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Abstract
The Poisson–Boltzmann mean-field description of ionic solutions has been successfully used in
predicting charge distributions and interactions between charged macromolecules. While the
electrostatic model of charged fluids, on which the Poisson–Boltzmann description rests, and its
statistical mechanical consequences have been scrutinized in great detail, much less is
understood about its probable shortcomings when dealing with various aspects of real physical,
chemical and biological systems. These shortcomings are not only a consequence of the
limitations of the mean-field approximation per se, but perhaps are primarily due to the fact that
the purely Coulombic model Hamiltonian does not take into account various additional
interactions that are not electrostatic in their origin. We explore several possible
non-electrostatic contributions to the free energy of ions in confined aqueous solutions and
investigate their ramifications and consequences on ionic profiles and interactions between
charged surfaces and macromolecules.

1. Introduction

The traditional approach to ions in solution has been the
mean-field Poisson–Boltzmann (PB) formalism. This ap-
proach adequately captures the main features of electrostatic
interactions at weak surface charges, low ion valency, and
high temperature [1, 2]. It stems from a Coulombic model
Hamiltonian that includes only purely electrostatic interactions
between different charged species. The limitations of the
PB approach, which rests on a collective and continuous
description of statistical charge distributions, become partic-
ularly important in highly-charged systems, where counterion-
mediated interactions between charged bodies cannot be
described by the mean-field approach that completely neglects
ion correlations and charge fluctuations [3]. These mean-field

limitations have been successfully bypassed and have led to
more refined descriptions that capture some of the important
non-mean-field aspects of Coulomb fluids [4].

Beside electrostatic interactions that are universal,
omnipresent non-electrostatic interactions are specific and
dependent on the nature of the ionic species, solvent
and confining interfaces. Because it is difficult, perhaps
impossible, to devise a universal theory accounting for all
non-electrostatic effects, such additional interactions need to
be treated separately to describe specific electrolyte features
that go beyond regular PB theory. These effects depend on
ionic chemical nature, size, charge, polarizability and solvation
(preferential ion–solvent interaction [5–7]).

In this review we describe how adding non-electrostatic
terms to the system free energy yields modified PB equations
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and ionic density profiles, and differentiates between the way
different ionic species interact with macromolecules. While
it has long been recognized that ions can have such different
effects on macromolecular interactions [8], only recently have
such ionic features been accounted for within electrostatic
mean-field theory. Examples include ion effects on surface
tension [9] and precipitation of proteins from solutions [10].
The latter led to the so-called Hofmeister ranking of different
ions according to their surface activity. Adsorption of
ions and/or surfactants to charged interfaces also contains
substantial contributions from non-electrostatic degrees of
freedom, as was shown within the Ninham–Parsegian theory
of charge regulation at surfaces [11].

The outline of this paper is as follow. After reviewing
the standard PB theory in section 2, we present in section 3
how the addition of steric effects result in saturation of ionic
profiles close to charged interfaces. In section 4 we show
how non-electrostatic interactions between ions and charged
membranes can cause a phase transition between two lamellar
systems of different periodicity. Solvation effects are the topic
discussed in section 5, where local variation of the dielectric
function in solvent mixtures and ion–solvent interactions lead
to changes in ionic and solvent profiles close to charged
interfaces. Finally, in section 6 possible polarization effects
of ions in solution are added to their ionic character, again
resulting in different behavior close to charged interfaces.

2. The Poisson–Boltzmann model: summary and
main results

The PB theory is a useful starting point for many theoretical
ramifications because it relies on a simple and analytically
tractable model that can be easily extended and amended.
Although the theory has its own well-understood limitations,
it yields meaningful results in good agreement with many
experiments [1].

The model can be cast in many geometries but we shall fo-
cus on the simplest planar system, as depicted in figure 1. Two
charged planar plates (of infinite extent), located at z = ±D/2,
are immersed in an electrolyte bath. Each plate carries a charge
density of σ (per unit area) and their inter-surface separation
D is a tunable system parameter. The ionic solution is denoted
as z+:z− and is composed of a solvent of dielectric constant
ε and two types of ions: cations of valency z+ and local
density (number per unit volume) n+(z), and anions of valency
z− with local density n−(z). The finite system of thickness
D is in contact with an electrolyte bath of bulk densities
nb± obeying the electroneutrality condition: z+nb+ = z−nb−.
Throughout the paper, we will use the convention that z−
(denotes the valency of the anions) is taken as a posi-
tive number, hence, their respective charge is written as
−ez−.

The free energy within the PB model FPB can be derived
in numerous ways as can be found in the literature [1]. With
our notation FPB is a function of the densities n± and the local

Figure 1. Schematic illustration of the model system. The two plates
residing at z = ±D/2 are charged with surface charge density σ .
The electrolyte ions are denoted by ⊕ and �. Their densities are
n+(z) and n−(z).

electrostatic potential ψ:

FPB =
∫

d3r
[
− ε

8π
(∇ψ)2 + (z+n+ − z−n−)eψ

]

+ kBT
∫

d3r
[
n+ ln(a3n+)+ n− ln(a3n−)− n+ − n−

]

−
∫

d3r
[
μ+n+ + μ−n−

]
. (1)

The above free energy is a functional of three independent
fields: n± and ψ . The first integral in (1) is the electrostatic
energy, while the second represents the ideal mixing entropy
of a dilute solution of the ± ions. Note that a microscopic
length scale a was introduced in the entropy terms above. Only
one such microscopic length scale will be used throughout
this paper, defining a reference density associated with close-
packing n0 = 1/a3.

