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Abstract. Biomimetic membranes in contact with a planar substrate or a second membrane are studied
theoretically. The membranes contain specific adhesion molecules (stickers) which are attracted by the
second surface. In the absence of stickers, the trans-interaction between the membrane and the second
surface is assumed to be repulsive at short separations. It is shown that the interplay of specific attractive
and generic repulsive interactions can lead to the formation of a potential barrier. This barrier induces a line
tension between bound and unbound membrane segments which results in lateral phase separation during
adhesion. The mechanism for adhesion-induced phase separation is rather general, as is demonstrated by
considering two distinct cases involving: i) stickers with a linear attractive potential, and ii) stickers with a
short-ranged square-well potential. In both cases, membrane fluctuations reduce the potential barrier and,
therefore, decrease the tendency of phase separation.

PACS. 87.16.Dg Membranes, bilayers, and vesicles – 05.70.Np Interface and surface thermodynamics –
64.75.+g Solubility, segregation, and mixing; phase separation

1 Introduction

The adhesion of biomimetic membranes and vesicles is
governed by various generic and specific interactions [1].
The simplest systems are provided by lipid bilayers which
contain only one or a few lipid components and which
have a laterally uniform composition. The generic inter-
actions between one such membrane and another surface
(or between two such membranes) can be of enthalpic or
entropic origin.

The enthalpic contribution arises from the intermolec-
ular forces such as hydration, van der Waals, and elec-
trostatic forces. This contribution, called the direct mem-
brane interaction, can be measured if the membrane is
essentially flat or planar. Experimentally, a flat state can
be prepared by immobilizing the membrane on a solid sub-
strate. Theoretically, this state corresponds to the limit of
a large membrane rigidity.

In aqueous solution, bilayer membranes are often quite
flexible and then exhibit thermally-excited undulations
which act to renormalize their direct interaction. If the
direct interaction is purely repulsive, the undulations lead
to a free-energy contribution which can be interpreted as
an entropic or fluctuation-induced force as proposed in
reference [2]. If the direct interaction contains an attrac-

tive potential well, the renormalized interaction leads to
an unbinding transition as predicted in reference [3].

Biomembranes contain a large number of different
lipids and anchored macromolecules. The attractive forces
between two membranes are usually mediated by receptors
or adhesion molecules which are anchored in the mem-
branes [4–6]. These specific interactions govern the highly
selective binding of cells which is essential for many bio-
logical processes such as immune response or tissue devel-
opment [7]. From a theoretical point of view, the adhesive
behavior of these rather complex biomembranes can be
modelled, to a certain extent, by two-component mem-
branes containing “generic” lipids and anchored stickers
[8,9].

The interplay of generic and specific interactions has
also been investigated experimentally. Adhesion-induced
lateral phase separation into domains with small and large
membrane separations has been found to occur in sev-
eral biomimetic systems. The formation of blisters has
been observed in membranes containing cationic lipids in
contact with a negatively charged surface [10], and be-
tween membranes containing both negatively and posi-
tively charged lipids [11]. The coexistence of tight and
weak adhesion states has been found for membranes with
biotinylated lipids bound to another biotinylated sur-
face via streptavidin [12], membranes with homophilic
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csA-receptors from the slime mold Dictyostelium dis-
coideum [13], and membranes containing specific ligands
of integrin molecules adsorbed on a substrate [14]. At-
tractive membrane-mediated interactions between bound
csA-receptors of adhering vesicles have been inferred from
membrane tension jumps induced by the micropipet as-
piration technique [15]. In addition to the receptors, the
membranes studied in references [12–15] also contain re-
pulsive lipopolymers to prevent non-specific adhesion.
These observations indicate the existence of possible phys-
ical mechanisms for the aggregation of receptors in biolog-
ical membranes which has been found during cell adhesion
and results in the formation of focal contacts [7].

In this article, we present a detailed study of one possi-
ble mechanism for adhesion-induced phase separation con-
cerning membranes with generic repulsive and specific at-
tractive interactions. For these membranes, tracing over
the sticker degrees of freedom in the partition function
leads to an effective trans-membrane interaction which
exhibits a potential barrier. Such trans-membrane inter-
actions have been previously studied in references [16,
17]. The phase separation results from the line tension
between bound and unbound membrane regions due to
this potential barrier. Membrane fluctuations reduce the
barrier and, therefore, decrease the tendency for phase
separation. The mechanism is thus clearly distinct from
entropic, fluctuation-induced mechanisms for adhesion-
induced phase separation as discussed in references [9,18].
Similar mechanisms for phase separation due to an effec-
tive potential barrier have also been studied recently in
references [9,19,20].

