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Abstract – We predict the nature (attractive or repulsive) and range (exponentially screened or
long-range power law) of the electrostatic interactions of oppositely charged, planar plates as a
function of the salt concentration and surface charge densities (whose absolute magnitudes are
not necessarily equal). An analytical expression for the crossover between attractive and repulsive
pressure is obtained as a function of the salt concentration. This condition reduces to the high-salt
limit of Parsegian and Gingell where the interaction is exponentially screened and to the zero salt
limit of Lau and Pincus in which the important length scales are the inter-plate separation and
the Gouy-Chapman length. In the regime of low salt and high surface charges we predict —for any
ratio of the charges on the surfaces— that the attractive pressure is long-ranged as a function of
the spacing. The attractive pressure is related to the decrease in counter-ion concentration as the
inter-plate distance is decreased. Our theory predicts several scaling regimes with different scaling
expressions for the pressure as a function of salinity and surface charge densities. The pressure
predictions can be related to surface force experiments of oppositely charged surfaces that are
prepared by coating one of the mica surfaces with an oppositely charged polyelectrolyte.

Copyright c© EPLA, 2007

Introduction. – The interactions between oppositely
charged surfaces are important in both biological and
materials science contexts. Proteins contain both cationic
and anionic regions and in some cases, interactions
between proteins are due to unlike charge attraction,
mediated by the intervening counterions and salt. The
delivery of cationic vesicles to cells —of interest in
gene therapy applications— involves counterion and
salt-mediated electrostatic interactions of two oppositely
charged membranes [1–3]. Similar considerations may also
be important in understanding adhesion and fusion in
systems of oppositely charged bilayers, as well as peptide
binding to oppositely charged lipid membranes [4,5].
Recent experiments on hydrophobically prepared mica
surfaces have indicated that such surfaces have domains
with different charges and the observed long-range attrac-
tions (in the nanometer regime) may again be related to
unlike charge attractions mediated by counterions and
salt [6,7].
In this paper we predict the interactions between two

homogeneously charged surfaces with opposite charge.
The surfaces are in aqueous solution that contains the
counterions and added salt. The interactions can be

attractive or repulsive, short-ranged (exponentially decay-
ing) or long-ranged (power law) depending on the ratio
of the distance between the surfaces to the important
length scales of the problem: i) The Gouy-Chapman
length, λGC = 1/(2πlBσ) that is inversely proportional
to the surface charge density σ; ii) the Bjerrum length
lB = e

2/εkBT equal to about 7 Å in water (ε� 80) at room
temperature; and, iii) the Debye-Hückel (DH) length,
λD = 1/

√
8πlBcb where cb is the bulk 1 : 1 salt concentra-

tion. Since there are several length scales there are several
regimes that characterize the interactions.
In order to model interactions between charged surfaces,
membranes or particles, one typically considers two planar
surfaces separated by a distance, d. Previous studies
considered the symmetric case where the two surfaces
have fixed and equal surface charge densities. Within
Poisson-Boltzmann (PB) theory [8–11], it can be shown
that the interaction between two surfaces with the same
charge is always repulsive due to the counter-ion entropy.
Other refinements include corrections to the PB theory
especially in the limit of strong surface charges and
multi-valent counterions. The theory of the interactions
between two surfaces with opposite charges has received
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less attention. The pioneering study of Parsegian and
Gingell [12] considered high salt concentrations and used
the linear DH theory, to predict regions of repulsive
and attractive inter-plate pressure as a function of the
distance and salt concentration. Lau and Pincus [13]
considered the case of two oppositely charged surfaces with
no added salt and found a simple analytical criterion for
the crossover between attraction and repulsion.
The interesting, intermediate region of high surface

