
Colloids and Surfaces

A: Physicochemical and Engineering Aspects 183–185 (2001) 259–276

Kinetics of surfactant adsorption: the free energy approach

Haim Diamant 1, Gil Ariel, David Andelman *
School of Physics and Astronomy, Raymond and Be�erly Sackler Faculty of Exact Sciences, Tel A�i� Uni�ersity, Ramat A�i�,

69978 Tel A�i�, Israel

Abstract

We review the free energy approach to the kinetics of surfactant adsorption at fluid–fluid interfaces. The formalism
is applied to several systems. For non-ionic surfactant solutions, the results coincide with earlier models while
indicating their limits of validity. We study the case of surfactant mixtures, focusing on the relation between the
mixture kinetics and the properties of its individual constituents. Strong electrostatic interactions in salt-free ionic
surfactant solutions drastically modify the adsorption kinetics. In this case the theory accounts for experimental
results, which could not be earlier understood. The effect of screening by added salt is studied as well. Our theoretical
predictions are compared with available experiments. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The kinetics of surfactant adsorption is a fun-
damental problem of interfacial science playing a
key role in various processes and phenomena,
such as wetting, foaming and stabilization of liq-
uid films. For example, the wetting rate of a
substrate by surfactant solutions was shown to be
correlated with the dynamic surface tension of the
solution, rather than its equilibrium surface ten-
sion [1]. Since the pioneering theoretical work of
Ward and Tordai in the 1940s [2], the kinetics of

surfactant adsorption has been the object of thor-
ough experimental and theoretical research [3–5].

The problem of adsorption kinetics, poses sev-
eral theoretical difficulties. One question concerns
the adsorption mechanism at the interface and its
coupling to the kinetics in the bulk solution.
Another important question is related to the defi-
nition and calculation of the time-dependent in-
terfacial tension as measured in experiments.
Earlier theoretical works have addressed these
questions by adding appropriate assumptions to
the theory. Such models can be roughly summa-
rized by the following scheme. (i) Consider a
diffusive transport of surfactant molecules from a
semi-infinite bulk solution (following Ward and
Tordai); (ii) introduce a certain adsorption equa-
tion as a boundary condition at the interface; (iii)
solve for the time-dependent surface coverage; (iv)
assume that the equilibrium equation of state is
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valid also out of equilibrium and calculate the
dynamic surface tension. While certain models
take an equilibrium adsorption isotherm as the
interfacial boundary condition [6–8], others use a
kinetic equation [9–12].

The purpose of this article is to review a theo-
retical approach based on a free-energy formalism
[13–16]. The main advantage of the free-energy
approach is that all the equations are derived
from a single functional, thus yielding a more
complete and consistent description of the kinetics
in the entire system. The definition and calcula-
tion of the dynamic surface tension results natu-
rally from the formalism itself, and extension to
more complicated interactions can then follow. In
this review, we summarize the essence of the
free-energy approach and its application to vari-
ous systems while skipping most of the technical
calculations. More details can be found in previ-
ous publications [13–16].

The next section presents the general theoretical
framework and basic considerations of our for-
malism. In the sections that follow we apply this
general scheme to three examples. First, the sim-
plest case of a single-component, non-ionic sur-
factant solution is considered. We analyze the
various stages and characteristic time scales of the
adsorption process. Results of earlier models are
recovered as special cases, and their limits of
validity are defined. In the second example, the
treatment of the non-ionic case is extended to
surfactant mixtures. Experiments portray a large
variety of phenomena specific to mixed systems
[8,17–21]. For instance, more complex dynamic
surface tension is observed due to competition
between different species. We focus on the rela-
tion between the adsorption behavior of the mix-
ture and the properties of its individual
constituents. Certain cases are found, where mix-
ing several surfactant species may lead to signifi-
cant differences in the kinetics. The third example
concerns ionic surfactant solutions. In salt-free
systems, strong electrostatic interactions are
found to drastically modify the adsorption kinet-
ics and yield interesting time dependence [22–24].
Using our approach, we point out the problems in
earlier models as applied to such systems and
account for the experimentally observed behavior.

Electrostatic screening caused by added salt is
shown to lead to a kinetic behavior much similar
to the non-ionic case.

Our theoretical predictions are compared with
available experiments. However, specific experi-
mental techniques, as can be found in [3], are not
covered. Since a considerable body of theoretical
work is summarized in this review, derivations are
not given in full detail; further details can be
found in [13–16].

2. Theoretical framework

This section outlines the general free energy
formalism, which is used extensively in the sec-
tions that follow [13].

In this review we assume that the aqueous
solution has a sharp, flat interface with another
non-polar fluid phase (an oil or air phase), as is
illustrated in Fig. 1. We are concerned with a
surfactant solution below its critical micelle con-
centration (cmc), i.e. containing only monomers.
In such a dilute solution there are two important
energy scales – the thermal energy, T (throughout
this review we take the Boltzmann constant as
unity), and the energy of molecular transfer to the
water–oil or water–air interface, �. In common
surfactant systems � is much larger than T (typi-
cally in the range 10–20T). As a result, a very
compact monolayer is formed at the interface
with an interfacial volume fraction close to unity.

Fig. 1. Schematic view of the system. A sharp, fiat interface
separates a dilute surfactant solution from an air or oil phase.
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Since the bulk volume fraction in such dilute
solutions is very low (typically 10−6–10−4), the
surfactant attains a step-like profile having a
sharp decrease within a molecular distance from
the interface. It is unjustified in these circum-
stances to employ a continuum, gradient-expan-
sion formalism for the entire system, as is done in
many other interfacial problems. A more appro-
priate approach is to treat the interface as a
distinct sub-system being in thermal and diffusive
contact with the bulk solution. (For an earlier
discussion of such a distinction, see [25]). Conse-
quently, the excess free energy of the system is
divided into a bulk contribution and an interfacial
one.

We write the excess free energy per unit area as
a functional of the various degrees of freedom
{�i}i=1,2,…, required to describe the system (e.g.
the surfactant volume fraction profile, electro-
static potential, etc.),

�� [{�i}]=
��

0

�f [{�i(x, t)}]dx+ f0[{�i0(t)}].