The last integral in (1) is written in terms of the chemical
potentials μ± of the ± ions. Alternatively, the chemical
potential can be regarded as a Lagrange multiplier, setting the
bulk densities to be nb± = exp(μ±/kBT )/a3.

The thermodynamic equilibrium state is given by
minimizing the above free energy functional. Taking the
variation of the free energy (1) with respect to n± yields the
Boltzmann distribution of the ions in the presence of the local
potential ψ:

δFPB

δn±
= ±ez±ψ + kBT ln(n±a3)− μ± = 0 (2)

wherefrom
n± = nb

± exp (∓ez±ψ/kBT ) . (3)

Similarly, taking the variation with respect to the potential ψ
yields the Poisson equation connecting ψ with the ± densities:

δFPB

δψ
= ε

4π
∇2ψ + ez+n+ − ez−n− = 0. (4)

Combining the Boltzmann distribution with the Poisson
equation yields the familiar Poisson–Boltzmann equation:

∇2ψ = −4πe

ε

[
z+nb

+e−ez+ψ/kB T − z−nb
−eez−ψ/kBT

]
(5)
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that serves as a starting point for various extensions presented
in the sections to follow.

In addition to the volume contribution (1) of the free
energy, we need to include a surface electrostatic energy term
Fs, which couples the surface charge density σ with the surface
value of the potential ψ(z= ± D/2) = ψs. This surface term
has the form

Fs =
∫

A
d2r σψs (6)

and takes into account the fact that we work in an ensemble
where the surface charge density is fixed. Variation of FPB + Fs

with respect toψs yields the well-known electrostatic boundary
condition

δ

δψs
(FPB + Fs) = ε

4π
n̂ · ∇ψ + σ = 0 (7)

wherefrom

n̂ · ∇ψ|s = −4π

ε
σ (8)

where n̂ is a unit vector normal to the surface. This boundary
condition can also be interpreted as the electroneutrality
condition since the amount of mobile charge should exactly
compensate the surface charge.

The above PB equation is valid in any geometry. But if
we go back to the planar case with two parallel plates, it is
straightforward to calculate the local pressure PPB at any point
z between the plates. In chemical equilibrium PPB should be
a constant throughout the system. Namely, PPB is independent
of the position z and can be calculated by taking the proper
variation of the free energy with respect to the inter-plate
spacing D:

PPB = − ε

8π
(ψ ′)2 + kBT (n+ + n−) . (9)

The pressure is composed of two terms. The first is
the electrostatic pressure stemming from the Maxwell stress
tensor. This term is negative, meaning an attractive force
contribution acting between the plates. The second term
originates from the ideal entropy of mixing of the ions and
is positive. This term is similar to an ‘ideal gas’ van’t Hoff
osmotic pressure of the ± species.

A related relation can be obtained from (9) for one charged
surface. Comparing the pressure PPB calculated at contact with
the charged surface, with the distal pressure (z → ∞) results
in the so-called Graham equation used in colloid and interfacial
science [12]

σ 2 = εkBT

2π
(ns

+ + ns
− − nb

+ − nb
−) (10)

where ns± are the values of the counterion and co-ion densities
calculated at the surface.

Note that the osmotic pressure as measured in experiments
can be written as the difference between the local pressure and
the electrolyte bath pressure:

� = PPB − kBT
(
nb

+ + nb
−
)
. (11)

We now mention two special cases separately: the
counterion only case and the linearized Debye–Hückel theory.

2.1. The counterion only case

In the counterion only case no salt is added to the solution and
there are just enough counterions to balance the surface charge.
For this case we have chosen arbitrarily the sign of the surface
charge to be negative, σ < 0. By setting n+ ≡ 0, the free
energy is written only in terms of the anion density in solution,
n ≡ n− and z− = z

FPB =
∫

d3r

[
− ε

8π
(∇ψ)2 − eznψ + kBT

(
n ln

n

n0
− n

)]
.

(12)
The local pressure PPB also contains only osmotic pressure of
one type of ions (n−), apart from the Maxwell stress term.

2.2. The linearized Debye–Hückel theory

When the surface charges and potentials are small, eψs 
 kBT
(ψs 
 25 mV at room temperature), the PB equation can
be linearized and matches the Debye–Hückel theory. For
the simple and symmetric 1:1 monovalent electrolytes the PB
equation reduces to:

∇2� = λ−2
D � (13)

where the dimensionless potential is defined as � = eψ/kBT
and the Debye screening length is λD = √

εkBT/8πe2nb.
The main importance of the Debye length λD is to indicate a
typical length for the exponential decay of the potential around
charged objects and boundaries: �(z) ∼ exp(−z/λD). The λD

length is about 3 Å for nb = 1 M of NaCl and about 1 μm for
pure water. It is convenient to express the Debye length in term
of the Bjerrum length lB = e2/εkBT as λD = √

1/8πlBnb. For
water at room temperature lB  7 Å.