The mechanism studied here is rather general as will
be demonstrated by considering two different cases. In the
first case, we assume that the generic trans-membrane in-
teraction is repulsive for short separations and attractive
for large separations. The generic trans-interaction is then
approximated by a harmonic potential centered at the po-
tential minimum at l = l0. The specific trans-interaction is
expanded up to linear order in l−l0, and can be thought to
arise from restoring forces of extensible sticker molecules
which are irreversibly bound to the membrane and the
substrate. In the absence of membrane shape fluctuations,
the lateral phase behavior can be determined exactly. Us-
ing Monte Carlo simulations, we furthermore show that
the membrane fluctuations reduce the potential barrier
and the tendency for lateral phase separation.

In the second case, we consider a generic trans-
membrane repulsion which is modeled as a square-barrier
potential. In addition, the trans-interaction of the stickers
is modeled as a square-well potential [8,9,18]. The stick-
ers are bound for small separations from the substrate,
and unbound otherwise. The square-well potential is a
simple model for short-ranged lock-and-key interactions
of ligands and receptors. After partial summation over
the sticker degrees of freedom, we find again an effective
potential barrier if the generic repulsion is longer ranged
than the specific attraction of the stickers. As in the first
case, this barrier leads to lateral phase separation, and is
effectively reduced by membrane fluctuations.

li

Fig. 1. A membrane segment consisting of 5 × 4 membrane
patches in contact with another planar surface. The patches
are labeled by the lattice sites i. The local separation of the
membrane from the reference plane is denoted by li. The com-
position of the membrane is described by occupation numbers
ni = 0 and ni = 1 corresponding to grey patches with no
sticker and black patches with one sticker, respectively.

2 The model

A systematic description of a biomimetic membrane with
stickers in contact with a substrate or a second membrane
has to include a field l(x, y) for the local separation of
the membrane(s) and a concentration field n(x, y) of the
stickers above a position (x, y) on a reference plane. In
the following, we apply a theoretical framework which has
been introduced in reference [8] and extended in refer-
ences [9,18]. Within this framework, the membrane is di-
vided into small patches with a linear size a which corre-
sponds to the smallest possible wavelength for bending de-
formations. According to computer simulations for molec-
ular membranes, this size is about 6 nm for lipid bilay-
ers with a thickness of about 4 nm [21]. For a membrane
which is on average parallel to a planar substrate, this
leads to an effective discretization of the reference plane
into a two-dimensional square lattice with lattice param-
eter a. The sticker positions are described by occupation
numbers ni = 0 or 1 where ni = 1 indicates the presence
of a sticker at lattice site i, and the local separation is
given by li ≥ 0 [8], see Figure 1. An alternative continu-
ous Ginzburg-Landau theory for the sticker concentration
field was used in reference [19].

In terms of these variables, the grand canonical Hamil-
tonian has the general form

H{l, n} = Hel{l} +
∑

i

[Vg(li) + ni (Vs(li) − µ)] , (1)

where the elastic term

Hel{l} =
∑

i

κ

2a2
(∆dli)2 (2)

represents the discretized bending energy of the membrane
with bending rigidity κ, and the discretized Laplacian ∆d

is given by

∆dli = ∆dl(x, y) = l(x + a, y) + l(x − a, y)
+ l(x, y + a) + l(x, y − a) − 4l(x, y) . (3)

The term (∆dli)2 corresponds to the leading-order expres-
sion for the mean curvature squared of a membrane with
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vanishing spontaneous curvature [22,23]. The second term
of the Hamiltonian (1) contains i) the generic interac-
tion potential Vg(l) between the membrane and substrate
and ii) the specific adhesion potential Vs(l) of the stick-
ers which only contributes at lattice sites with ni = 1,
i.e. at lattice sites where stickers are present. The rela-
tive chemical potential of the stickers is denoted by µ.
The same description holds for a multicomponent mem-
brane in contact with a second, homogeneous membrane.
In the latter case, the effective bending rigidity κ is given
by κ1κ2/(κ1 + κ2), where κ1 and κ2 denote the bending
rigidities of the two membranes [24].