(2.1)

In the first term, �f denotes the local excess in free
energy density over the bulk, uniform solution, x
being the distance from the interface and t the
time. The second term, f0, describes the contribu-
tion from the interface itself, {�i0} being the
interfacial values of the various degrees of free-
dom. A coupling term is to be included in f0 to
account for the contact between the interface and
the bulk. Note that in order to correctly model
the kinetics, the coupling should be made with the
layer in contact, namely the sub-surface layer of
solution (x�0), since it is generally not in equi-
librium with the rest of the bulk during the pro-
cess. It has been implicitly assumed in Eq. (2.1)
that lateral inhomogeneities are negligible, i.e. the
time scale of lateral kinetics is assumed very short
compared with the adsorption process. This as-
sumption is usually justified for fluid–fluid inter-
faces and allows a reduction of the problem to a
single spatial dimension, namely the distance from
the interface, x. (There are certain cases, however,
where lateral diffusion seems to play an important
role; see [26,27]).

Apart from T and �, another energy parameter,
�, is usually required to quantitatively account for
equilibrium, as well as kinetic experimental mea-
surements [28]. It is associated with lateral attrac-
tion between surfactant molecules at the interface,
which usually cannot be neglected due to the large
interfacial coverage. Values of � may amount to
several T, the thermal energy.

Once a free energy functional in the form of
Eq. (2.1) has been formulated, the equilibrium
relations and kinetic equations are easily derived.
Equilibrium relations, such as the equilibrium
profile and adsorption isotherm are found by
setting the variation of the free energy with re-
spect to the various degrees of freedom to zero,

���

��i(x)
=0, equilibrium. (2.2)

The corresponding extremum of the free energy
yields the equilibrium equation of state, relating
�� with the equilibrium values of {�i}. First-or-
der kinetic equations can be derived as well from
the variation of the free energy. Since the degrees
of freedom relevant to the adsorption problem are
conserved quantities (e.g. concentration profiles),
the scheme for deriving the kinetic equation for a
conserved order parameter should be employed
(see, e.g. [29]),

��i

�t
=

ai
2

T
�

�x
�

Di({�i})�i

�

�x
����

��i

�n
, (2.3)

where ai is a molecular size and Di({�i}) a diffu-
sion coefficient. Due to the step-like profile dis-
cussed above, a similar dependence may be
assumed for the diffusion coefficient as well, i.e.
having a constant value, Di, in the dilute bulk and
possibly a different value, Di0, at the interface.
The kinetic equations derived by this procedure
do not account for convective transport. Convec-
tion is found to play a significant role in certain
practical cases and experimental setups [30]. More
recent experimental techniques, however, seem to
exclude convective effects [3], and they will be
neglected in the current review.

The distinction between bulk and interface re-
sults in separate (though coupled) kinetic equa-
tions for the two sub-systems. Correspondingly,
two limiting cases naturally arise. Diffusion-lim-
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ited adsorption occurs when the interfacial kinet-
ics is much faster than the transport from the
bulk. In this case the interfacial layer may be
assumed to maintain quasi-equilibrium with the
sub-surface layer throughout the process. Conse-
quently, the interfacial kinetic equations are re-
duced to equilibrium-like isotherms relating the
surface coverage and sub-surface volume frac-
tion. They thus serve merely as static boundary
conditions for the kinetic equations in the bulk.
The other limiting case is kinetically limited ad-
sorption, where the interfacial kinetics becomes
the slow limiting process, and the bulk may be
assumed throughout the process as maintaining
quasi-equilibrium with the changing interface.
Deriving all the kinetic equations from a single
functional allows a more rigorous determination
of the conditions under which such limiting
cases hold. This will be demonstrated in the fol-
lowing sections.

One of the important points in our formalism
is that the excess free energy per unit area (Eq.
(2.1)) is identified with the measurable reduction
in interfacial tension. Furthermore, assuming
that this definition holds at equilibrium, as well
as out of equilibrium, readily solves the problem
of calculating the dynamic surface tension, which
is a fundamental obstacle in adsorption kinetics.
Earlier works dealt with this obstacle by simply
assuming that the equilibrium equation of state
can be used for the dynamic surface tension as
well [31]. Since the equation of state is merely
the extremum of the functional in Eq. (2.1), us-
ing it out of equilibrium is valid only when the
free energy is not too far from its minimum
value. Noting that the dominant term in Eq.
(2.1) is usually the interfacial one, f0, this re-
quirement is fulfilled when the interface is close
to equilibrium with the sub-surface layer. In
other words, the scheme employed by earlier
works is valid only for diffusion-limited adsorp-
tion. This observation becomes particularly im-
portant in kinetically limited systems, such as
salt-free ionic surfactant solutions, where our
general Eq. (2.1), rather than the equation of
state, must be used in order to correctly calcu-
late the dynamic surface tension.

3. Non-ionic surfactants

We start with the simplest case of an aqueous
solution containing a single type of non-ionic
surfactant [13]. The excess free energy (Eq. (2.1))
can be rewritten in this case as a functional of a
single degree of freedom — the volume fraction
profile of the surfactant, �(x, t),

�� [� ]=
��

0

�f [�(x, t)]dx+ f0[�0(t)], (3.1)

where �0 is the volume fraction at the interface
(surface coverage). We assume a contact with a
reservoir, where the surfactant has fixed volume
fraction and chemical potential, �b and �b,
respectively. Since the solution is dilute, steric and
other short-range interactions between surfactant
molecules are assumed to take place only at the
interfacial layer itself. Hence, the two
contributions to the excess free energy are written
as

a3�f(�)=T [�(ln �−1)−�b(ln �b−1)]

−�b(�−�b) (3.2)
a2f0(�0)=T [�0 ln �0+ (1−�0) ln(1−�0)]

−(�+�1)�0− (�/2)�0
2, (3.3)

where a denotes the surfactant molecular size. The
contribution from the bulk contains only the
entropy in the ideal-solution limit and contact
with the reservoir. In the interfacial contribution,
however, we have included the entropy of mixing
accounting for the finite molecular size, a linear
term accounting for the surface activity and
contact with the adjacent solution (�1��(x�0)
being the chemical potential at the sub-surface
layer), and a quadratic term describing
short-range lateral attraction between surfactant
molecules at the interface. Although both � and
�1 are linearly coupled with the surface coverage,
their physical origin is quite different — � is
constant in time, characterizing the surface
activity of the specific surfactant, whereas �1 is a
time-dependent function participating in the
interfacial kinetics. By using a quadratic term for
lateral attraction, we restrict to the simplest
short-range pair interactions. This simplification
is sufficient for describing the thermodynamics of
monolayers in the gaseous and liquid states. It is
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merely a second order term of an expansion in �0,
and generalization to more complicated situations
can be made.