Returning now to the general nonlinear PB model, its free
energy (1) can also be expressed in terms of the dimensionless
potential � . For a 1:1 symmetric electrolyte we write it as:

FPB/kBT =
∫

d3r

[
− 1

8πlB
(∇�)2 + (n+ − n−)�

]

+
∫

d3r
[
n+ ln(n+/nb)+ n− ln(n−/nb)

− n+ − n− + 2nb
]

(14)

where the bulk contribution to the free energy is subtracted in
the above expression.

In the next sections we will elaborate on several extensions
and modifications of the PB treatment. Results in terms of
ion profiles and inter-surface pressure will be presented and
compared to the bare PB results.

3. Steric effects: finite ion size

At sufficiently high ionic densities steric effects prevent ions
from accumulating at charged interfaces to the extent predicted
by the standard PB theory. This effect has been noted
already in the work of Eigen [13], elaborated later in [14]
and developed into a final form by Borukhov et al [15] and
more recently in [16]. Steric constraints lead to saturation
of the ion density near the interface and, thus, increase their

3
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Figure 2. Counterions density profile calculated for the MPB model. The solid line represents the standard PB model, while the dotted and
dashed lines represent the MPB results with molecular sizes of 7.5 and 10 Å, respectively. In (a) the salt is symmetric 1:1, while in (b) it is

asymmetric 1:4. Other parameters are: σ = −1/50 Å
−2

, nb = 0.1 M, and ε = 80.

concentration in the rest of the interfacial region. This follows
quite generally from energy-entropy competition: the gain
from the electrostatic energy is counteracted by the entropic
penalty associated with ion packing. Beyond the mean-field
(e.g., integral equation closure approximations), correlations in
local molecular packing clearly lead to ion layering and non-
monotonic interactions between interfaces [17, 18].

Steric effects lead to a modified ionic entropy that in turn
gives rise to a modified Poisson–Boltzmann (MPB) equation,
governing the distribution of ions in the vicinity of charged
interfaces. The main features of the steric effect can be derived
from a lattice-gas model introduced next [19]. Other possible
approaches that were considered include the Stern layer
modification of the PB approach, extensive MC simulations or
numeric solutions of the integral closures relations [20].

We start with a free energy where the entropy of mixing
is taken in its exact lattice-gas form, without taking the dilute
solution limit. Instead of point-like particles, the co-ions and
counterions are now modeled as finite-size particles having the
same radius a. The free energy for a z+:z− electrolyte is now
a modification of FPB (1):

FMPB =
∫

d3r
[
− ε

8π
(∇ψ)2 + (z+n+ − z−n−)eψ

]

+ kBT
∫

d3r
[
n+ ln(a3n+)+ n− ln(a3n−)

]

+ kBT

a3

∫
d3r (1 − a3n+ − a3n−) ln(1 − a3n+ − a3n−)

−
∫

d3r
[
μ+n+ + μ−n−

]
. (15)

Taking the variation with respect to the three fields: n±
and ψ , yields the MPB equilibrium equations. We give them
below for two cases: (i) symmetric electrolytes z = z+ = z−;
and, (ii) 1:z asymmetric ones.

In the former case the MPB equation is written as:

∇2ψ = 8πeznb

ε

sinh(ezψ/kBT )

1 − n̂ + n̂ cosh(ezψ/kBT )
(16)

while the local ion densities are

n± = nb
exp(∓ezψ/kBT )

1 − n̂ + n̂ cosh(ezψ/kBT )
(17)

where n̂ = a3(nb+ + nb−) is the bulk volume fraction of the
ions. Clearly, the ion densities saturate for large values of
the electrostatic potential, preventing them from reaching the
unphysical values that can be obtained in the standard PB
theory.

In the latter case of 1:z electrolytes, the MPB is obtained
in the form

∇2ψ = −4π

ε
(en+ − ezn−) (18)

with the corresponding local densities

n+ = znbe−eψ/kB T

1 − n̂ + n̂
(
eezψ/kB T + ze−eψ/kB T

)
/(1 + z)

(19a)

n− = nbezeψ/kB T

1 − n̂ + n̂
(
eezψ/kB T + ze−eψ/kB T

)
/(1 + z)

. (19b)

As discussed above, for large electrostatic potentials the
densities saturate at finite values dependent on n̂, z and nb.

Figure 2 shows the ion density profile close to a single
charged interface with fixed surface charge density σ , in
contact with an electrolyte bath of ionic density nb and for
several ionic sizes a. As is clear from figure 2 the steric
constraints limit the highest possible density in the vicinity of
the charged surface and, thus, extend the electrostatic double
layer further into the bulk, if compared to the standard PB
theory. The extent of the double layer depends crucially on

4
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the hardcore radius of the ions, a. Furthermore, the valency of
the counterions also affects the width of the saturated layer, as
clearly demonstrated by the comparison between figures 2(a)
and (b).

