�y for two choices of parameters.
The f+y pattern is presented here because this quantity can
be directly observed in the experiment on Montal–Mueller bi-
layers using fluorescence microscopy.[12] The quantity f�y

measures the concentration contrast between the f and y

leaflets. Time is measured in discrete time steps, and t = 5000
corresponds to a well-equilibrated system. In all the simula-
tions below, the temperature is fixed to be t= 0.8, correspond-
ing to the weak segregation regime. Notice that all the pat-
terns in Figure 4 are presented
with the same gray scale.

Figure 4 a illustrates the cou-
pling between a hexagonal
phase with �0 ¼ 0:2 and an in-
verted hexagonal phase with
y0 ¼ �0:2 in the weak coupling
regime (L= 0.02). Being consis-
tent with the phase diagram of
Figure 3 a, this parameter choice
yields the HH* phase as seen
from the pattern of f+y, where
the two hexagonal structures are
superimposed. We note that the
difference in the order parame-
ter f�y also exhibits a hexago-
nal structure.

Figure 4 b shows the equilibri-
um patterns for �0 ¼ 0:5 and
y0 ¼ 0 in the strong coupling
regime (L= 0.2). If there were
no coupling, the f-monolayer
would not exhibit any modula-
tion (as it is in its own disor-
dered phase), whereas the y-
monolayer is in the striped
phase. We clearly see that, due
to the coupling effect, the stripe
structure is induced in the pat-

tern of f. This corresponds to
the SS phase shown in Fig-
ure 3 b. The periodicities of the
two striped structures are the
same, although their amplitudes
differ. Notice that the modula-
tion phase of f+y is shifted by
p relatively to that of f�y. Since
the patterns in Figure 4 would
correspond to the equilibrium
configurations, they can be com-
pared with the phase diagrams
in Figure 3. We conclude that
these simulation results indeed
reproduce the predicted equili-
brium modulated structures.

4. Coupled Monolayers with Two Different q*

We consider next the more general case in which the preferred
wavelengths of modulation in the two uncoupled leaflets are
different, q*

� 6¼q*
y . The free-energy densities cannot be obtained

analytically as was done in Section 3.1, because there is not a
single periodicity on which one can average f(r) and y(r). Due
to such a difficulty in the analytical treatment, we present
below the results of numerical simulations, relying on Equa-
tion (25) for the time evolution of the two coupled-order pa-
rameters.

Figure 4. Equilibrium patterns of coupled modulated monolayers with t= 0.8. Setting D = C = 1 implies the same
q* in both monolayers. The patterns of f, y, f+y, and f�y at t = 5000 are presented. The other parameters are
chosen to be a) �0 ¼ 0:2, y0 ¼ �0:2, L= 0.02, and b) �0 ¼ 0:5, y0 ¼ 0, L = 0.2.

Figure 5. Patterns of coupled modulated monolayers with t = 0.8. The patterns of f, y, f+y, and f�y are pre-
sented for simulation time, t = 5000, and the average compositions are set to be �0 ¼ y0 ¼ 0. The other parame-
ters are chosen to be a) D = C = 1, L= 0.02, b) D = 0.1296, C = 0.36, L= 0.02, c) D = 0.1296, C = 0.36, L= 0.2, and
d) D = 0.1296, C = 0.36, L = 0.4. In all cases but (a), D¼6 C and the two periodicities are nonequal, q*

� 6¼q*
y .
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In Figure 5, we show the patterns for t= 0.8 and
�0 ¼ y0 ¼ 0, when both monolayers exhibit the striped phase
without the coupling. As a reference, we show in Figure 5 a
the case when D = C = 1 and L= 0.02 corresponding to the SS
phase in Figure 3 a. The patterns of f and y match each other
as the composition difference f�y vanishes throughout the
system. In Figure 5 b, the parameters are chosen to be D =

0.1296, C = 0.36 and L= 0.02. The preferred wavenumbers of
the two monolayers are different: q*

y ¼ 1:67q*
� for uncoupled

leaflets. The above set of parameters, especially D and C, is
chosen in such a way that the amplitudes of the two stripes
are nearly equal. As long as the coupling parameter is small,
the two stripes of different periodicities are formed rather in-
dependently. The superposition of the two striped structures
produces an interference pattern resulting in a new modula-
tion as seen from the pattern of f+y. The striped modula-
tions of f and y are almost parallel or perpendicular to each
other.