Note that Vg(l) and Vs(l) are the interaction energies
per membrane patch where each patch has area a2. Thus,
the interaction energies per unit area are given by Vg(l)/a2

and Vs(l)/a2, respectively. This differs from the conven-
tion in reference [8], where the interaction potentials were
defined as energies per unit area.

In the following, we neglect direct interactions between
pairs of stickers which can be described by quadratic terms
in the concentration field n [9,18]. The Hamiltonian (1) is
then linear in n, and the sticker degrees of freedom in the
partition function

Z =
[ ∏

i

∫ ∞

0

dli

][∏
i

∑
ni=0,1

]
exp

[
−H{l, n}

T

]
(4)

can be partially summed or traced over exactly, leading
to

Z =
[∏

i

∫ ∞

0

dli

]
exp

[
−Hel{l} +

∑
i Vef(li)

T

]
(5)

with the effective potential

Vef(l) = Vg(l) − T ln
(

1 + exp
[
µ − Vs(l)

T

])
, (6)

where T denotes the temperature in energy units (i.e., the
Boltzmann constant kB is absorbed into the symbol T ).
The partial summation over the sticker degrees of freedom
{n} thus leads to an equivalent problem of a laterally ho-
mogeneous membrane with the effective potential (6).

3 Linear sticker potential

In this section, we consider a generic potential Vg between
the membrane and the substrate which has a relatively
deep minimum at a certain separation l0 from the sub-
strate. Such a potential arises, e.g., for electrically neutral
surfaces interacting via strong van der Waals forces. Using
a Taylor expansion around the minimum, we approximate
this generic potential by the harmonic potential

Vg(l) =
v2

2a2
(l − l0)2 , (7)

where v2 = a2(d2Vg/dl2)|l0 .
In addition to this generic potential, we consider ex-

tensible sticker molecules which are irreversibly bound to

both the substrate and the membrane, and which have an
unstretched extension small compared to l0. We will fur-
ther assume that the corresponding sticker potential Vs(l)
has an essentially constant gradient for those values of l
for which we can use the harmonic approximation (7) for
the generic potential. In such a situation, we may truncate
the expansion of the sticker potential in powers of l − l0
and use

Vs(l) = Vs(l0) +
α(l − l0)

a
, (8)

with α ≡ a∂Vs(l)/∂l|l0 > 0.
In order to simplify the notation and to reduce the

number of parameters, it is convenient to introduce the
rescaled variables

h ≡
√

v2

T

l − l0
a

. (9)

The Hamiltonian (1) with the generic potential (7) and
the specific potential (8) can then be written as

H{h, n}
T

=
∑

i

[
κ

2v2
(∆dhi)2 +

1
2
h2

i + ni (α̃hi − µ̃)
]

(10)
in terms of the discrete lattice variables hi, ni, and the
dimensionless parameters

α̃ =
α√
v2T

and µ̃ =
µ − Vs(l0)

T
, (11)

and the effective potential (6) has the form

Vef(h)
T

=
1
2
h2 − ln

(
1 + eµ̃−α̃h

)
. (12)

Direct inspection of these equations shows that the system
considered here depends on three dimensionless parame-
ters: i) the reduced coupling constant α̃ of the specific
potential, ii) the reduced (and shifted) chemical potential
µ̃, and iii) the ratio κ/v2 of the bending rigidity κ and the
strength v2 of the generic harmonic potential (7).

3.1 Limit of rigid membranes

For large values of the ratio κ/v2, thermally excited shape
fluctuations of the membrane can be neglected. The free
energy F = −(T/A) lnZ per area A is then given by
Vef/a2. The phase behavior is determined by the mini-
mization of the effective potential (12):

∂Vef

∂h
= 0 . (13)

First-order phase transitions are found when different
minima of Vef coexist.