The local pressure PMPB can be calculated with analogy to
PPB of (9)

PMPB = − ε

8π
ψ ′2 + kBT

a3
ln

×
[

1 + 1

z+ + z−
n̂

1 − n̂

(
z−e−ez+ψ/kB T + z+eez−ψ/kB T

)]

(20)

and can be cast into the form of the contact theorem that
relates the value of the equilibrium osmotic pressure to the
values of the surface potential and its first derivative, yielding a
generalization of the standard Graham equation (10) presented
here for monovalent ions

σ 2  εkBT

2π

1

a3
ln

1 − 2a3nb

1 − a3ns+
. (21)

This analytical expression is valid in the limit that the co-ions
have a negligible concentration at the surface, ns− → 0. It is
instructive to find that for a → 0, expanding the logarithm
in (21), we recover the Graham equation for the standard PB
model (10).

4. PB and charge regulation in lamellar systems

4.1. The model free energy and osmotic pressure

In the previous sections the surface free energy Fs (6) was taken
in its simplest form assuming a homogeneous surface charge,
i.e. in the form of a surface electrostatic energy. We consider
now a generalized form of Fs where lateral mixing of charged
species is allowed within the surface and is described on the
level of regular solution theory [19].

Experimentally observed lamellar–lamellar phase transi-
tions in charged surfactant systems [21] provide an example
where non-electrostatic, ionic-specific interactions appear to
play a fundamental role. The non-electrostatic interactions
are limited to charged amphiphilic surfaces confining the
ionic solution. As evidenced in NMR experiments, ions not
only associate differently with the amphiphile–water interface,
but their binding may also restructure the interface they
contact [22]. Computer simulations also indicate that the
restructuring of the amphiphilic headgroup region should be
strongly influenced by the size of the counterion [23]. Such
conformational changes at the interface are possible sources
of non-ideal amphiphile mixing, because non-electrostatic ion
binding at the interface may effectively create two incompati-
ble types of amphiphiles: ion-bound and ion-detached.

We proposed a model [24] based on an extension
of the Poisson–Boltzmann theory to explain the first-order
liquid–liquid (Lα → Lα′ ) phase transition observed in osmotic
pressure measurements of certain charged lamellae-forming
amphiphiles [21]. Our starting point is the same as depicted
in figure 1. The free energy of the confined ions has several
contributions. The volume free energy, FPB, is taken to be the

same as the PB expression for the counterion only case (12).
Because all counterions in solution originate from surfactant
molecules, their integrated concentration (per unit area) must
be equal in magnitude and opposite in sign to the surface
charge density

2σ = e
∫ D/2

−D/2
n(z) dz. (22)

This is also the electroneutrality condition and can be
translated via Gauss’ law into the electrostatic boundary
condition (in Gaussian units): ψ ′(D/2) = ψ ′

s = 4πσ/ε,
linking the surface electric field ψ ′

s with the surface charge
density σ .

The second part of the total free energy comes from the
surface free energy, Fs, of the amphiphiles residing on the
planar bilayers. Here, we deviate from the Fs expression in (6)
because we allow the surfactants on the interface to partially
dissociate from their counterion in the spirit of the Ninham–
Parsegian theory of charge regulation [11]. The surface free
energy Fs has electrostatic and non-electrostatic parts as well
as a lateral mixing entropy contribution. Expressed in terms
of the dimensionless surface area fraction ηs = a2σ/e of
charged surfactants and dimensionless surface potential �s =
eψs/kBT , the free energy Fs is:

Fs = kBT

a2

∫
A

d2r

[
ηs�s − αsηs − 1

2
χsη

2
s

+ ηs ln ηs + (1 − ηs) ln(1 − ηs)

]
. (23)

The first term couples the surface charge and surface potential
as in (6), while the additional terms are the enthalpy
and entropy of a two-component liquid mixture: charged
surfactant with area fraction ηs and neutralized, ion-bound
surfactants with area fraction 1 − ηs. The dimensionless
parameters αs and χs are phenomenological, and denote
respectively the counterion–surfactant and the surfactant–
surfactant interactions at the surface. Here, αs < 0 means
that there is an added non-electrostatic attraction (favorable
adsorption free energy) between counterions and the surface;
the more counterions are associated at the surface, the smaller
the amount of remaining charged surfactant. A positive
χs parameter represents the tendency of surfactants on the
surface to phase separate into domains of neutral and charged
surfactants.

The total free energy Ftot is written as a functional of the
variables �(z), n(z), and a function of ηs, and includes the
conservation condition, (22), via a Lagrange multiplier, λs:

Ftot[�, n; ηs] = FPB+ Fs−λs

[
ηs − a2

∫ D/2

0
n(z) dz

]
. (24)

Next, we minimize Ftot with respect to the surface variable
ηs, and the two continuous fields n(z), �(z): dFtot/dηs =
δFtot/δn(z) = δFtot/δ�(z) = 0, corresponding to three
coupled Euler–Lagrange (EL) equations. The first one
connects the surface charge density ηs with the surface
potential �s

ηs

1 − ηs
= exp (λs + αs + χsηs −�s) . (25a)

5
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Figure 3. (a) The osmotic pressure� in units of 105 Pa; and, (b) the area fraction ηs = a2σ/e of surface charges, as function of inter-lamellar
spacing D for αs = −6, χs = 12 and a = 8 Å. The Maxwell construction gives a coexistence between a phase with D  39 Å and low
ηs � 0.1, and another with D  64 Å and ηs � 1. In (b) the two coexisting phases are denoted by squares and the dotted-dashed line shows
the tie-line in the coexisting region.