3.1. Equilibrium relations

Setting the variation of the free energy with
respect to �(x) and �0 to zero yields a uniform
profile in the bulk, �(x�0)��b, and recovers
the Frumkin adsorption isotherm (or the Lang-
muir one, if �=0) at the interface [32],

�0=
�b

�b+e− (�+��0)/T . (3.4)

Substituting these results in the free energy func-
tional recovers also the equilibrium equation of
state,

a2��=T ln(1−�0)+ (�/2)�0
2 . (3.5)

3.2. Kinetic equations

Using the scheme of Eq. (2.3) to derive the
kinetic equations, an ordinary diffusion equation
is obtained in the bulk,

��

�t
=D

�2�

�x2 , (3.6)

where D is the surfactant diffusion coefficient,
assumed constant in the dilute bulk. In addition,
we get a conservation condition at the sub-surface
layer,

��1

�t
=

D
a

��

�x
�
x=a

−
��0

�t
, (3.7)

where �1��(x�0) is the local volume fraction
in the sub-surface layer, to be distinguished from
the interfacial volume fraction, �0. Finally, at the
interface itself, we get

��0

�t
=

D0

a2 �1
�

ln
�1(1−�0)

�0

+
�

T
+

��0

T
n

, (3.8)

where D0 may differ from D. Applying the
Laplace transform with respect to time to Eqs.
(3.6) and (3.7), we obtain a relation similar to that
of Ward and Tordai [2],

Fig. 2. Typical dynamic surface tension curve of a non-ionic
surfactant solution. (Adapted from [28]). The solution contains
1.586×10−4 M 1-decanol. The solid line is a theoretical fit
using the following parameters: a=4.86 A� , �=11.6T, �=
3.90T (all three parameters were fitted from independent equi-
librium measurements), and D=6.75×10−6 cm2 s−1.

�0(t)=
� D

�a2

�1/2�
2�b�t−

� t

0

�1(�)

�t−�
d�
n

+2�b−�1. (3.9)

The system of two equations, Eqs. (3.8) and (3.9),
with appropriate initial conditions, completely de-
termines the adsorption kinetics and equilibrium
state. Full solution of the equations can be ob-
tained only numerically. Several numerical
schemes have been proposed for solving the
Ward–Tordai equation with various boundary
conditions [3,4,11,16]. An example for a numeri-
cal solution fitted to experiment is given in Fig. 2.

Our formalism has led to a diffusive transport
in the bulk (Eq. (3.9)) coupled to an adsorption
mechanism at the interface (Eq. (3.8)). Let us
examine the characteristic time scales associated
with these kinetic equations. The diffusive trans-
port from the bulk solution (Eq. (3.9)) relaxes like
[7]

�1(t��)
�b

�1−
��1

t
�1/2

, �1�
a2

�D
��0,eq

�b

�2

,

(3.10)
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where �0,eq denotes the equilibrium surface cover-
age. The molecular diffusion time scale, a2/D, is
of order 10−9 s, but the factor �0,eq/�b in surfac-
tant monolayers can be very large (typically 105–
106), so the diffusive transport to the interface
may require minutes. On the other hand, the
kinetic process at the interface (Eq. (3.8)) relaxes
like

�0(t��)
�0,eq

�1−e− t/�k,

�k�
a2

D0

��0,eq

�b

�2

e− (�+��0,eq)/T. (3.11)

Typical values of � for common surfactants are
much larger than T. In the absence of barriers
hindering the kinetics at the interface, D0 is not
expected to be drastically smaller than D, and �k,
therefore, is much smaller than �1. In other words,
the adsorption of common non-ionic surfactants
is expected to be diffusion-limited. The asymp-
totic time dependence found in Eq. (3.10) gives a

Fig. 4. Dependence of surface tension on surface coverage in
diffusion-limited adsorption (Eq. (3.5)). The values taken for
the parameters match the example in Fig. 2.

distinct ‘footprint’ for diffusion-limited adsorp-
tion, as demonstrated in Fig. 3.

One consequence of a diffusion-limited process
is that the relation between �0 and �1 is given at
all times by the equilibrium adsorption isotherm
(Eq. (3.4) in our model). The solution of the
adsorption problem in that case amounts, there-
fore, to the solution of the Ward–Tordai Eq. (3.9)
with the adsorption isotherm as a boundary con-
dition. An exact analytical solution exists only for
the simplest, linear isotherm, �0��1 [30]. Such
an approximation, however, is valid only for low
surface coverage and, hence, not very useful for
the description of the entire adsorption process
[16]. For more realistic isotherms such as Eq.
(3.4), one has to resort to numerical techniques, as
mentioned above and demonstrated in Fig. 2.
Another consequence of a diffusion-limited pro-
cess, as explained in Section 2, is that the dynamic
surface tension, ��(t), approximately obeys the
equilibrium equation of state (Eq. (3.5)). These
results show that the validity of schemes em-
ployed by earlier theories is essentially restricted
to diffusion-limited cases.