charge and relatively low salt concentrations requires
the use of the non-linear PB theory. There can be a
large regime in which the distance between the plates
is smaller than the DH screening length (which can be
very large at low salt concentrations) but larger than the
Gouy-Chapman length (which can be very small for high
surface charge) in which the non-linear treatment must
be applied. The case of two plates with equal and oppo-
site surface charges was considered recently by several
authors [14,15]. In this case, where the two plates are elec-
trically neutral and the ions in solution have no net charge,
the force is always attractive. At some characteristic inter-
plate distance, d∗, which scales as λGCln(λD/λGC), the
counterions are released into the bulk reservoir provided
that λGC� d∗� λD. In addition, for inter-plate separa-
tion in the range of intermediate values (between λD and
λGC), the pressure was shown to be long-ranged, and
scales with the inverse of d2 [14]. In the present work,
we generalize these results and consider two oppositely
charged surfaces whose charges are not necessarily equal
in magnitude. This general case is important in order to
analyze experiments in which surfaces are not completely
antisymmetric. We use our analytical theory to predict a
crossover between attraction and repulsion and the coun-
terion release concept is extended to the asymmetric case.
We also are able to consider several limiting regimes
for the asymmetric case that complement the numerical
solutions of the problem.

Poisson-Boltzmann model. – The Poisson-
Boltzmann (PB) theory is a mean-field theory that
relates the electric potential, ψ(�r), and the Boltzmann
distribution for the ion number density, c(�r), at thermo-
dynamic equilibrium. For two surfaces immersed in a
1 : 1 monovalent ionic solution, and for a dimensionless
potential φ≡ eψ/kBT , the PB equation reads

∇2φ= κ2D sinhφ= λ−2D sinhφ , (1)

where λD = κ
−1
D
is the Debye-Hückel (DH) screening

length defined above.
We consider two charged surfaces that are infinite in
extent in the (x, y)-plane and are separated in the
z-direction by a distance d. In this case, the PB equation
reduces to a one-dimensional equation in the coordinate z
perpendicular to the planes. The focus of this paper is on
two oppositely charged plates that we call the asymmetric
two plate problem. A positively charged plate with charge
density σ+ > 0 is located at z = d/2, and a negatively

charged one with σ− < 0 is located at z =−d/2. While
in the well-studied symmetric case, where σ+ = σ− [8]
the potential (and ion densities) are symmetric about
the midplane z = 0, in the asymmetric case, the midplane
is no longer a plane of symmetry. Instead, a separate
boundary condition at each plate must be explicitly
considered. These conditions relate the electric field at
each plate to the surface charge density:

dφ

dz

∣

∣

∣

∣

z=±d/2

= 4πlB|σ±| ≡
2

λ±
> 0, (2)

where λ± are the Gouy-Chapman lengths for the corre-
sponding surfaces.
The spatial dependence of the potential and ion densi-
ties is obtained by solving the PB equation, eq. (1)
subject to the boundary conditions, eq. (2). The profiles
predict the local concentration of the mobile ions and their
associated potentials; these can be measured, for exam-
ple, using scattering techniques. However, more often, the
forces exerted on the charged plates are measured [9]. For
a given separation d, the pressure (or equivalently, the
force per unit area) must be constant in the entire region
between the plates if the system is in thermodynamic
equilibrium. Thus, it is only necessary to calculate the
pressure at any convenient point, z, within the gap.
Because the two-plate system is in contact with a reser-
voir of mobile ions (the salt reservoir), the net pres-
sure (in units of kBT ) exerted on the plates is given
by the difference between the inner and outer pressures,
Π= Pin−Pout. This pressure can be calculated, for exam-
ple, by integrating the PB equation once and relating the
integration constant to the pressure Π [8]:

Π=− 1

8πlB

(

dφ

dz

)2

+2cb(coshφ− 1) . (3)

The z-independent osmotic pressure comprises two
terms: i) an attractive contribution whose origin is the
electrostatic energy; this has the form of a negative term
proportional to the square of the electric field [16] and
ii) a repulsive contribution that arises from the transla-
tional entropy of the ions and is given by the ideal-gas
law. In this term we have already subtracted the outer
pressure, Pout = 2cb as is explained above.
It is easy to show that the pressure for the case of
symmetrically charged plates is always repulsive (Π> 0)
within the PB approximation. However, in the general,
asymmetric case the pressure can be either repulsive
(Π> 0) or attractive (Π< 0) as we explain below.
Our two-plate problem is fully determined by four phys-
ical parameters: The two surface charge densities σ±, the
ionic strength, cb, and the separation d. However, by using
normalized variables, it is easy to show that the problem is
uniquely defined by three ratios: λ±/λD and d/λD, where
λ± is related to σ± in eq. (2) and λD is related to cb. In
our PB solution we use an alternative parametrization
scheme including the dimensionless pressure Π̂ =Π/cb and
the surface potentials φ± = φ(±d/2). We can now relate
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those three parameters to the original ones by three rela-
tions. Two relations can be derived from eq. (3):