For the effective potential (12), the discussion of the
phase behavior is simplified if this potential is expressed
in terms of the shifted separation field

z ≡ h + α̃/2 . (14)
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Fig. 2. The effective potential Vef as a function of the shifted
separation variable z for three values of the coupling α̃. The
analytical expression for Vef is given in (16). For small and large
values of α̃, Vef exhibits a single minimum and two degenerate
minima, respectively, as shown in the top and bottom parts. At
α̃ = α̃c = 2, the potential has the shape shown in the middle
and undergoes a continuous bifurcation.

For the special line in the (µ̃, α̃) parameter space as given
by

µ̃ = µ̃∗ ≡ −α̃2/2 , (15)
the effective potential (12) has the form

Vef(z)
T

∣∣∣∣
µ̃=µ̃∗

=
z2

2
+

α̃2

8
− ln [2 cosh(α̃z/2)] (16)

which is symmetric under the inversion z → −z.
As one varies the parameter α̃ while keeping µ̃ =

µ̃∗(α̃), the effective potential given by (16) undergoes a
continuous bifurcation at the critical value α̃ = α̃c = 2,
see Figure 2. For α̃ < α̃c and α̃ > α̃c, this potential has a
single minimum at z = 0 and two degenerate minima at
finite values of z, respectively. The critical value α̃c = 2
of the bifurcation point can be directly inferred from the
second derivative of (16) as given by

1
T

d2Vef(z)
dz2

∣∣∣∣
µ̃=µ̃∗

= 1 − α̃2

4 cosh2(α̃z/2)
. (17)

For z = 0, this expression is equal to 1− α̃2/4 which van-
ishes for α̃ = α̃c = 2. In the limit of rigid membranes as

considered here, one can ignore the effect of membrane
fluctuations and the bifurcation point of the effective po-
tential is identical with the critical point of the system
which thus lies at α̃c = 2 and µ̃c = −α̃c

2/2 = −2.
Thus, for µ̃ = µ̃∗(α̃) and α̃ > 2, the effective potential

(12) is a symmetric double-well potential with two degen-
erate minima. As soon as the chemical potential µ̃ deviates
from its coexistence value µ̃ = µ̃∗, this symmetry is bro-
ken and the effective potential exhibits a unique global
minimum. Therefore, the system undergoes a discontinu-
ous transition as one changes the chemical potential from
µ̃ = µ̃∗ − ε to µ̃ = µ̃∗ + ε for α̃ > 2, where ε denotes a
small chemical potential difference.

The positions, say z0, of the extrema of the effective
potential are determined by dVef(z)/dz = 0. Along the
coexistence line given by µ̃ = µ̃∗ = −α̃2/2, this leads to
the transcendental equation

z0 =
α̃

2
tanh

(
α̃z0

2

)
. (18)

This equation has the trivial solution z0 = 0 for all values
of α̃ which corresponds to a minimum and maximum for
α̃ < α̃c = 2 and α̃ > α̃c = 2, respectively. For α̃ > α̃c = 2,
equation (18) has two additional solutions corresponding
to the two degenerate minima of the effective potential
Vef , see Figure 2.

For rigid membranes with large κ/v2, the sticker con-
centration X ≡ 〈ni〉/a2 is given by

X = −∂F

∂µ
= − 1

a2

∂Vef

∂µ
=

1
a2

eµ̃−α̃y0

1 + eµ̃−α̃y0
(19)

with y0 ≡ z0− α̃/2 which denotes the position of the min-
ima of the effective potential (12). Along the coexistence
line with µ̃ = µ̃∗ = −α̃2/2, this expression simplifies and
becomes

X

∣∣∣∣
µ̃=µ̃∗

=
1
a2

e−α̃z0

1 + e−α̃z0
. (20)

Inserting the numerically determined solutions of the
transcendental equation (18) into (20) leads to the con-
centrations of the coexisting phases which determine the
phase diagram shown in Figure 3. Inside the shaded two-
phase region, a sticker-poor phase characterized by a rela-
tively large separation y0 of the membrane from the sub-
strate coexists with a sticker-rich phase with a relatively
small value of y0.