The dependence defined by the equilibrium
equation of state (Eq. (3.5)) is depicted in Fig. 4.
As a result of the competition between the en-

Fig. 3. Diffusion-limited adsorption exhibited by non-ionic
surfactants. Four examples for dynamic surface tension mea-
surements are shown. Open circles — decyl alcohol, 9.49×
10−5 M. (Adapted from [33].) Squares — Triton X-100,
2.32×10−5 M. (Adapted from [11].) Triangles — C12EO8,
6×10−5 M. (Adapted from [34].) Solid circles — C10PY,
4.35×10−4 M. (Adapted from [34].) The asymptotic t−1/2

dependence shown by the solid fitting lines is a ‘footprint’ of
diffusion-limited adsorption.
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tropy and interaction terms in the equation, the
surface tension changes very little for small sur-
face coverages. As the coverage increases beyond
about 1− (�/T)−1/2, the surface tension starts
decreasing until reaching equilibrium. This quali-
tatively explains the shape of dynamic surface
tension curves found in experiments for non-ionic
surfactants (see Fig. 2). When the adsorption is
not diffusion-limited, this theoretical approach is
no longer applicable, as will be demonstrated in
the ionic case.

In a diffusion-limited process the various physi-
cal quantities all have the asymptotic characteris-
tic t−1/2 dependence, similar to Eq. (3.10). Yet,
the relaxation times �0, �1 and ��, characterizing
the temporal decay of �0, �1 and �, respectively,
may differ

�0

�0,eq

�1−
��0

t
�1/2

,
�1

�b

�1−
��1

t
�1/2

,

��

��eq

�1−
���

t
�1/2

. (3.12)

Experiments are usually concerned with surface
coverage and surface tension, rather than sub-sur-
face concentration. Substituting �1 of Eq. (3.10)
in Eq. (3.4) and Eq. (3.5), we find

�0=
� 1−�0,eq

1− (�/T)�0,eq(1−�0,eq)
n2

�1,

��= (�0,eq)2�1. (3.13)

Since �0,eq is usually very close to unity, the value
of �� extracted from dynamic surface tension mea-
surements is practically identical to �1 of Eq.
(3.10). (The possible divergence of �0 for ��4T is
a consequence of the non-convexity of f0, Eq.
(3.3), for these values of �, indicating a transition
to a two-phase coexistence.)

3.3. Short time beha�ior

In order to provide a comprehensive descrip-
tion of the adsorption process, the time depen-
dence during early stages is of interest as well. It
should be first noted that diffusion-limited behav-
ior cannot strictly start at t=0, since at that
instance the interface and sub-surface layers are
not at equilibrium with each other. Assuming a
diffusion-limited time dependence of the form

�0(t)�const.+ (t/�1)1/2 [7], the const. is found to
be roughly equal to 2�b. (This can be obtained
also from the analytic solution of the diffusion-
limited problem in the linear adsorption limit; see
[16]). In other words, only once the surface cover-
age has exceeded a value of 2�b, can one assume
a process limited by diffusion. Prior to the onset
of diffusion, a short stage takes place, when most
of the molecules in the sub-surface layer rapidly
adsorb onto the interface. Only when the sub-sur-
face layer becomes almost completely depleted, do
molecules from the bulk start migrating towards
the interface by a diffusive mechanism. To ad-
dress these very early time stages, the interfacial
kinetics must be considered explicitly. Assuming
that the bulk solution is still at its initial equi-
librium state, unperturbed by the presence of the
interface, the leading time behavior of the surface
coverage is found from Eq. (3.8) to be linear,

�0(t�0)��b
�

1+
D0�

a2T
t
�

. (3.14)

A surface coverage of 2�b is thus attained after a
period of about a2T/(D0�). This time scale is
typically extremely short (smaller than microsec-
onds), unless the adsorption is hindered by barri-
ers making D0 drastically smaller than D. Hence,
these very early time stages are usually of no
experimental interest, and the measured initial
time dependence is of a diffusion-limited form, i.e.
proportional to t1/2.

4. Non-ionic mixtures

In the next example we study the adsorption
from a mixture of two non-ionic surfactants [16].
Surfactant mixtures are used in numerous indus-
trial applications, and are also encountered in
many systems because of the presence of surface-
active impurities. The equilibrium behavior of
mixed surfactant solutions was studied in detail
in works [35–41]. One of the important results,
both theoretically and from the application point
of view, is the ability to relate the mixed-
surfactant behavior with that of the better under-
stood, single-surfactant one. One of our aims
is to predict the mixture kinetics from the behav-
ior of the single surfactants. A particularly
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interesting question is whether mixing several spe-
cies would lead in certain cases to a significant
difference in the kinetics as compared with the
single-surfactant systems.

We consider two surfactants denoted A and B.
The same notation as in the earlier section is used,
except for the following modifications. We use �

to denote volume fraction of surfactant A and 	

for that of surfactant B. Parameters characterizing
the two surfactants, such as �, �, D etc., are
distinguished by subscripts A and B. The subscripts
0, 1, b are used, as in the earlier section, to denote
different positions in the solution (interface, sub-in-
terface and bulk, respectively).

The excess free energy of Eq. (2.1) is written in
the mixture case as

�� [�, 	 ]=
��

0

{�f [�(x)]+�f [	(x)]}dx

+ f0(�0, 	0). (4.1)

Since the solution is dilute, the two species are
assumed to be uncorrelated in the bulk. The bulk
free energy is taken, therefore, as a sum of single-sur-
factant contributions, given by Eq. (3.2). The
surfactant molecular size, a, is assumed to have the
same value for both species, on account of simplicity.
(On the effect of differing molecular sizes, see [42]).
At the interface, due to the high surface coverage,
coupling terms must be considered,

a2f0(�0, 	0)

=T(�0 ln �0+	0 ln 	0+
0 ln 
0)

− (�A+�1,A)�0− (�B+�1,B)	0− (�A/2)�0
2

− (�B/2)	0
2−��0	0 (4.2)

where additional interaction between different sur-
factants has been introduced, having a characteristic
energy �. Note that this is a tertiary system (two
solutes in a solvent), requiring three parameters for
a complete description of the interactions (in our
case �A, �B and �). For brevity we use 
0�1−�0−
	0 as the surface coverage of the solvent (water).

The uncorrelated contributions of the two species,
�f(�) and �f(	), result in decoupled equilibrium
and kinetic equations in the bulk. Any correlation
between the surfactants in this model originates,
therefore, from interfacial interactions.