Π̂ = 2 (coshφ±− 1)−
(

λD
λ±

)2

. (4)

Integration between the two boundaries, ±d/2, gives an
additional, third relation:

d

λD
=

∫ φ+

φ
−

dφ ′
√

2 (coshφ ′− 1)− Π̂
. (5)

We can now express the PB solution and pressure Π̂
(via eqs. (4) and (5)) as a function of the parameters
that characterize the physical system. Namely, the surface
charge densities, λ+, λ−, the DH length, λD (determined
by the salt concentration), and the separation between
the plates, d. For a few simplified cases an analytical
solution exists, while in the general asymmetric case we
can write the potential, φ, in terms of elliptic integrals [17]
whose solution can be obtained only numerically. We next
present a general analytical result that predicts when the
interaction crosses over from repulsive to attractive as a
function of the system parameters. The physical origin of
this crossover is the competition between the electrostatic
and entropic interactions described above.

Attractive to repulsive crossover. – The condition
Π= 0 in eq. (3) for the asymmetric, two-plate system
determines the cross-over from repulsive to attractive
interactions in the system:

− 1

8πlB
(φ′)2+2cb(coshφ− 1) = 0 . (6)

This is a relation between the potential, φ(z), and its
derivative φ′ at any point z. The condition, Π= 0, also
fixes one relation between the three dimensionless ratios:
λ±/λD and d/λD. Namely, this confines the system to
a two-dimensional surface in the three-dimensional para-
meter space (λ+/λD, λ−/λD, d/λD).
An analytical expression for this crossover is found by
observing that the case of Π= 0 can be exactly mapped
onto the equations that describe a single plate in contact
with the same reservoir [18]. For this purpose, we consider
a system with a single, positively charged plate at z = 0.
The analytical expression for the potential and its deriva-
tive (electric field) are well known:

φ= 2 ln

(

1+ γ+e
−z/λD

1− γ+e−z/λD

)

, (7)

φ′ =− 1
λD

4γ+e
−z/λD

1− γ2+e−2z/λD
, (8)

where γ+ =

√

(λ+/λD)
2
+1− (λ+/λD). The mapping

between the two problems is simply done by requiring
that at distance d away from the z = 0 charged plate (the
single plate case) the electric field is equal to the electric
field as determined from Gauss’s law at the negative
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Fig. 1: Regions of attraction and repulsion, where σ+ and σ−
are the surface charge densities, and σd = 1/2πlBd. The dashed
and dash-dot lines represent the exact expression (eq. (10))
for crossover from attractive to repulsive interactions with
d/λD = 1 and 2, respectively. The solid line shows the no-salt
limit (eq. (11)).

plate located at z =−d/2 in the two-plate problem:
φ′(d) =−2/λ−. This results in the relation:

γ+ = e
d/λD γ−, (9)

where γ− is similarly defined as γ− =

√

(λ−/λD)
2
+1−

(λ−/λD).
The relation (9) between γ± (or λ±) is equivalent

to the Π= 0 crossover in the asymmetric two plate
system, between the repulsive, Π> 0, and attractive,
Π< 0, regimes. When γ−→ 0 (the negative plate is
neutral, σ−→ 0), the plates must repel each other. In
addition, although we have only treated so far the case
σ+ > |σ−|, our results are quite general since the two-
plate pressure is invariant under the exchange σ+↔ |σ−|.
Therefore, the condition for attraction reads

e−d/λD <
γ+
γ−
< ed/λD . (10)