The second one is simply the Boltzmann distribution for the
spatially–dependent ion density

a3n(z) = exp (−λs +�(z)) (25b)

and the last one is the standard Poisson equation

� ′′(z) = 4πlBn(z). (25c)

In addition, the variation with respect to �s gives the usual
electrostatic boundary condition of the form

� ′(D/2) = � ′
s = 4πlBηs

a2
. (26)

The Lagrange multiplier, λs, acts as a chemical potential with
the important difference that it is not related to any bulk
reservoir, but rather to the concentration at the midplane, n(0).

The non-electrostatic, ion-specific surface interactions
govern the surface charged surfactant area fraction ηs, and
has the form of a Langmuir–Frumkin–Davis adsorption
isotherm [25]. Combining (25b) and (25c) together is
equivalent to the PB equation. Their solution, together with
the adsorption isotherm (25a), completely determines the
counterion density profile n(z), the mean electrostatic potential
�(z), and yields the osmotic pressure �. We will apply this
formalism to a specific example of lamellar–lamellar phase
transitions next [24].

4.2. The lamellar–lamellar transition in amphiphilic systems

The typical isotherm�(D) shown in figure 3(a) exhibits a first-
order phase transition from one free energy branch at large
inter-lamellar separation D to another at smaller D—with a
coexistence region in between. For given values of αs and χs

(chosen in the figure to be αs = −6 and χs = 12), and for
large enough D (D � 64 Å), most counterions are dissociated
from surfaces, ηs � 1, and the osmotic pressure follows the
standard PB theory for (almost) fully dissociated surfactants.

For smaller values of D (D < 39 Å), most counterions bind to
the surface ηs � 0.1 and the isotherm follows another branch,
characterized by a much smaller surface charge of only about
10% of the fully dissociated value. In the intermediate D range
(39 Å � D � 64 Å), the system is in a two-phase coexistence,
the osmotic pressure � has a plateau and ηs changes from one
branch to the second (figure 3(b)).

Our model is motivated by experiments [21] on the
surfactant homolog series: DDACl, DDABr and DDAI4. The
main experimental observation is reproduced in figure 4 along
with our model fittings. When Cl− serves as the counterion,
as in DDACl, the osmotic pressure isotherm�(D) follows the
usual PB result. When Br− is the counterion, as in DDABr,
one clearly observes a lamellar–lamellar phase transition from
large inter-lamellar spacing of 60 Å to small inter-lamellar
spacings of about 10 Å. In addition, for the largest counterion,
I−, as in DDAI, the lamellar stack cannot be swollen to the
large D values branch. We can fit the experimental data by
assigning different αs and χs values to the three homolog
surfactants as can be seen in figure 4. Qualitatively, the
different lamellar behavior can be understood in the following
way. The Cl− counterion is always dissociated from the DDA+
surfactant resulting in a PB-like behavior, and a continuous
�(D) isotherm. For the Br− counterion, the dissociation is
partial, as is explained above (figure 3), leading to a first-order
transition in the isotherm and coexistence between the thin and
thick lamellar phases. Finally, for the DDAI, the I− ion stays
associated with the DDA+ surfactant and there is no repulsive
interaction to stabilize the swelling of the stack for any �
value. More details about our model and the fit can be found
in [24].

Non-electrostatic interactions between counterion-
associated and dissociated surfactants can be responsible for
an in-plane transition, which, in turn, is coupled to the bulk
transition in the interaction osmotic pressure, as can be clearly

4 DDA stands for dodecyldimethylammonium and Cl, Br and I correspond to
chloride, bromide and iodine, respectively.

6



J. Phys.: Condens. Matter 21 (2009) 424106 D Ben-Yaakov et al

Figure 4. Fit to the experimental osmotic pressure isotherm�(D)
of [21] on a log–log scale. The diamonds and squares are the data
points for DDABr and DDACl, respectively, reproduced from [21].
The solid line is the best fit of the model to the phase transition seen
for DDABr with αs = −7.4, χs = 14.75 and a = 8 Å. The fit also
includes a hydration contribution of the form:
�hyd = �0 exp(−D/λhyd), with typical parameter values:
�0 = 2.37 × 108 Pa and λhyd = 1.51 Å. This contribution is
particularly important at the low D region of the DDABr isotherm. A
small amount of salt is added in the fits to the experiment
(nb = 0.5 mM). The dashed line is the fit to the DDACl (no
transition) and all parameters are the same as for the solid line,
except αs = −3.4.

seen in figure 3. This proposed ion-specific interactions are
represented in our model by χs and αs. While at present
direct experimental verification and estimates for the proper χs

values are lacking, the conformational changes induced by the
adsorbing ion, together with van der Waals interaction between
adsorbed ions can lead to significant demixing. Furthermore,
because larger ions are expected to perturb the surfactant–water
interface to a larger extent, it is reasonable to expect that the
value of χs will scale roughly with the strength of surface-ion
interactions, αs.