4.1. Equilibrium relations

Following the scheme of Eq. (2.2) to derive
equilibrium relations, two uniform profiles are
obtained in the bulk, �(x�0)��b and 	(x�0)�
	b. At the interface we get a Frumkin adsorption
isotherm, generalized for the A–B mixture case,

�0=
�b(1−	0)

�b+e− (�A+�A�0+�	0)/T ,

	0=
	b(1−�0)

	b+e− (�B+�B	0+��0)/T . (4.3)

The adsorption of species A depends on species B
through the entropy of mixing (steric effect) and
surfactant–surfactant interactions. Finally, the
equilibrium equation of state, ��=��(�0,	0), takes
the form,

a2��=T ln 
0+ (�A/2)�0
2+ (�B/2)	0

2+��0	0.
(4.4)

4.2. Kinetic equations

Applying the scheme of Eq. (2.3) to the current
free-energy functional yields two single-surfactant
diffusion equations like Eq. (3.6) for the two species.
Consequently, two decoupled Ward–Tordai equa-
tions like Eq. (3.9) are obtained as well. At the
interface, however, the two species are correlated
and the scheme yields two coupled kinetic equations,

��0

�t
=

DA

a2 �1
�

ln
��1
0

�0

�
+

�A

T
+

�A�0

T
+

�	0

T
n

�	0

�t
=

DB

a2 	1
�

ln
�	1
0

	0

�
+

�B

T
+

�B	0

T
+

��0

T
n

.

(4.5)

As can be seen from Eq. (4.5), the coupling between
the kinetics of the two species arises from an
interaction term, as well as from an entropic one
(via 
0). The system of four equations (two Ward–
Tordai equations like Eq. (3.9) and the two equa-
tions, Eq. (4.5)), with the appropriate initial
conditions, completely determines the mixture ki-
netics and equilibrium state.

The set of equations can be fully solved numer-
ically. We generalized the recursive scheme of
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Miller et al. [4] to a surfactant mixture having
time-dependent boundary conditions. An example
for the resulting time dependence of the various
quantities is given in Fig. 5. The mixture parame-
ters were specifically chosen to show the interest-
ing case of competition between the two species.
While surfactant B diffuses more rapidly and is
more abundant at the interface during the initial
stages of adsorption, surfactant A has a higher
surface affinity and dominates the later stages. We
note that due to this competition, not only does
surfactant A take over the adsorption at the later
time stages, but it also forces surfactant B to
desorb from the interface. As shown in Fig. 5(b),
the competition between surfactants leads to a
more complex decrease of the surface tension at
intermediate times.

As in the previous section, we are interested in
the characteristic time scales of the mixture kinet-
ics. Assuming a diffusion-limited adsorption, the
relaxation time scales of the two sub-surface con-
centrations, �1,A and �1,B are found to be identical
to the single-surfactant result, Eq. (3.10). They are
still inter-dependent, however, since the presence
of each species changes the equilibrium surface
coverage of the other. The coupling appears more

explicitly in the time scales of the surface cover-
ages, �0,A and �0,B and surface tension, ��. Two
coupled linear equations are obtained for �0,A and
�0,B,


0��1,A=
�

1−	0−
�A

T
�0
0

���0,A

+	0
�

1−
�

T

0
���0,B


0��1,B =
�

1−�0−
�B

T
	0
0

���0,B

+�0
�

1−
�

T

0
���0,A , (4.6)

where the subscript ‘eq’ has been omitted for
brevity. The expression for �� also combines con-
tributions from both species,

−a2�����=
��0


0

−
�A

T
�0

2−
�

T
�0	0

���0,A

+
�	0


0

−
�B

T
	0

2−
�

T
�0	0

���0,B

(4.7)

If we ‘turn off’ interactions (�A=�B=�=0),
Eq. (4.7) is reduced to a simple expression, relat-
ing �� of the mixture with those of each species
separately, �̄�,A and �̄�,B (given each by Eq. (3.13)),

Fig. 5. (a) Surface coverage in a mixture of interacting surfactants. The dotted, dashed and solid lines are the surface coverages of
surfactants A (�0), B (	0), and the total coverage (�0+	0), respectively. The assigned parameters are: �b=10−4, 	b=2×10−4,
�A=10T, �B=9T, �A=�B=3T, �=T, DA

1/2/a=300 s−1/2, and DB
1/2/a=900 s−1/2. This implies that surfactant A diffuses more

slowly but is more surface active. (b) Dynamic surface tension of the same system.
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Table 1
Comparison of the predicted �� to experiment a

�0/�� 0 	0/	� 0 ��̄A��̄AA ��̄B��̄BB ����� (th) ����� (exp) error

0.13 0.69 0.6X-405 62X-45 29.5 32 8%
X-405 0.25X-100 0.67 0.6 38 17.1 17 0.6%

0.06 0.71 0.6 14X-114 7.1X-405 6.8 4%
0X-405 1.4X-165 0.6 4.4 8.6 6.5 33%

a The materials used were sequences of Triton X mixtures [19]. The single-surfactant values, �� 0, 	� 0, ��̄A��̄A ,��̄B��̄B and
equilibrium coverages for the mixture, �0,eq and 	0,eq, are taken from the same reference. The values for ��̄��� (given in units of
dyn s1/2 cm−1) are obtained experimentally from the asymptotic slope of � versus t−1/2 curves (see Eq. (3.12)). The predicted values
for ��̄��� of the mixture and the corresponding experimental results are given in the columns indicated by ‘th’ and ‘exp’,
respectively. The last column shows the respective error between theory and experiment.