This result is plotted on fig. 1 where two lines separate a
central region of attractive interactions from two wedges
in the (σ−, σ+)-plane, that denote repulsive interactions.
In our plots, the charge densities are normalized by
σd = 1/2πlBd.
This result is exact for arbitrary salt concentration

and surface charge densities. It has two limits that have
been previously studied. One limit, that of zero salt,
was analyzed by Lau and Pincus [13]. In this limit, the
counterions in the solution balance the surface excess
charge ∆σ= σ+− |σ−|. Formally, we obtain this limit by
taking λD→∞ in eq. (10). Expanding γ± in powers of
λ±/λD, γ± � 1−λ±/λD, and eq. (10) yields

∣

∣

∣

∣

1

σ+
− 1

|σ−|

∣

∣

∣

∣

<
1

σd
. (11)
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Fig. 2: The zero-pressure line Π(σ
−
/σ+, d) = 0 in the

(σ
−
/σ+, d/λD) plane. The dashed line represents the exact

expression (eq. (10)) for crossover with λ+/λD = 0.3, corre-
sponding to cb � 10

−4M for typical effective charge of mica,
σ+ � e/4000 Å

2. On the dash-dot line λ+/λD = 0.05, where for
the same cb � 10

−4M the surface charge is σ+ � e/670 Å
2. The

crossover in the DH limit (eq. (12)) is shown in solid line.

This limiting form for the crossover is shown in fig. 1 by
a solid line. The second, well-known limit of high salt
concentrations, λD� λ±, was studied by Parsegian and
Gingell [12] in the 1970s by linearizing the PB equation.
They derived the pressure in the linear DH regime. In this
case, γ± can be approximated by γ± � λD/2λ± in eq. (10),
and the attraction condition is

e−d/λD <
σ+
|σ−|

< ed/λD , (12)

which reproduces the result of Parsegian and Gingell. In
fig. 2 the line of zero pressure that separates attractive
from repulsive interactions is plotted in the (σ−/σ+, d/λD)
plane for three salt concentrations. The plot shows the
high salt limit of Parsegian and Gingell (from eq. (12)),
as well as an intermediate amount of salt (λ+/λD = 0.3),
and a relatively low amount of salt (λ+/λD = 0.05) from
eq. (10).
We now compare the two figures and comment on the

role of salt. In fig. 1 it is apparent that increasing the salt
concentration enlarges the attractive region at the expense
of the repulsive one1. Another remark is that for |σ±|>σd
(large d and/or strongly charged plates), the pressure is
always negative (attraction) with no dependence on other
system parameters like σ−/σ+ and λD. This is related to
the asymptotic behavior of the no-salt crossover curves.

Gouy-Chapman pressure. – For the exact anti-
symmetric case (σ+ =−σ−) and in the regime of low salt
and strongly charged plates it was shown [14] that an

1Another observation is that fig. 2 shows predictive behavior that

is seemingly opposite to that shown in fig. 1. However, the two figures

are in total accord because in fig. 2 the x-axis is also scaled by λD.

1
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/
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σ σ
+

/
d

σ
σ

–

Fig. 3: The region of validity of the scaling relation is denoted
by the hashed box in the (σ+/σd, σ−/σd) plane. The dashed
line denotes the anti-symmetric case.

approximate scaling relation between the pressure Π and
d is:

√

cb/|Π| ln(|Π|/cb)∼ d/λD. The range of validity of
this scaling relation is the diagonal ray in fig. 3, σ+/σd =
|σ−|/σd� 1, and in addition d� λD. This result can be
extended to the more general asymmetric region bounded
by the hashed box in fig. 3: σ+/σd� 1 and |σ−|/σd� 1.
From the integral in eq. (5) the relation between the
pressure and d is deduced to be

2

√

cb
|Π| ln

(

4|Π|
cb

)

� d
λD

(

1+
σd
σ+
+
σd
|σ−|

)

. (13)

We note that in the entire range of validity of this scaling
expression, the right-hand side of eq. (13) varies between
d/λD and 3d/λD, meaning that it is roughly described by
the anti-symmetric result mentioned above [14]. Thus, as
long as the plates are strongly charged, Π does not depend
on the surface charge densities. This relation can be solved
iteratively for Π(d) and the first iteration yields

Π�− 2

πlBd2
ln2 (d/8λD). (14)