When L increases, up to L= 0.2 as in Figure 5 c, the y-field
exhibits a complex pattern in which two different length scales
coexist (reflecting q*

� and q*
y), whereas the pattern of f is char-

acterized by a single mode (reflecting q*
� ). The patterns of f

and y almost match each other when L= 0.4, as seen in Fig-
ure 5 d. In this case, the modulation with a longer wavelength
(q*

� ) dominates both monolayers. Figures 5 b–d provide a typi-
cal sequence of morphological changes, that is, interference
pattern!two-mode pattern!single-mode pattern, as the cou-
pling constant L is increased.

To further analyze the temporal correlations of the two
order parameters, f and y, we have plotted in Figure 6 the
time evolution of the quantity shown in Equation (26):

DðtÞ ¼ 1
L2

Z
dr½�ðr; tÞ � yðr; tÞ�2 ð26Þ

where L = 128 is the linear system size in the simulations.
(c), (a), (g) and (d) correspond to the time evolu-
tions of D(t) in Figures 5 a, b, c, and d respectively. The (c, a)

first increases and then approaches zero, as the patterns of the
two stripes coincide in the late stage. In (b), (a) increases in
two separate stages. At first it increases because the growth
rate of the modulation with the smaller wavelength (corre-
sponding to y) is faster than that with larger periodicity (corre-
sponding to f) as is also revealed from the linear stability anal-
ysis of Equation (25) which will be published elsewhere. Later,
the value of D remains large for small coupling parameter
(L= 0.02). When the coupling becomes even stronger (L=

0.2) as for (g) in (c), the value of D is suppressed compared
to (a, b), because f and y tend to have more overlap for
larger L. The same applies for (d, d) with L= 0.4 as com-
pared to (g, c).

5. Discussion and Conclusions

We propose a minimal model describing the coupling phe-
nomena between two modulated bilayers. Considering 2D
case, we obtain the mean-field phase diagram when the two
coupled and spatially modulated monolayers have the same
preferred periodicity. Various combinations of modulated
phases can exist, such as the SS, HH, HH* and SH (HS) phases
as described in Section 3. We have seen that modulations in
one of the monolayers induce similar modulations in the other.
The region of the induced modulated phase expands as the
coupling parameter becomes larger.

When the two monolayers have different inherent wave-
lengths in the decoupled case, we have conducted numerical
simulations to investigate the morphologies and dynamics of
the coupled system. We obtain several complex patterns aris-
ing from the frustration induced by the two incommensurate
structures. As the coupling constant L increases, the two dif-
ferent modes start to interfere with each other and eventually
coincide. The time evolution of the striped structures can take
place in two steps, reflecting the different growth rate of the
two modulations.

It is instructive to rewrite the free-energy Equation (1) in
terms of the sum and the difference of f and y, that is,
h� ¼ �� y. When D = C = 1, we obtain Equation (27):

F hþ;h�
	 


¼
Z

dr

�
ðr2hþÞ2 � ðrhþÞ2 þ

1
4
ðt�LÞh2

þ þ
1

32
h4
þ � mþhþ

þðr2h�Þ2 � ðrh�Þ2 þ
1
4
ðtþLÞh2

� þ
1

32
h4
� � m�h� þ

3
16

h2
þh2
�

�

ð27Þ

where m� ¼ ðm� � myÞ=2. Hence the coupling term between hþ
and h� in the free energy takes the form of an h2

þh2
� term with

a numerical positive coefficient. The original coupling parame-
ter L enters in the coefficients of the h2

þ and h2
� terms (but

not in the h2
þh2
� coupling term). It shifts the respective transi-

tion temperatures of hþ and h� in opposite directions. When
the gradient terms are absent and m� ¼ 0, a similar model was
considered by MacKintosh and Safran, who studied transitions
between lamellar and vesicle phases in two-component fluid
bilayers.[28]

Figure 6. Time evolutions of D defined by Equation (26). (c), (a),(g)
and(d) correspond to the parameters of Figures 5a, b, c and d, respective-
ly.
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The proposed free energy Equation (1) has some analogies
to the previous model for the rippled phase in lipid bilayers.[29]

It was argued that the coupling between the membrane curva-
ture and the asymmetry in the area per molecule between the
two monolayers would induce a structural modulation of a bi-
layer. By considering a similar mechanism, Kumar et al.[30] inves-
tigated various modulated phases in two-component bilayer
membranes. They claimed that the phase behavior of two-
component bilayers resembles that of three-component mono-
layer. This is because the three different local combinations of
upper/lower composition in bilayers (A/B, B/A, and A/A for
excess of A), would correspond to three different types of mol-
ecules for the monolayer. One of the new aspects in our
model is that the preferred wavelengths of the two monolay-
ers can, in general, be different from one another leading to a
frustrated bilayer state.