3.2 Flexible membranes

For a fluctuating membrane in a symmetric double-well
potential, first-order transitions only exist if the barrier
between the two potential wells exceeds a certain critical
height [16,17]. For barrier heights below this critical value,
the fluctuating membrane “tunnels” through the barrier
and there is no phase transition. Therefore, the critical
point of a flexible membrane in the double-well potential
(16) will be characterized by reduced coupling constants
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Fig. 3. Phase diagram for linear stickers in the absence of
membrane fluctuations, depending on the sticker concentration
X and the reduced coupling constant α̃. Within the grey two-
phase region, a sticker-poor phase characterized by a relatively
large membrane-surface separation coexists with a sticker-rich
phase for which this separation is relatively small. The critical
point is located at a2Xc = 1/2 and α̃c = 2.

α̃c = α̃c(κ/v2) which exceed the bifurcation value α̃c = 2
as obtained for rigid membranes in the limit of large κ/v2.

Using Monte Carlo simulations, the critical point can
be determined, for a fixed value of κ/v2, from an evalua-
tion of the moments

C2 =
〈z̄2〉
〈|z̄|〉2 and C4 =

〈z̄4〉
〈z̄2〉2 , (21)

where

z̄ =
1
N

N∑
i=1

zi (22)

is the spatially averaged order parameter, and 〈· · · 〉 de-
notes averages over all membrane configurations [17,25].
For α̃ > α̃c and correlation lengths ξ which are much
smaller than the linear size L of the finite membrane, the
moments reach the values C2 = 1 and C4 = 1, whereas
for 0 < α̃ < α̃c and ξ � L, we have C2 = π/2 ≈ 1.57 and
C4 = 3. For L � ξ on the other hand, the moments C2

and C4 vary only weakly with the linear size L. The criti-
cal value α̃c of the reduced coupling constant can then be
estimated from the common intersection point of C2 and
C4, respectively, as a function of α̃ for several values of L
[17,25], see Figure 4.

In Figure 5, we display the obtained values for the
critical rescaled coupling constant α̃c as a function of
the reduced rigidity κ/v2. For large κ/v2, α̃c approaches
the limiting value α̃c = 2 which is appropriate for rigid
membranes as discussed in the previous section. As one
decreases κ/v2, the membrane fluctuations become more
pronounced and act to increase the value of α̃c. This im-
plies that the wells of the effective potential (16) have a
finite depth as one reaches the critical point of the system.

Lateral phase separation occurs for coupling constants
α̃ > α̃c. In either of the two phases, the entire membrane
is located around one of the minima in the effective poten-
tial. In the sticker-poor phase, the membrane is found in
the minimum with larger separation y0 from the substrate.
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Fig. 4. Monte Carlo data for the moments C2 and C4 defined
in (21) as a function of the reduced coupling constant α̃. The
ratio of the bending rigidity κ and of the strength v2 for the
generic harmonic potential (7) has the fixed value κ/v2 = 1.
The membrane segments studied in the simulations consist of
N × N membrane patches.
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Fig. 5. The critical values α̃c of the reduced coupling constant
α̃ as a function of the reduced membrane rigidity κ/v2. The
reduced coupling constant α̃ is defined in (11) and governs the
strength of the linear sticker potential as given by (8). For large
values of κ/v2, one attains the limit of rigid membranes with
α̃c ≈ 2. The statistical errors are smaller than the size of the
symbols.

This minimum is dominated by the generic membrane po-
tential and corresponds to a state of weak adhesion. In
the sticker-rich phase, the membrane fluctuates around
the minimum with smaller separation y0 corresponding
to a state of tight adhesion. In contrast, there is only a
single phase for coupling constants α̃ < α̃c. For example,
for 2 < α̃ < α̃c the two minima of the effective poten-
tial are both populated by many different segments of the
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fluctuating membrane which is able to cross the potential
barrier between the minima.

4 Square-well sticker potential

Let us now turn to stickers with a specific adhesion po-
tential

Vs(l) = Uθ(lv − l) = U , for 0 ≤ l ≤ lv ,
= 0 , for l > lv ,

(23)

where θ(x) is the Heaviside function θ(x) = 0 for x < 0
and θ(x) = 1 for x ≥ 0. The parameter U has the same
dimension as the membrane potential Vs and represents
the interaction energy per sticker.