Counterion release. – In the limit of infinite separa-
tion between the plates, an appropriate concentration of
mobile cations and anions accumulate in the vicinity of
each plate in order to neutralize the surface charge. When
the plates are brought closer these two, oppositely charged
clouds of mobile ions begin to overlap. Pairs of negative
and positive counterions can thus neutralize each other
and escape to the reservoir, where they gain entropy with
no cost of electrostatic energy. This phenomenon of coun-
terion release is the physical origin of the attractive forces
between oppositely charged plates [14,15]. The parameter
that characterizes the release of the counterions is defined
as the excess charge per unit volume integrated over the
entire separation between the surfaces:

η≡
∫ +d/2

−d/2

dz [c+(z)+ c−(z)− 2cb] . (15)

where c±(z) are the number densities of the cations
and anions. Safran [14] considered the relation between
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the pressure and the fraction of ions released into the
reservoir for the exact antisymmetric case, (σ+=−σ−),
in the regime of low salt. Here we present a generalization
of this result to the asymmetric case, where we focus on
the same low salt, high-surface-charge regime but with
∆σ= σ+− |σ−| which is small compared to σ±. Under
these assumptions the integral in eq. (15) can be evaluated
and gives

η� 2σ+
(

1−
√

2πlBλ2+|Π|
)

−∆σ . (16)

In the limit of Π→ 0 we find η� σ++ |σ−|; this represents
the largest possible value of excess counterions (beyond the
bulk value σb = 2dcb). In this limit, corresponding to large
separations (eq. (14)) each of the surfaces is neutralized by
its own cloud of counterions. As the separation between
the two surfaces decreases, the pressure reaches its maxi-
mal attractive value |Π| → 1/2πlBλ2−, and the counterion
excess approaches its minimal value: η�∆σ. In this situ-
ation, not all the counterions are forced to remain in the
gap between the plates. The two oppositely charged plates
screen each other except for an excess of surface charge ∆σ
that is compensated by the remaining counterions.
The largest attractive pressure occurs for a distance
d∗ that can be estimated as d∗ = 2λ−ln 2λD/λ−. Note
the difference in this situation between the asymmetric
and the exact antisymmetric case for which the pressure
saturates at d< d∗.

Scaling regimes. – In the general asymmetric case
we must consider the charge asymmetry ratio, λ+/λ−
(or |σ−|/σ+) as an additional parameter. We investigate
several scaling regimes in the three-dimensional parameter
space: (λ+/λD, λ+/λ−, d/λD). The pressure, as a function
of the asymmetry ratio, can be treated by considering one
of the following two limits.
i) In the limit of |σ−|/σ+� 1, the negative plate

can be taken as a neutral one, implying a repulsion
between the plates, as demonstrated by eq. (10). In this
limit, there is a mathematical correspondence between the
asymmetric problem and the symmetric one (σ+ = σ−)
with about twice the surface separation, d→ 2d. The
symmetric configuration satisfies the boundary conditions
corresponding to the case of one neutral and one charged
surface by the vanishing of the electric field at the mid-
plane. In this symmetric-like limit the pressure scales like
the pressure in the symmetric case, as discussed in detail
at ref. [8].
ii) On the other hand, when the surface charge densi-
ties are nearly equal (and opposite), i.e. ∆σ� |σ±|,
the pressure is attractive in a wide range of separa-
tions, and the formulae for the pressure are similar to
those for the exact, antisymmetric case. Here, for simpli-
city, we present the regimes of the exact antisymmet-
ric case with two oppositely charged plates, ±σ. The
different regimes are shown in the (λGC/λD, d/λD) plane
(fig. 4), and discussed below.

1

1

d / λ
D

λ
G

C
 /

 λ
D

DH

P–CIR 

Int.