�����=��̄A
��0

�� 0

�2

��̄�,A+��̄B
�	0

	� 0

�2

��̄�,B,

(4.8)

where �� 0 and 	� 0 denote the surface coverages of
the single-surfactant systems and ��̄A, ��̄B the
corresponding changes in equilibrium surface ten-
sion. Eq. (4.8) is a ‘weighting formula’ for relating
the time scale of surface tension relaxation in the
mixture with those of its individual constituents.
It provides, therefore, a convenient tool for pre-
dicting the behavior of multi-component surfac-
tant mixtures, based on single-surfactant data. In
Table 1 the predicted �� of Eq. (4.8) is compared
with experimental results obtained by Fainerman
and Miller [19] for a sequence of Triton X mix-
tures. Based on single-surfactant values and equi-
librium isotherms for the mixture, the two terms
of Eq. (4.8) are calculated separately. The agree-
ment between theory and experiment is quite
good, although experiments were limited to cases
having one species dominating the adsorption.
The last entry in the table corresponds to a mix-
ture of Triton X-405 and Triton X-165. Here the
predicted �� deviates from the experimental one
by 33%. Equilibrium measurements on this mix-
ture reveal an increase in X-165 coverage upon
addition of X-405 [19], indicating strong interfa-
cial interactions between the species. The devia-
tion in the predicted kinetics in Table 1 is
attributed to those interactions, which are not
taken into account by Eq. (4.8). (It is possible to
treat also the general case, including interactions,
by using the full Eq. (4.6) and Eq. (4.7) instead of
the simplified Eq. (4.8). Such a procedure, how-

ever, involves three additional fitting parameters
— �A, �B and �.)

4.3. Kinetically limited adsorption

Although most non-ionic surfactants undergo a
diffusion-limited process, as was discussed in the
previous section, the adsorption of certain surfac-
tants is found to be kinetically limited due to
adsorption barriers. It is of interest, therefore, to
examine the mixture kinetics in the kinetically
limited case. The equations governing such a pro-
cess are the two-coupled interfacial (Eq. (4.5)).
Linearizing about the equilibrium state, �0,eq and
	0,eq, two time scales denoted �+ and �− emerge
(�− ��+). These collective time scales corre-
spond to the kinetics of a certain combination of
surfactant coverages,

C1��0+C2�	0�e− t/�−,

C3��0+C4�	0�e− t/�+, (4.9)

where ��0��0−�0,eq, �	0�	0−	0,eq, and
C1…C4 are constants. Since �− ��+, it is �−

which limits the kinetics of the system.
In the simple case of no surface interactions

(�A=�B=�=0), the expressions for �� are

2
��

=
1−	0

�A

+
1−�0

�B

�
��1−	0

�A

+
1−�0

�B

�2

−
4
0

�A�B

, (4.10)

where �A and �B are the time scales of the single-
surfactant case, formulated in Eq. (3.11), yet with



H. Diamant et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 183–185 (2001) 259–276 269

�0 and 	0 of the mixture. The behavior of the
mixed system combines the single-surfactant ki-
netics in a complicated manner. We can gain
some insight on this coupling by considering two
simple cases. In the limit where the interfacial
kinetics of surfactant A is much slower than that
of B, �A	�B, Eq. (4.9) and Eq. (4.10) are sim-
plified to

(1−�0,eq)��0−	0,eq�	0�e− t/�−,

�	0�e− t/�+, �− =
1−�0


0

�A.

�+ =
1

1−�0

�B, (4.11)

In the other limit, where the two species have
similar time scales, �A��B, we get

��0−�	0�e− t/�−, �− =
�A


0

�0,eq��0+	0,eq�	0�e− t/�+, �+ =�A

(4.12)

The factor 1/
0 in �− is quite interesting. Since
the equilibrium surface coverage of the solvent,

0, is usually very small in surfactant systems, this
factor implies that the coupling in a surfactant
mixture undergoing kinetically limited adsorption
may lead to a significant reduction in adsorption

rate. In this regime the mixture behavior may
differ considerably from that of its individual
constituents. Due to the relatively large factor of
1/
0, the time scale of interfacial kinetics may
exceed the diffusive one and the adsorption would
then become kinetically limited.

5. Ionic surfactants

We turn to the more complicated, yet impor-
tant problem of ionic surfactant adsorption [14],
and start with the salt-free case where strong
electrostatic interactions are present. In Fig. 6, we
have reproduced experimental results reported by
Bonfillon et al. [22,23] and by Hua and Rosen
[24]. The dynamic surface tension of the investi-
gated ionic salt-free solutions exhibits much
longer kinetics and richer behavior than in com-
mon non-ionic systems. A few theoretical models
were suggested for the problem of ionic surfactant
adsorption [43–46], yet none of them could pro-
duce such dynamic surface tension curves. More-
over, it is rather evident that a theoretical scheme
for non-ionic surfactants, such as the one dis-
cussed in the previous sections, cannot fit the
ionic results. On the other hand, as can be seen in
Fig. 6, addition of salt to the solution leads to a

Fig. 6. (a) Dynamic interfacial tension between SDS aqueous solutions and dodecane. Filled circles — 3.5×10−4 M SDS with-
out salt; open circles — 4.86×10−5 M SDS with 0.1M NaCl. (Adapted from [23]) (b) Dynamic surface tension between
5.84×10−4 M DESS solution and air. Filled circles — without salt; open circles — with 0.1 M NaCl. (Adapted from [24]; the
authors did not provide details of the relaxation towards final equilibrium in the salt-free case.)
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very similar behavior, as compared with the non-
ionic case. It is thus inferred that the different
kinetics observed for the salt-free solutions results
from strong electrostatic interactions, which are
screened upon addition of salt. Let us now study
this effect in more detail. We follow the same line
presented in the previous sections while adding
appropriate terms to account for the additional
interactions.

The free energy in the current case is written as
a functional of three degrees of freedom – the
surfactant profile, �+(x, t) (we arbitrarily take the
surfactant as the positive ion), the counterion
profile, �−(x, t), and a mean electric potential,
�(x, t),

�� [�+, �−, �]

=
��

0

[�f(�+)+�f(�−)+ fel(�+, �−, �)]dx

+ f0(�0
+)+ fel,0(�0

+, �0). (5.1)

The bulk contributions coming from the two
profiles, �f �, contain the same terms as in Eq.
(3.2) of the non-ionic case. The interfacial contri-
bution, f0, is identical to Eq. (3.3) and is taken as
a function of the surfactant coverage alone, as-
suming that the counterions are surface-inactive.
In addition, electrostatic contributions are intro-
duced in the bulk free energy, as well as in the
interfacial one, accounting for interactions be-
tween the ions and the electric field and the energy
associated with the field itself,

fel=e
� �+

(a+)3−
�−

(a−)3

n
�−

�

8�

���
�x

�2

(5.2)

fel,0=
e

(a+)2 �0
+�0 , (5.3)

where a� are the molecular sizes of the two ions,
e the electronic charge and ��80 the dielectric
constant of water. For simplicity, we have re-
stricted ourselves to fully ionized, monovalent
ions, implying that �b

+/(a+)3=�b
−/(a−)3=cb, cb

being the bulk concentration. Ions in solution,
apart from interacting with each other, are subject
to an additional repulsion from the interface due
to ‘image-charge’ effects [47]. It can be shown,
however, that those effects become negligible in

our case as soon as the surface coverage exceeds
about 2% [14].

