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Abstract. – A phenomenological model for the unbinding transition of multicomponent fluid
membranes is proposed, where the unbinding transition is described using a theory analogous
to the Flory-Huggins theory for polymers. The coupling between the lateral phase separation
of inclusion molecules and the membrane-substrate potential provides a rich phase behavior.
Our model describes the first-order nature of the unbinding transition in multicomponent mem-
branes as was observed in a recent experiment. In particular, we predict different scenarios of
phase coexistence between bound and unbound membrane states.

Introduction. – Adhesion of membranes and vesicles is responsible for cell-cell adhesion
which plays an important role in all multicellular organisms. In general, bio-adhesion is
governed by the interplay of various generic and specific interactions [1]. Specific interactions
act between complementary pairs of proteins such as ligand and receptor, or antibody and
antigen. Well-studied examples of such coupled systems are biotin-avidin complexes [2], or
selectins and their sugar ligands [3].

The problem of adhesion of multicomponent membranes is intimately related to that of do-
main formation. Experimentally, adhesion-induced lateral phase separation has been observed
for various systems [4–6]. It was reported that adhesion molecules aggregate spontaneously
and form tight-adhering domains. From the theoretical point of view, this problem has been
considered in [7] using a phenomenological model, where the inter-membrane distance is cou-
pled to the concentration of sticker molecules on the two adhering membranes. In a different
approach, a lattice model for a multicomponent membrane in contact with another substrate
was proposed [8], and studied via detailed Monte Carlo simulations [9, 10]. More recently, a
work combining these two approaches has been published [11].

In a recent experiment by Marx et al. [12], the role of long-range repulsions due to thermal
fluctuations (Helfrich repulsion) of adhering membranes has been addressed. By using Reflec-
tion Interference Contrast Microscopy [4], a multicomponent bilayer membrane with added
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Fig. 1 – A mixed fluid membrane adhering to a substrate. Black filled ovals indicate inclusions such as
proteins or lipopolymers. The height of the upper membrane leaflet from the substrate is �, whereas
the thickness of the bilayer membrane is δ.

lipopolymers (modified DOPE lipid with polyethylenoxide) and cholesterol is examined in the
vicinity of an attractive substrate. Analyzing the probability distribution of the membrane-
substrate spacing for various multicomponent membranes, a phase separation between two
distinct lipopolymer-poor and lipopolymer-rich states having two different spacings from the
substrate was suggested, where both states are unbound from the substrate. Although this phe-
nomenon is dynamic in nature, it was interpreted as a lateral phase segregation induced by the
Helfrich repulsion. However, a clear physical description for the appearance of such a phase co-
existence has not been given. Moreover, a first-order unbinding transition scenario is required
to account for the multiple time scales in the time series of the membrane fluctuations [12].

In this letter, we propose a simple phenomenological model for a multicomponent (mixed)
fluid membrane which can undergo simultaneously a lateral phase separation and an unbinding
transition. The model is motivated by the experiment [12] and relies on the coupling between
the inclusion concentration and the membrane-substrate spacing. The lateral phase separation
of the inclusion affects the second virial coefficient of the unbinding transition which is taken
into account in analogy to the Flory-Huggins theory for polymers [13]. Our model exhibits
various types of phase coexistence, including a phase separation between bound and unbound
states as well as between two unbound ones. The former phase coexistence indicates the
first-order nature of the unbinding transition, as was anticipated in the experiment [12].