C–CIR 

Fig. 4: A schematic view of the various limits of the PB
equation for two oppositely charged plates (the anti-symmetric
case). The four regimes discussed in the text are: Debye-Hückel
(DH), Intermediate (Int.), Partial and Complete Counterion
Release (P-CIR and C-CIR). They are separated by four
crossover lines: Int.↔DH at λGC = λD and λD <d, DH↔
C-CIR at λD = d and λD <λGC, C-CIR↔P-CIR at d= λGC
and λD >d, P-CIR ↔ Int. at λD = d and λGC <λD.

a) Debye-Hückel. The limit of λD� λGC corresponds
to low potentials (φ� 1) for which the PB equation can
be linearized. We obtain an attractive pressure (Π< 0) as
expected for two oppositely charged plates:

Π�− 2

πlBλ2GC
e−d/λD . (17)

This pressure expression decays exponentially with
distance.
b) Complete Counterion Release. For small separations,

d� λD and d� λGC, the charge neutrality of the system
is maintained by the surfaces, and all the cations and
anions are released to the reservoir. This yields a direct
electrostatic interaction of two capacitor plates of charge
±σ in a dielectric medium:

Π�− 1

2πlBλ2GC
. (18)

c) Partial Counterion Release. This regime is defined by
λGC� d� λD, where the plates are strongly charged and
the salt concentration is low. Equation (14) can be used to
predict the pressure as a function of the separation, d. It is
interesting to note that in this regime, the Gouy-Chapman
pressure shows a long-range, power law dependence on d.
It is also independent of the value of the surface charge,
similarly to the result of Gouy-Chapman regime in the
symmetric case.
d) Intermediate. When the plates are strongly charged,
λGC� λD, the PB equation cannot be linearized.
However, if the separation is large, d� λD, the surfaces
are weakly interacting and can be treated as two sepa-
rated plates. As a result, the electric field at the midplane
is given by summing these two contributions. Under these
assumptions, the electric field can be approximated by
that of a single plate, and the pressure is

Π�− 8

πlBλ2D
e−d/λD . (19)
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In the DH and intermediate regimes the pressure decays
exponentially with the scaled separation, d/λD due to
screening effect of the salt ions. In the symmetric-like
limit, the characteristic decay length is half as small. In
the Gouy-Chapman regime the pressure is independent of
the surface charge density, both in the antisymmetric and
symmetric-like limits. This reveals a special property of
the electrostatic interaction at medium-range separations:
the length scales related to the surface charges, λ±
and λD, have no effect on the pressure (beside a small
logarithmic correction as in eq. (14)). At small separations,
the boundary conditions have the largest effect on the
pressure between the plates. In the symmetric-like limit,
the confinement of ions in between the plates results in a
divergence of the pressure, whereas in the anti-symmetric
like limit, the pressure saturates due to the complete
release of all the counterions at small separations.
The similarity between the symmetric and anti-
symmetric cases can be seen at large and intermediate
separations, while the distinction is evident at small sepa-
rations. It is important to note that there is one major
difference between these two limits: the symmetric-limit
is purely repulsive, while the antisymmetric one is always
attractive.

Discussion. – The theoretical investigation in this
work suggests that the asymmetric Poisson-Boltzmann
model predicts several interesting physical regimes in
the interaction of dissimilar charged bodies immersed in
electrolyte solutions. In particular, the dependence of the
pressure on the separation Π(d) can be evaluated from
both the scaling relations and the numerical solutions.
These results can be tested in various experiments measur-
ing forces between charged objects. One of the interest-
ing results to be tested experimentally is the prediction
for the crossover between attractive and repulsive inter-
actions, Π= 0, at high and low salt conditions. Others
may include the crossover of the interactions from expo-
nential decay to power law due to the onset of counterion
release.
We wish to point out two features of the behavior at
small d. The first is that in our model a diverging repulsive
pressure is obtained in the limit of vanishing d because of
the assumption of fixed surface charge. However, effects
such as charge regulation [19] and lipid demixing [20–22]
can modify this assumption and may lead to to an overall
attractive pressure for any d.
The second is that attractive van der Waals (vdW)

interactions always prevail at small separations, d< 2 nm
(in addition to the electrostatic interactions considered
here). In experiments for small enough d, this vdW
interaction is stronger than the electrostatic one and will
overcome its repulsion. Thus, the only way to observe
the pure electrostatic crossover between attractive and
repulsive interactions is to work in a regime where this
crossover occurs for a d range beyond the influence of vdW
interactions.
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