5.1. Equilibrium relations

Employing the same scheme of Eq. (2.2), the
variation with respect to ��(x) yields the Boltz-
mann ion profiles,

��(x�0)=�b
�e
e�(x)/T, (5.4)

with respect to �(x) — the Poisson equation,

�2�
�x2 = −

4�e
�

� �+

(a+)3−
�−

(a−)3

n
, (5.5)

with respect to �0 — the electrostatic boundary
condition,

��
�x

�
x=0

= −
4�e

�(a+)2�0
+, (5.6)

and, finally, the variation with respect to �0
+

recovers the Davies adsorption isotherm [48],

�0
+=

�b
+

�b
++e− (�+��0

+−e�0)/T . (5.7)

Combining Eqs. (5.4) and (5.5) leads to the well-
known Poisson–Boltzmann equation for the equi-
librium double-layer potential [49,50],

�2�
�x2 =

8�ecb

�
sinh

e�
T

, (5.8)

By means of the Poisson–Boltzmann equation,
the Davies isotherm Eq. (5.7) can be re-expressed
as

�0
+=

�b
+

�b
++ [b�0

++�(b�0
+)2+1]2e− (�+��

0
+)/T

,

(5.9)

where b�a+/(4�b
+), and � (8�cbe2/�T)−1/2 is

the Debye-Hückel screening length [51,52]. The
equilibrium equation of state, relating surface ten-
sion and surface coverage, is

(a+)2��=T ln(1−�0
+)+

�

2
(�0

+)2

−
2T
b
��(b�0

+)2+1−1
�

. (5.10)

For weak fields the electrostatic correction to the
equation of state (cf. Eq. (3.5)) is quadratic in the
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coverage, thus merely modifying the lateral interac-
tion term, whereas for strong fields it becomes
linear in the coverage.

5.2. Kinetic equations

Applying the same scheme of Eq. (2.3) to the
current case yields in the bulk the Smoluchowski
diffusion equations,

���

�t
=D� �

�x
����

�x
�

e
T

����
�x

�
, (5.11)

where D� are the diffusion coefficients of the two
ions, assumed to be constant in the dilute bulk. At
the sub-surface we find
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e
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, (5.12)

and, finally, at the interface itself,

��0
+

�t
=

D0
+

(a+)2 �1
+�ln

�1
+(1−�0

+)
�0

+ +
�

T

+
��

T
−

4�l
a+

�
�0

+n, (5.13)

where the diffusion coefficient at the interface, D0
+,

may differ from its value in the bulk. The electro-
static boundary condition, Eq. (5.6), has been used
in Eq. (5.13) to replace an electrostatic barrier term,
e(�0−�1)/T, with the approximate term (4�l/a+

)�0
+, where l�e2/�T is the Bjerrum length (about

7 A� for water at room temperature).
Neglecting electrodynamic effects, the Poisson

equation holds out of equilibrium as well. The
kinetic equations just derived, along with the Pois-
son, Eq. (5.5), the boundary condition of Eq. (5.6),
another boundary condition for the counterion
profile (e.g. �0

−(t)=0), and appropriate initial
conditions, together determine the kinetics and
equilibrium state of the adsorption problem. This
set of equations can be fully solved only numeri-
cally (a similar set was solved in [46]).

The relaxation in the bulk solution, accounted
for by the Smoluchowski Eq. (5.11), has the char-
acteristic time scale �e=2/D, where D is an
effective ambipolar diffusion coefficient [53]. This

Fig. 7. Dynamic surface tension of the salt-free SDS solution
of Fig. 6(a), redrawn on a semi-log plot. Two exponential
relaxations are observed, indicating a kinetically limited pro-
cess.

time scale is typically very short (of the order of
microseconds), i.e. electrostatic interactions make
the bulk relaxation much faster than in the non-
ionic case. The relaxation at the interface (Eq.
(5.13)) has an asymptotic exponential form like Eq.
(3.11). It is dramatically slowed down, however, by
electrostatic repulsion, having a time scale of

�k=�k
(0)exp

�e�0+e�1

T
�

��k
(0)�a+

2

�0,eq
+

�b
+

�4

exp
�

−
�4�l

a+

�
�0,eq

+ n
,

where �k
(0) denotes the kinetic time scale in the

absence of electrostatics (Eq. (3.11)). In salt-free
surfactant solutions the surface potential reaches
values significantly larger than T/e, and, hence, the
interfacial relaxation is by orders of magnitude
slower than in the non-ionic case.

The conclusion is that ionic surfactants in salt-
free solutions should, in many cases, undergo
kinetically limited adsorption. Due to the strong
electrostatic repulsion, unlike the non-ionic case,
the adsorption can become kinetically limited even
if the diffusion coefficient at the interface is not
significantly larger than that in the bulk. Indeed,
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dynamic surface tension curves of such solutions
exhibit an exponential asymptotic time depen-
dence, rather than the diffusive t−1/2 behavior, as
is demonstrated in Fig. 7.