Unbinding transition. – Fluid membranes in a lamellar stack or close to a substrate ex-
perience steric repulsion arising from their reduced undulation entropy due to the confinement
effect. The corresponding interaction energy per unit area has been given by Helfrich [14] as

vs(�) =
b(kBT )2

κ(� − δ)2
, (1)

where kB is the Boltzmann constant, T the temperature, κ the bending rigidity of the mem-
brane having thickness δ, and � the average height of the upper membrane lipid leaflet from
the substrate (see fig. 1). The numerical prefactor b was calculated as b = 3π2/128 in [14],
but its value is still debatable in the literature [15]. The combination of the above steric
repulsion and other direct microscopic (van der Waals, electrostatic, hydration) interactions
determines whether the membrane binds to the substrate or unbinds. Using functional renor-
malization group techniques, Lipowsky and Leibler have shown that this unbinding transition
is of second order [16, 17]. The average spacing � diverges as the strength of the attractive
van der Waals interaction W (Hamaker constant) approaches a critical value from above, i.e.,
� ∼ (W − Wc)−ψ with ψ ≈ 1.0. Here Wc is the critical strength of the Hamaker constant.

While a simple superposition of the Helfrich repulsion, eq. (1), and other direct interactions
gives an incorrect (first-order) description of the unbinding transition, a simple theory for the
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unbinding transition in a bulk of lamellar phase was considered by Milner and Roux [18], and is
briefly reviewed below. Following the spirit of the Flory-Huggins theory for polymers [13], the
Helfrich estimate of the entropy is taken into account accurately, whereas the other interactions
are approximately incorporated via a second virial term. This approach is justified since the
perturbative effect of the direct interactions is included through a virial expansion rather than
the simple superposition of the interactions. The resulting free energy per unit volume of a
lamellar stack is

gMR(w) = −kBT χ̄w2 +
b(kBT )2

κδ3
w3 − µww, (2)

where the membrane volume fraction w = δ/� ≥ 0 cannot be negative. Note that � represents
the lamellar repeat distance, χ̄ is the second virial coefficient, and µw the chemical potential
which accounts for the conservation of the membrane volume fraction w. The second virial
coefficient is predicted to behave as χ̄ ∼ (W −Wc). For χ̄ > 0 the free energy (2) describes a
first-order unbinding transition as µw is lowered.

To consider the unbinding behavior of a single membrane (see fig. 1) as in the exper-
iment [12], eq. (2) is multiplied by the lamellar repeat distance �. We also note that the
membrane average distance � from the substrate is not a conserved quantity. Then the free
energy per unit area of a single membrane can be expressed as

f(w) = −kBTδχ̄w +
b(kBT )2

κδ2
w2. (3)

Minimization of f(w) with respect to w shows that this free energy has a continuous second-
order transition at χ̄ = 0 between a bound state (w > 0) for χ̄ > 0 and an unbound state
(w = 0) for χ̄ < 0. A similar free energy for a single membrane undergoing the unbinding
transition was proposed by Helfrich [19]. Equation (3) is the form of the free energy which
will be used in our model.

Unbinding transitions of mixed membranes. – So far, the unbinding transition of a single-
component membrane has been discussed. In the case of multicomponent membranes, the
lateral phase separation affects the direct interactions between the membrane and the sub-
strate, and hence their unbinding behavior. For simplicity, we consider a two-component
membrane adhering to a substrate as in fig. 1. The overall membrane state is characterized
by its average distance � from the substrate. The internal degree of freedom, on the other
hand, corresponds to the membrane composition. In addition to the lipid component, that is
the main building block of the membrane, we introduce a second component or an “inclusion”
representing additional proteins, cholesterol, or lipopolymers residing on the membrane. Let
the concentration of these inclusions be denoted by Φ (0 ≤ Φ ≤ 1). Here we discuss the case
in which the interaction between two inclusions is attractive leading to a condensation tran-
sition. Then, below a certain temperature Tc, the mixed membrane undergoes a first-order
transition, where an inclusion-poor phase coexists with an inclusion-rich phase as observed
experimentally [20]. The first-order transition terminates at a critical point, having a critical
concentration Φc. The concentration difference is then defined as φ = Φ− Φc [21].