We note that the χs values needed to observe a
phase transition, typically ≈10 (in units of kBT ), are
quite high5. These high values are needed to overcome
the electrostatic repulsion between like-charged amphiphiles,
leading to segregation. The source of this demixing energy,
as codified by χs, could be associated with a mismatch of
the hydrocarbon regions as well as headgroup–headgroup
interactions, such as hydrogen bonding between neutral lipids,
or indeed interactions between lipids across two apposed
bilayers.

5. Mixed solvents effects in ionic solutions

So far, in most theoretical studies of interactions between
charged macromolecular surfaces, the surrounding liquid
solution was regarded as a homogeneous structureless
dielectric medium within the so-called ‘primitive model’.

5 A detailed discussion about the value of χs is given in [24].

However, in recent experimental studies on osmotic pressure
in solutions composed of two solvents (binary mixture), the
osmotic pressure was found to be affected by the binary solvent
composition [26]. It thus seems appropriate to generalize the
PB approach of section 2 by adding local solvent composition
terms to the free energy.

Our approach is to generalize the bulk free energy terms
to include regular solution theory terms for the binary mixture,
augmented by the non-electrostatic interactions between ions
and the two solvents in order to account adequately for
the preferential solvation effects [27]. In this generalized
PB framework the mixture relative composition will create
permeability inhomogeneity that will be incorporated into the
electrostatic interactions.

More specifically, our model consists of ions that are
immersed in a binary solvent mixture confined between two
planar charged interfaces. Note that the two surfaces are taken
as homogeneous charge surfaces with negative surface charge
σ < 0. We do this to make contact with experiments on
DNA that is also negatively charged [26]. Though the model
is formulated on a mean-field level it upgrades the regular PB
theory in two important aspects. First, the volume fractions
of the two solvents, φA and φB = 1 − φA, are allowed to
vary spatially. Consequently, the dielectric permeability of the
binary mixture is also a function of the spatial coordinates.
In the following, we assume that the local dielectric response
ε(r) is a (linear) compositionally weighted average of the two
permeabilities εA and εB:

ε(r) = φA(r)εA + φB(r)εB, (27)

or,
ε(r) = ε0 − φ(r)εr, (28)

where we define φ ≡ φB, ε0 ≡ εA and εr ≡ εA − εB. This
linear interpolation assumption is not only commonly used but
is also supported by experimental evidence [28]. Note that the
incompressibility condition satisfies φA + φB = 1, meaning
that ionic volume fractions are neglected.

The second important modification to the regular PB
theory is the non-electrostatic short-range interactions between
ions and solvents. Those are mostly pronounced at small
distances and lead to a reduction in the osmotic pressure
for macromolecular separations of the order 10–20 Å.
Furthermore, it leads to a depletion of one of the two solvents
from the charged macromolecules (modeled here as planar
interfaces), consistent with experimental results on the osmotic
pressure of DNA solutions [26].

The model is based on the following decomposition of the
free energy

F = FPB + Fmix + Fsol.

The first term, FPB is the PB free energy of a 1:1 monovalent
electrolyte as in (1) with one important modification. Instead of
a homogeneous permeability, ε, representing a homogeneous
solution, we will use a spatial-dependent dielectric function
ε(r) for the binary liquid mixture. The second term, Fmix[φ],
accounts for the free energy of mixing given by regular solution

7
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Figure 5. Spatial profiles of (a) the solvent relative composition φ and (b) the permeability ε. The regular PB with homogeneous dielectric
constant ε = 77 (solid line) is compared with our modified PB for a binary mixture with and without short-range interactions, χ = 0 (dashed
line) and χ = 1.5 (dotted line), respectively. Other parameters are: σ = −1/100 Å

−2
, nb = 10−4 M, εA = 80, εB = 20 and φb = 0.05. In all

cases, no preferential solvation is considered, α± = 0.

theory:

Fmix = kBT

a3

∫
d3r

[
φ lnφ + (1 − φ) ln(1 − φ)

+ χφ(1 − φ)− μφ

kBT
φ

]
. (29)

The interaction parameter, χ , is dimensionless (rescaled by
kBT ). As the system is in contact with a bulk reservoir, the
relative composition φ has a chemical potential μφ which is
determined by the bulk composition φb. For simplicity, we take
the same molecular volume ∼a3 for both A and B components.

The third term, Fsol, originates from the preferential
non-electrostatic interaction of the ions with one of the two
solvents. We assume that this preference can be described
by a bilinear coupling between the ion densities, n±, and the
relative solvent composition φ. This is the lowest-order term
that accounts for these interactions. The preferential solvation
energy, Fsol, is then given by

Fsol = kBT
∫

d3r (α+n+ + α−n−) φ (30)

where the dimensionless parameters α± describe the solvation
preference of the ions, defined as the difference between
the solute (free) energies dissolved in the A and B solvents.
Finally, to all these bulk terms one must add a surface term,
Fs, (as in (6)) describing the electrostatic interactions between
charged solutes and confining charged interfaces.