We also point out that there are some similarities between
coupled modulated structures and the problem of atoms ad-
sorbed on a periodic solid substrate. The latter topic has been
extensively studied within the Frenkel–Kontorova (FK) model
which provides a simple description of the commensurate–in-
commensurate transition.[31] Our model and the FK model are
analogous in the sense that there are two natural length scales
whose ratio changes as a function of other model parameters.
In the FK model, however, these length scales are quenched,
whereas in our model they are annealed.

Another related experimental system can be seen for sur-
face-induced ordering in thin film of diblock copolymers.[32]

When the surface is periodically patterned, a tilt of the lamellae
is induced in order to match the surface periodicity. The situa-
tion becomes more complex if a copolymer melt is confined
between two surfaces. An interesting case arises when the
spacing between the two surfaces is incommensurate with the
lamellar periodicity.[32]

For systems out of equilibrium, spatial resonances and su-
perposition patterns combining stripes and/or hexagons were
investigated in a reaction–diffusion model with interacting
Turing modes of different wavelengths.[33] These models were
successful in reproducing hexagonal superlattice patterns
which are known as “black-eyes”. Although the mechanism of
pattern formation is different than in our model, we observe
similar superposition patterns as reported in ref. [33] , such as
hexagons on stripes or hexagons on hexagons (not shown
herein).

A more detailed study of the present model and several in-
teresting extensions will be published elsewhere. One possible
extension is to consider vector order parameters describing,
for example, the molecular tilt for coupled bilayers.[34, 35] When
the two order parameters are vectors, the nature of the transi-
tions between different phases can be different, and even the
square phase may exist in thermodynamic equilibrium.[36]

Acknowledgements

We thank T. Kato, S. L. Keller, M. Schick, and K. Yamada for useful
discussions. YH acknowledges a Research Fellowship for Young

Scientists No. 215097 from the Japan Society for the Promotion
of Science (JSPS). SK acknowledges support by KAKENHI (Grant-
in-Aid for Scientific Research) on Priority Areas “Soft Matter Phys-
ics” and Grant No. 21540420 from the Ministry of Education, Cul-
ture, Sports, Science and Technology of Japan. DA acknowledges
support from the Israel Science Foundation (ISF) under grant No.
231/08 and the US–Israel Binational Foundation (BSF) under
grant No. 2006/055.

Keywords: lipids · membranes · phase transitions · self-
assembly · statistical thermodynamics

[1] M. Seul, D. Andelman, Science 1995, 267, 476–483.
[2] D. Andelman, R. E. Rosensweig, J. Phys. Chem. B 2009, 113, 3785–3798.
[3] D. Andelman, R. E. Rosensweig, Polymers, Liquids and Colloids in Electric

Fields: Interfacial Instabilities, Orientation and Phase Transitions (Eds. : Y.
Tsori, U. Steiner), World Scientific, Singapore, 2009.

[4] C. L. Dennis, R. P. Borges, L. D. Buda, U. Ebels, J. F. Gregg, M. Hehn, E.
Jouguelet, K. Ounadjela, I. Petej, I. L. Prejbeanu, M. J. Thornton, J. Phys.
Condens. Matter 2002, 14, R1175-R1262.

[5] T. Garel, S. Doniach, Phys. Rev. B 1982, 26, 325–329.
[6] R. E. Rosensweig, Ferrohydrodynamics, Cambridge University, New York,

1985.
[7] D. Andelman, F. Brochard, J.-F. Joanny, J. Chem. Phys. 1987, 86, 3673–

3681.
[8] E. Sackmann, Structure and Dynamics of Membranes: From Cells to Vesi-

cles (Eds. : R. Lipowsky, E. Sackmann), Elsevier, Amsterdam, 1995.
[9] I. W. Hamley, The Physics of Block Copolymers, Oxford University, Oxford,

1998.
[10] G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers,

Oxford University, Oxford, 2005.
[11] S. Leibler, D. Andelman, J. Phys. (France) 1987, 48, 2013–2018.
[12] M. D. Collins, S. L. Keller, Proc. Natl. Acad. Sci. USA 2008, 105, 124–128.
[13] M. Montal, P. Mueller, Proc. Natl. Acad. Sci. USA 1972, 69, 3561–3566.
[14] A. J. Wagner, S. Loew, S. May, Biophys. J. 2007, 93, 4268–4277.
[15] G. G. Putzel, M. Schick, Biophys. J. 2008, 94, 869–877.
[16] T. Baumgart, S. T. Hess, W. W. Webb, Nature 2003, 425, 821–824.
[17] S. Rozovsky, Y. Kaizuka, J. T. Groves, J. Am. Chem. Soc. 2005, 127, 36–37.
[18] S. L. Keller, W. H. Pitcher, W. H. Huestis, H. M. McConnell, Phys. Rev. Lett.