We now combine the unbinding transition and the lateral phase separation of the inclusion
close to the critical point. The proposed free energy per unit area of a single mixed membrane
undergoing the unbinding transition is

f(φ,w) = −µφ+
1
2
tφ2 +

1
4
φ4 − χw +

1
2
w2 + γφw, (4)

with the constraint w ≥ 0. Here all energy terms have been scaled by 2b(kBT )2/κδ2, and are
now dimensionless. The first three terms in eq. (4) depend only on φ, and correspond to the
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Landau free energy of a two-component membrane undergoing a lateral inclusion-lipid phase
separation [22], µ is the chemical potential conjugate to φ, and t ∼ (T − Tc) the reduced
temperature. The quartic coefficient has been chosen to be positive and is arbitrary set to 1

4
without loss of generality. The next two terms depend only on w, and represent the unbind-
ing transition of a single membrane as have been described by eq. (3). In the above, χ is the
scaled virial coefficient.

The last term is the lowest-order coupling term between φ and w with a dimensionless
coupling coefficient γ > 0. The physical meaning of this bilinear term is as follows. When
the mixed membrane is quenched into the two-phase region, an inclusion-poor phase (φ < 0)
coexists with an inclusion-rich phase (φ > 0). This can lead to different direct interactions and
hence different second virial coefficients χ for each of the domains. We model this situation
by considering an effective virial term in eq. (4) as −χeffw = −(χ− γφ)w, which leads to the
coupling term φw.

In the above model, we have assumed that the phase separation of the inclusion molecules
does not affect the homogeneous bending rigidity of the membrane. In other words, only
the direct microscopic (van der Waals, electrostatic, hydration) interactions are modified by
the phase separation, whereas the steric interaction remains unchanged. This is valid as long
as the size of the inclusion molecule is close to the membrane thickness δ. We note that
a different scenario was suggested in [21, 23], where fluid membranes with spatially varying
bending rigidity have been considered. In these models, the coupling between membrane
curvature and inclusion concentration leads to a lateral phase separation.

Minimizing the free energy (4) with respect to w gives w = 0 (unbound) for φ > χ/γ and
w = χ − γφ > 0 (bound) for φ < χ/γ. By substituting back the value of w into eq. (4), the
free energy as a function of φ only becomes

f(φ) = −µφ+
1
2
tφ2 +

1
4
φ4, for φ > χ/γ, (5)

f(φ) = −1
2
χ2 + (γχ − µ)φ +

1
2
(t − γ2)φ2 +

1
4
φ4, for φ < χ/γ, (6)

depending on the value of χ/γ. Next, this free energy is minimized with respect to φ to find
the equation of state. The two-phase region is obtained by the Maxwell construction, and the
whole phase diagram is calculated numerically.

Phase behavior. – Hereafter we set γ = 1 without loss of generality. Then the phase
behavior of the above model depends only on the value of χ. For χ > 0, a second-order
transition line (critical line where φ = χ) separates the unbound phase from the bound one,
as shown in fig. 2 for χ = 1. The critical line ends at a critical end-point (CEP —denoted by
a filled square in fig. 2) on the first-order transition line. This first-order line itself ends at
an ordinary critical point (CP —denoted by a filled circle in the figures) corresponding to a
liquid/vapor-type CP between the two bound phases (B1+B2). Below the CEP temperature,
the first-order line separates the bound phase from the unbound phase (B1+U).

The CP between the two bound phases is located at (φc, tc) = (0, 1). Hence, the critical
temperature is increased from tc = 0 to 1 due to the coupling between the inclusion concen-
tration φ and the membrane-substrate distance � = δ/w. In other words, the phase separation
is enhanced by the adhesion for χ > 0. This result is in accordance with previous theoretical
models [7,9,10]. Between the CEP and the CP of the two-phase region (B1+B2), the two co-
existing values of φ lead to different membrane-substrate distances given by � = δ(χ− γφ)−1.
Since the � value for B1 is smaller than that for B2, the phases B1 and B2 correspond to the
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Fig. 2 – The phase diagrams for χ = 1 and γ = 1 as a function of (a) inclusion concentration φ
and reduced temperature t, and (b) inclusion chemical potential µ and reduced temperature t. The
continuous line is a first-order line, whereas the dashed line is a second-order one. The critical point
and the critical end-point are indicated by a filled circle and a square, respectively. The bound (w > 0)
and the unbound (w = 0) phases are denoted by B and U, respectively. Below the critical point, there
is a coexistence region either of two bound phases (B1+B2), or bound and unbound phases (B1+U).