In thermodynamic equilibrium, the spatial profile of the
various degrees of freedom characterizing the system is again
obtained by deriving the appropriate Euler–Lagrange (EL)
equations via a variational principle. The EL equations are
then reduced to four coupled differential equations for the four
degrees of freedom, ψ(r), n±(r) and φ(r). First we have the
Poisson equation

∇ ·
( ε

4π
∇ψ

)
+ e(n+ − n−) = 0 (31a)

then the Boltzmann distribution

± eψ

kBT
+ ln(n±a3)+ α±φ − μ± = 0 (31b)

and finally the EL equation for the density field φ(r)

ln

(
φ

1 − φ

)
+ εra3

8πkBT
(∇ψ)2 + χ(1 − 2φ)

+ a3 (α+n+ + α−n−)− μφ

kBT
= 0. (31c)

At the charged interface, the electrostatic boundary condition
stems from the variation of Fs with the difference that ε(φ) has
a surface value: εs = ε0 − εrφs, so that the boundary condition
becomes

n̂ · ∇ψ
∣∣∣∣
s

= −4πe

εs
σ. (32)

Again the boundary condition states the electroneutrality
condition of the system as can be shown by the integral form
of Gauss’ law.

By solving the above set of equations, one can obtain
the spatial profiles of the various degrees of freedom
at thermodynamic equilibrium. For a general geometry,
these equations can be solved only numerically to obtain
spatial profiles for φ and n±. The osmotic pressure can
then be evaluated via an application of the first integral
of (31a), (31b), (31c). This pressure is a function of the
inter-plate separation D and the experimentally controlled
parameters α+, φb and nb.

For two identically charged planar surfaces, in the absence
of preferential solvation, the numerical solutions of the
EL equations show (see figure 5) that the density profiles
and, therefore, the osmotic pressure undergo only small
modifications. By adding the preferential solvation term as
quantified by α+, one observes a considerable correction to
both the density profile, as well as the pressure (see figure 6).
Most notable is the reduction in the osmotic pressure at small
separations (10–20 Å) due to the coupling between ion density
and solvent local composition.

8
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Figure 6. The dependence of pressure on separation D for various
ion–solvent interaction strengths α+. Other parameters are:
σ = −1/100 Å

−2
, nb = 10−4 M, εA = 80, εB = 4 and φb = 0.09.

6. Polarizable ions in solution

Ion-specific effects as manifested through the Hofmeister
series have been recently associated with ionic polarizability,
especially in the way they affect van der Waals electrodynamic
interactions between ions and bounding interfaces [29–32].
However, this does not provide the full description, since the
ionic polarizability also modifies the electrostatic interactions
of ions with the surface charges.

In what follows we generalize the PB theory in order to
include also the contribution of the ionic polarizability to the
overall electrostatic interactions. This inclusion leads to a new
model that again supersedes the standard PB theory. Note, that
in a more complete and consistent treatment, the polarizability
should also be taken into account in the electrodynamic van der
Waals interactions, in addition to what we propose here.

We begin along the lines of section 5, while delimiting
ourselves to the counterion polarizability in the electrostatic
part of the free energy. In order to discuss a manageable
set of parameters, we discard other possible non-electrostatic
terms in the total free energy and concentrate exclusively on
the changes brought about in the ionic density profile and the
interaction osmotic pressure.

The free energy has the same form as FPB for the
counterion only case (12) with one important difference that
ε = ε(n) is now a function of the counterion density n

F/A =
∫

dz

[
−ε(n)

8π
ψ ′2 + enψ + kBT n(ln n − 1)− μn

]
.

(33)
The equilibrium equations read

δF

δψ
= 4πen + d

dz

[
ε(n)ψ ′] = 0 (34a)

δF

δn
= − 1

8π

∂ε(n)

∂n
ψ ′2 + eψ + kBT ln n − μ = 0. (34b)

The first equation is a generalization of the Poisson equation
and the second is a generalization of the Boltzmann
distribution. For the free energy (33) we can use the general
first integral of the system that gives the pressure in the form:

P = − 1

8π

(
ε(n)+ ∂ε(n)

∂n
n

)
ψ ′2 + kBT n. (35)

The first term is an appropriately modified form of the Maxwell
stress tensor while the second one is the standard van ’t Hoff
term.

From the first integral we furthermore derive the following
relation:

ψ ′ =
√√√√8πkBT (n − P̃)

ε(n)+ ∂ε(n)
∂n n

(36)

where P̃ = P/kBT is the rescaled pressure. Substituting
this relation in (34a), we end up with a first-order ordinary
differential equation for the ion density n:

dn

dz
= −

√
2πe2

kBT

n

∂ f (n)/∂n
(37)

where

f (n) = ε(n)

√√√√ n − P̃

ε(n)+ ∂ε(n)
∂n n

. (38)

is a function of the variable n only. Equation (37) can
be integrated explicitly either analytically or numerically,
depending on the form of f (n). Note that in thermodynamic
equilibrium, the total osmotic pressure P is a constant.