1998, 81, 5019–5022.
[19] S. L. Keller, H. M. McConnell, Phys. Rev. Lett. 1999, 82, 1602–1605.
[20] L. Leibler, Macromolecules 1980, 13, 1602–1617.
[21] G. Gompper, M. Schick, Phys. Rev. Lett. 1990, 65, 1116–1119.
[22] R. R. Netz, D. Andelman, M. Schick, Phys. Rev. Lett. 1997, 79, 1058–1061.
[23] S. Villain-Guillot, D. Andelman, Eur. Phys. J. B 1998, 4, 95–101.
[24] S. Villain-Guillot, R. R. Netz, D. Andelman, M. Schick, Physica A 1998,

249, 285–292.
[25] S. May, Soft Matter 2009, 5, 3148–3156.
[26] K. Yamada, S. Komura, J. Phys. Condens. Matter 2008, 20, 155107.
[27] P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys. 1977, 49, 435–479.
[28] F. C. MacKintosh, S. A. Safran, Phys. Rev. E 1993, 47, 1180–1183.
[29] H. Kodama, S. Komura, J. Phys. II 1993, 3, 1305–1311.
[30] P. B. S. Kumar, G. Gompper, R. Lipowsky, Phys. Rev. E 1999, 60, 4610–

4618.
[31] P. M. Chaikin, T. C. Lubensky, Principles of Condensed Matter Physics,

Cambridge University, Cambridge, 1995.
[32] Y. Tsori, D. Andelman, J. Chem. Phys. 2001, 115, 1970–1978.
[33] L. Yang, M. Dolnik, A. M. Zhabotinsky, I. R. Epstein, Phys. Rev. Lett. 2002,

88, 208303.
[34] C.-M. Chen, T. C. Lubensky, F. C. MacKintosh, Phys. Rev. E 1995, 51, 504–

513.
[35] U. Seifert, J. Shillcock, P. Nelson, Phys. Rev. Lett. 1996, 77, 5237–5240.
[36] C. Tang, E. M. Lennon, G. H. Fredrickson, E. J. Kramer, C. J. Hawker, Sci-

ence 2008, 322, 429–432.

Received: August 5, 2009
Published online on October 21, 2009

2846 www.chemphyschem.org � 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 2009, 10, 2839 – 2846

D. Andelman et al.

http://dx.doi.org/10.1126/science.267.5197.476
http://dx.doi.org/10.1021/jp807770n
http://dx.doi.org/10.1088/0953-8984/14/49/201
http://dx.doi.org/10.1088/0953-8984/14/49/201
http://dx.doi.org/10.1103/PhysRevB.26.325
http://dx.doi.org/10.1063/1.451970
http://dx.doi.org/10.1063/1.451970
http://dx.doi.org/10.1073/pnas.0702970105
http://dx.doi.org/10.1073/pnas.69.12.3561
http://dx.doi.org/10.1529/biophysj.107.115675
http://dx.doi.org/10.1038/nature02013
http://dx.doi.org/10.1021/ja046300o
http://dx.doi.org/10.1103/PhysRevLett.81.5019
http://dx.doi.org/10.1103/PhysRevLett.81.5019
http://dx.doi.org/10.1103/PhysRevLett.82.1602
http://dx.doi.org/10.1021/ma60078a047
http://dx.doi.org/10.1103/PhysRevLett.65.1116
http://dx.doi.org/10.1103/PhysRevLett.79.1058
http://dx.doi.org/10.1007/s100510050355
http://dx.doi.org/10.1016/S0378-4371(97)00476-7
http://dx.doi.org/10.1016/S0378-4371(97)00476-7
http://dx.doi.org/10.1039/b901647c
http://dx.doi.org/10.1088/0953-8984/20/15/155107
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/PhysRevE.47.1180
http://dx.doi.org/10.1051/jp2:1993104
http://dx.doi.org/10.1103/PhysRevE.60.4610
http://dx.doi.org/10.1103/PhysRevE.60.4610
http://dx.doi.org/10.1063/1.1379759
http://dx.doi.org/10.1103/PhysRevLett.88.208303
http://dx.doi.org/10.1103/PhysRevLett.88.208303
http://dx.doi.org/10.1103/PhysRevE.51.504
http://dx.doi.org/10.1103/PhysRevE.51.504
http://dx.doi.org/10.1103/PhysRevLett.77.5237
http://dx.doi.org/10.1126/science.1162950
http://dx.doi.org/10.1126/science.1162950
www.chemphyschem.org