Stickers which interact via the square-well poten-
tial (23) can attain two different states: A bound state
with binding energy U < 0 if the local separation l be-
tween the membrane and the substrate is smaller than the
potential range lv, and an unbound state otherwise. Be-
cause the fluctuating membrane cannot penetrate the sub-
strate surface, the membrane separations l are restricted
to non-negative values. In contrast to the linear sticker
potential of the previous section with the specific poten-
tial (8), the stickers characterized by the interaction po-
tential (23) have a fixed length and cannot be stretched.
Thus, the square-well potential as given by (23) provides
a simple model for short-range interactions arising, e.g.,
from specific ligand/receptor lock-and-key interactions or
from screened electrostatic forces for charged stickers in
contact with an oppositely charged substrate.

The phase behavior of multicomponent membranes
containing stickers which interact via the square-well po-
tential as given in (23) has been studied previously for the
case in which one can ignore generic interactions with the
substrate. The membrane was found to undergo lateral
phase separation even for purely repulsive cis-interactions
between the stickers if these stickers have an increased
lateral size [18] or a larger bending rigidity than the lipid
matrix [9]. The phase separation is then driven by the
shape fluctuations of the membrane.

Here, we consider the interplay of the specific sticker
potential (23) with a generic repulsive trans-interaction
between the membrane and the substrate. If the range
of these generic interactions is smaller than the potential
range lv of the stickers, the bound state of the stickers is
more restricted, but the general entropic phase behavior
described above will not be affected. However, for repul-
sive generic interactions with a potential range which ex-
ceeds lv, a different scenario is possible. For simplicity, we
consider here a generic potential of the form

Vg(l) = Ubaθ(lba − l) = Uba , for 0 ≤ l ≤ lba ,
= 0 , for l > lba ,

(24)

with a barrier height Uba > 0 and range lba > lv. The
effective potential (6) obtained after the summation of the
sticker degrees of freedom is shown in Figure 6 and can be

_

Fig. 6. Schematic form of the effective potential Vef − V0 de-
fined in (25) as a function of the membrane separation l. The
effective potential exhibits i) a potential barrier of height Uba

which extends up to the separation lba, see (24), and ii) a
potential well which has the range lv, arising from the short-
ranged sticker potential (23), and the effective depth Uwe as
given by (26).

written as

Vef(l) − V0 = Uwe , for 0 < l < lv ,
= Uba , for lv < l < lba ,
= 0 , for lba < l ,

(25)

with

Uwe = Uba − T ln
1 + e(µ−U)/T

1 + eµ/T
(26)

and the constant term V0 = −T ln
(
1 + eµ/T

)
which de-

pends only on the reduced chemical potential µ/T . Since
the sticker binding energy U is negative, we have Uwe <
Uba.

In the context of interacting membranes, an effec-
tive potential of the form (25) was first studied in ref-
erence [16]. More recently, such an interaction potential
has also been derived for membranes which contain both
stickers and repellers, i.e. non-adhesive molecules which
protrude from the membrane surface [9]. The repellers
have been modeled by a local square-barrier potential, the
stickers by the local square-well potential (23). The generic
square-barrier potential (24) thus affects the phase behav-
ior in a similar way as repellers with a local square-barrier
potential. As previously discussed, the membrane unbinds
at a certain critical depth U∗

we of the attractive potential
well which is given by [16]

|U∗
we| = ca2T 2/κl2v , (27)

where c is a dimensionless coefficient, because the excess
free energy for a membrane confined to a potential well
with depth Uwe is Vfl(lv) ∼ T 2/κl2v, and the free-energy
difference between the bound and the unbound state of the
membrane reads ∆F = −|Uwe|/a2 + cT 2/κl2v. The charac-
ter of the unbinding transition depends on the height of
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the potential barrier which induces a line tension between
bound and unbound membrane segments. On small length
scales, this line tension can be estimated as U eff

ba L with ef-
fective barrier height U eff

ba = Uba + |Uwe| − cT 2/κl2v and
effective width L ∼ (lba− lv)

√
κ/T of the membrane strip

crossing the barrier [16]. Taking also into account the line
entropy on larger length scales, the unbinding transition
is found to be discontinuous for relatively strong barriers
with

Uba(lba − lv)2 � |U∗
we|l2v (28)

and continuous for weak barriers with Uba(lba − lv)2 �
|U∗

we|l2v. A discontinuous transition implies the coexistence
of a bound phase with a high concentration of stickers
and an unbound phase with a low sticker concentration.
Therefore, sufficiently strong barriers also lead to lateral
phase separation and sticker aggregation.