“tight” and the “loose” bound phases, respectively, as discussed in [7]. At χ = 0 the CEP
meets with the CP and becomes the double critical end-point.

When χ becomes negative, the second- and first-order lines join up at a tricritical point
(TCP —denoted by a filled triangle in fig. 3). In addition to the coexistence between the
bound and the unbound phases (B+U1), a new two-phase region between the two unbound
phases (U1+U2) appears for −1/√2 < χ < −2/3√3. As an example, fig. 3 gives the phase
diagrams for χ = −0.5. In this case, the TCP is located at (φtcp, ttcp) = (−0.5, 0.25), and the
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Fig. 3 – The phase diagram for χ = −0.5 and γ = 1 as a function of (a) inclusion concentration φ
and reduced temperature t, and (b) inclusion chemical potential µ and reduced temperature t. The
same notation of different lines and symbols is used as in fig. 2. The critical point is indicated by a
filled circle, the tricritical point by a filled triangle, and the triple point by Tr.
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CP at (φc, tc) = (0, 0). Notice that once the membrane unbinds from the substrate due to
the Helfrich repulsion, the lateral phase separation between the two unbound phases occurs
simply because of the temperature quench (t < 0). There is also a triple point (Tr) at which
the bound phase and the two unbound phases coexist (B+U1+U2). Below this triple point
temperature, there is a region of two-phase coexistence between the bound and the unbound
phases (B+U2).

For χ < −1/√2, a similar (φ, t)-phase diagram as in fig. 2 can be obtained (not shown
here) with the critical line being located at φ = χ < 0. Below the CP at (φc, tc) = (0, 0), the
two unbound phases coexist until t reaches the CEP temperature. Then a region of two-phase
coexistence between the bound and the unbound phase appears below the CEP. For χ < 0
the interaction is repulsive on average, but can become attractive when the phase separation
becomes sufficiently strong. In this case, the effective second virial coefficient χeff = χ − γφ
turns out to be positive for negative enough values of φ.

In the model, the unbinding transition becomes first order below CEP or TCP for any
value of χ. This result is in accordance with the experimental prediction [12]. Our theory also
describes the coexistence between the two unbound states where the membrane has an infinite
separation from the substrate. In the experiment, the finite separation of the membrane was
attributed to the gravitational effect [12]. Within our model, the gravitational energy per unit
area should enter as a g/w term in eq. (4) with g > 0. In the presence of such a term, we ob-
tain a coexistence between the two bound states with finite separations, which is in agreement
with the experiment. However, the bound membrane goes continuously away to infinity and
unbinds for g → 0 when φ is large enough. This is the limit we have examined in this paper.

The present results can be compared with those obtained in other theoretical works. In
a previous phenomenological model for the adhesion-induced lateral phase separation [7], we
have considered only the phase coexistence between two bound phases. Hence a possible un-
bound state of the membrane was not taken into account. A phase coexistence between bound
and unbound states has been predicted independently in [9,10] by a mean-field treatment of a
lattice model and Monte Carlo simulations. In those works, the topology of the phase diagram
depends on several quantities such as the sticker binding energy, the potential range, or the
strength of the cis-interaction between the stickers. However, the coexistence between the two
unbound phases has not been predicted within the lattice model. A final remark is that the
sequence of the phase behavior obtained from our model is similar to that for sponge phases
in surfactant solutions when the symmetry-breaking parameter is varied [24].

In summary, we have proposed a phenomenological model for the unbinding transition
of a two-component fluid membrane. The coupling between lateral phase separation and
the membrane-substrate potential explains some of the recent experimental results. Further
extensions of the present study, such as the effect of finite tension on the membrane, or
adhesion between two fluctuating mixed membranes are currently under investigation.
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