The boundary condition for a constant surface charge is
given by

ε(ns)ψ
′∣∣

s
= 4πe|σ | (39)

where ε(ns) and ns are the surface values of the dielectric
function and ion density, respectively. Using the pressure
definition, we arrive at an algebraic equation for the surface-
ion density:

ns − P̃ = 2πe2σ 2

kBT ε2(ns)

(
ε(ns)+ ∂ε(ns)

∂ns
ns

)
. (40)

For a single surface the pressure vanishes P̃ = 0 (with analogy
to two surfaces at infinite separation, D → ∞), and the basic
equations simplify considerably.

As a consistency check, we take the regular case, i.e. a
single charged surface with a homogeneous dielectric constant.
In this case the function f (n) takes the form f (n) = √

ε0n,
and (37) reads:

dn

dz
= −

√
8πlBn

3
2 (41)

which gives the well-known Gouy–Chapman result for the
counterion profile close to a single charged plate (in the
absence of added salt):

n(z) = 1

2πlB(z + λGC)2
(42)

9
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Figure 7. Ion density and permeability profiles. The solid lines in both panels represent the case where the ions have no contribution to the
permeability, β = 0, given by (42). In (a) the dashed line shows the ion density where their averaged permeability is smaller than the solution
dielectric constant, β = −30 M−1. The permeability of the second case is shown in the inset. In (b) the dashed line shows the ion density
where their averaged permeability is smaller than the solution dielectric constant, β = 20 M−1. The permeability of the second case is shown
in the inset. Other parameters in both (a) and (b) are: σ = −1/100 Å

−2
, and ε0 = 80.

where λGC = 1/(2πlB|σ |) is the Gouy–Chapman length,
found by satisfying the boundary condition (39).

We assume that to lowest order the dielectric constant can
be expanded as a function of the counterion concentration n as:

ε(n) = ε0 + βn + O(n2), (43)

where ε0 is the dielectric constant of the solvent and β =
∂ε/∂n|0 is a system parameter describing the molecular
polarizability of the counterions in the dilute counterion limit.

The derivative of f (n) to be used in (37) reads:

∂ f

∂n
= 2β2n(n − P̃)+ ε(n)[ε(n)+ βn]

2
√
(n − P̃)[ε(n)+ βn]3

(44)

and (37) can now be solved explicitly for n(z).
In figure 7 we show the spatial profile of the counterion

density away from single charged surface. No extra salt is
added and the pressure is zero P̃ = 0 for a single plate as
mentioned above. In figure 7(a) we present the case where β <
0 (i.e., the dielectric permeability in the regions of high ion
density is smaller than in the pure solution). The ion density
profile exhibits a somewhat ‘flat’ behavior, indicating some
saturation in the vicinity of the surface, while at a distances
of ∼ 5 Å and further away from the surface the density decays
strongly to zero. In figure 7(b) the density profile is shown for
the opposite case where β > 0. Namely, when the dielectric
permeability in the regions of high ion density is larger than
in the pure solution. The profile here does not show large
deviations from the usual Gouy–Chapman behavior even close
to the surface.

Obviously, the effect of ionic polarizability strongly
depends on the sign of the ionic polarizability, β . It appears
that the dependence of the dielectric constant on ionic density
introduces effective interactions between the ions and the

bounding surface. For β < 0, these additional interactions
seem to be strongly repulsive and long ranged. They lead
to a depletion of the ions in the vicinity of the surface. In
the opposite case where for β > 0, the interactions are also
repulsive but extremely weak and the electric double layer
structure remains almost unperturbed by the ionic polarization.
This sets a strong criterion for ion specificity because the
ions can be differentiated according to the sign of their
polarizability affecting their surface attraction.

7. Conclusions

We presented here several attempts to generalize the PB theory
by including in the free energy additional terms to the standard
electrostatic and ideal entropy of mixing. We also showed how
these terms lead to modifications of the PB equation and its
boundary conditions. More specifically, we have aimed to
include additional interactions between dissolved ions, such
as finite ion size and polarizability, as well as their solvation
and interactions with bounding surfaces. All these endeavors
are done within the mean-field approximation while neglecting
charge density fluctuations and ion correlations.

The approach presented here amends the free energy in
specific ways giving rise to a modified electric bilayer charge
distribution and the ensuing interactions between charged
surfaces as mediated by ionic solutions. Some modification
wrought by the non-electrostatic terms can be interpreted, in
retrospect, as specific interactions of the ions with the bounding
surfaces or between the ions themselves.

To verify these models, results should be compared with
appropriate experiments. In some cases, such comparisons
are feasible and are qualitatively favorable [24, 27]. On
the other hand, comparisons with extensive all-atom MC or
MD simulations are not obvious since these simulations also
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contain multiple parameters that have no obvious analogue.
It would, nevertheless, be valuable to link these approaches
with appropriately designed experiments or even to check the
predictions of these approaches in realistic systems.
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