In contrast to the entropic mechanisms mentioned
above, the phase separation is caused by the line tension
between bound and unbound membrane patches. This line
tension is induced by the potential barrier. In order to un-
derstand the influence of membrane fluctuations, we have
to take into account that the transition value |U∗

we| of the
contact energy increases with the temperature T and de-
creases with the bending rigidity κ, see (27). As implied
by (28), membranes with more pronounced shape fluctu-
ations require larger potential barriers for a discontinuous
unbinding transition and lateral phase separation. As in
the first case studied in the previous section, membrane
fluctuations decrease the tendency of the membrane to
phase-separate.

5 Conclusions

In this article, we have studied one possible mechanism for
adhesion-induced phase separation of biomimetic mem-
branes. The mechanism is applicable to membranes which
experience both specific attractive and generic repulsive
trans-interactions. The specific interactions are taken to
arise from sticker molecules which are embedded in the
membrane, while the generic repulsion may originate,
e.g., from electrostatic forces between similarly and ho-
mogeneously charged membranes. The effective trans-
interaction obtained by an explicit summation of the
sticker degrees of freedom in the partition function is
shown to exhibit a potential barrier. This barrier induces
a line tension between bound and unbound membrane re-
gions resulting in a coexistence of a sticker-rich phase,
characterized by a small separation between membrane
and substrate, and a sticker-poor phase, characterized by a
larger membrane-substrate separation. Thermally excited
shape fluctuations of the membrane are shown to decrease
the tendency for lateral phase separation by reducing the
potential barrier height.

Two different cases have been considered here. In the
first case, the generic trans-interaction between membrane
and substrate is assumed to have a minimum at a finite
membrane separation and is approximated by a harmonic

potential centered at the minimum. The specific trans-
interaction of the stickers is taken to depend linearly on
membrane separation. This model introduced in refer-
ence [19] has been studied using a mean-field approach.
The adhesion was shown to shift the critical point of the
lateral phase transition. In the present article, the con-
centration field n of the stickers is described as a lattice
gas variable on a discretized elastic membrane. The phase
behavior is determined exactly in the absence of shape
fluctuations of the membrane. Fluctuations of the mem-
brane are subsequently taken into account by Monte Carlo
simulations.

In the second case, the specific sticker trans-interaction
is modeled by a short-ranged square-well potential, and
the generic trans-interaction between membrane and sub-
strate is assumed to be a purely repulsive step func-
tion. This second case turns out to be closely related
to biomimetic membranes which contain stickers and re-
pellers, i.e. repulsive molecules which protrude from the
membrane surface [9], since the effective potential has the
same functional form as in equation (25) and exhibits a
potential barrier. As shown in references [16,17], the mem-
brane fluctuations can “tunnel” through a relatively small
barrier but are trapped by a relatively large one.

The mechanism for adhesion-induced phase separation
as studied in the present article is distinct from several
entropic mechanisms which have been identified in pre-
vious works [9,18]. Examples of these other mechanisms
include stickers with an increased lateral size [18], stickers
with an increased rigidity, and stickers with attractive cis-
interactions which are renormalized by the shape fluctua-
tions of the membrane [9]. These entropic mechanisms de-
pend strongly on the rescaled potential range (lv/a)

√
κ/T

of the stickers where lv is the range of the square-well po-
tential (23), and a is the size of the membrane patches.
Thus, for the entropic mechanisms, the tendency for lat-
eral phase separation increases with decreasing potential
range and/or increasing temperature. This is in contrast
to the mechanism described in the present work which is
governed by the potential barrier contained in the effec-
tive interaction potential of the membrane. In this case,
the shape fluctuations of the membrane reduce the po-
tential barrier which implies that the tendency for lateral
phase separation decreases with increasing temperature.

Experimentally, the temperature-dependence of
adhesion-induced phase separation has not yet been
studied. The presence of repulsive lipopolymers in the
biomimetic systems investigated in references [12–15]
points towards a barrier-mechanism for adhesion-induced
phase separation as emphasized in this article. Entropic
mechanisms, on the other hand, might be relevant in the
case of membranes containing oppositely charged lipids
[10,11] which induce a tight membrane coupling and
small membrane separations below 4 nm [11].
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