The scheme employed for non-ionic surfactants,
focusing on the diffusive transport inside the solu-
tion, is no longer valid. By contrast, the diffusive
relaxation in the bulk is practically immediate and
we should concentrate on the interfacial kinetics,
Eq. (5.13). In this case the sub-surface volume
fraction, �1

+, obeys the Boltzmann law (Eq. (5.4))
rather than the Davies adsorption isotherm (Eq.
(5.7)), and the electric potential is given by the
Poisson–Boltzmann theory. Using these results,
Eq. (5.13) can be expressed as a function of the
surface coverage alone,

��0
+
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=

D0
+�b

+
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exp[(4�l/a+)�0
+]

[b�0
++�(b�0
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×

�
ln
��b

+(1−�0
+)

�0
+

n
+

�

T
+

��0
+

T
−2 sinh−1(b�0

+)
	

(5.14)

thus reducing the problem to a single integration.
Not only does the scheme for solving the ki-

netic equations differ from the non-ionic case, but
also the way to calculate the dynamic surface

tension has to change. In kinetically limited ad-
sorption the variation of the free energy with
respect to the surface coverage does not vanish,
and, consequently, the equation of state Eq. (5.10)
is strictly invalid out of equilibrium. The expres-
sion for the dynamic surface tension in the kineti-
cally limited case can be derived from the general
functional of Eq. (5.1) by assuming quasi-equi-
librium inside the bulk solution (i.e. using Boltz-
mann profiles and the Poisson–Boltzmann
equation),

(a+)2�� [�0
+(t)]=T�0

+ln(�0
+/�b

+)

+T(1−�0
+)ln(1−�0

+)−��0
+− (�/2)(�0

+)2

+2T [�0
+sinh−1(b�0

+)− (�(b�0
+)2+1−1)/b ]

(5.15)

Assuming high surface potentials (b�0
+	1), the

function defined in Eq. (5.15) becomes non-con-
vex for �/T�2(2+�3)�7.5, as demonstrated
in Fig. 8(a). In such cases an unusual time depen-
dence for the dynamic surface tension results (Fig.
8(b)). We thus infer that the shape of experimen-
tal dynamic surface tension curves, such as those
presented in Fig. 6, is a consequence of a kineti-
cally limited adsorption brought about by strong
electrostatic interactions. Physically, the non-con-

Fig. 8. (a) Dependence of surface tension on surface coverage in kinetically limited adsorption (Eq. (5.15)). The values taken for the
parameters are: a+=17 A� , �b

+=6×10−5, �=14.78T and �=8.5T. The values were selected to yield a non-convex, yet decreasing
curve (see text). (b) The corresponding dynamic surface tension, calculated using Eqs. (5.14) and (5.15) with the value D0

+=6×
10−6 cm2 s−1.
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vexity implies a sort of two-phase coexistence,
suggesting the following scenario. As the surface
coverage increases, the system reaches a local
free-energy minimum leading to a pause in the
adsorption (the intermediate plateau of the exper-
imental curves). This metastable state lasts until
domains of the denser, global-minimum phase are
nucleated, resulting in further increase in coverage
and a corresponding decrease in surface tension. In
Fig. 8 we have exploited a special set of parameters
in order to demonstrate the effect of non-convexity
within our current formalism. A complete treat-
ment of the scenario described above, however,
cannot be presented within such a formalism, since
it inevitably leads to a monotonically decreasing
free energy as a function of time, and hence, cannot
account for nucleation [29].

A value of ��7.5T required for non-convexity
is somewhat large compared with the typical lateral
attraction between surfactant molecules. Through-
out the above calculations, we have assumed that
no counterions are adsorbed at the interfacial layer.
It can be shown that the presence of a small amount
of counterions at the interface introduces a correc-
tion to the free energy, which is quadratic in the
surfactant coverage, i.e. leading to an effective
increase in lateral attraction [14]. The increase in
� due to the counterions turns out to be
[2�la−/(a+)2]T, which may amount to a few T. This
contribution accounts for a larger � leading to
non-convexity. (The peculiar dynamic surface ten-
sion behavior shown in Fig. 6 is not observed for
every ionic surfactant. It has not been observed, for
example, in salt-free DTAB solutions [54]).

5.3. Adding salt

Finally, let us consider the effect of adding salt
to an ionic surfactant solution. For simplicity, and
in accord with practical conditions, it is assumed
that the salt ions are much more mobile than the
surfactant and their concentration exceeds that of
the surfactant. In addition, we take the salt ions to
be monovalent and surface-inactive. Under these
assumptions, the kinetics of the salt ions can be
neglected, reducing their role to the formation of
a thin electric double layer near the interface, which
maintains quasi-equilibrium with the adsorbed sur-

face charge. The double-layer potential is taken in
the linear, Debye-Hückel regime [50–52], �(x,t)=
(4�e/�a2)�0(t)e−x/, with a modified definition of
the Debye-Hückel screening length, �(8�csl)−1/2,
cs	cb being the salt concentration (the superscript
‘+ ’ is omitted hereafter from the surfactant
symbols).

Substituting the double-layer potential in Eq.
(5.11) and Eq. (5.12), the kinetic equations in the
bulk and sub-surface layer are obtained,
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whereas the kinetic equation at the interface itself
remains the same as Eq. (5.13). Considering the
electric potential as a small perturbation, Eqs.
(5.16) and (5.17) lead to the asymptotic expression

�1(t��)/�b�
1−�0,eq
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t
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�1��1
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−
�0,eq
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,
(5.18)

where �1
(0) denotes the diffusion time scale in the

non-ionic case (Eq. (3.10)). Due to surface charge,
the equilibrium sub-surface concentration is
smaller than that of the bulk reservoir. More
important, though, is the correction to the diffusion
time scale introduced by the screened electrostatic
interactions. As expected, it decreases with increas-
ing salt concentration.

Since the kinetic equation at the interface is
identical to the one in the absence of salt, so is the
expression for the corresponding time scale. In the
case of added salt, however, the surface potential
is much smaller than T/e, and the kinetic time scale,
�k, becomes only slightly larger than the non-ionic
one (Eq. (3.11)). Ionic surfactants with added salt
are expected, therefore, to behave much like non-
ionic surfactants, i.e. undergo diffusion-limited
adsorption if no strong hindrance to adsorption
exists. The departure from the non-ionic behavior
depends on salt concentration and is described to
first approximation by Eq. (5.18). The ‘footprint’
of diffusion-limited adsorption, i.e. a t−1/2 asymp-
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Fig. 9. Diffusion-limited adsorption exhibited by ionic surfac-
tants with added salt. Open circles and left ordinate —
dynamic interfacial tension between dodecane and an aqueous
solution of 4.86×10−5 M SDS with 0.1 M NaCl. (Adapted
from [23].) Squares and left ordinate — dynamic surface
tension of an aqueous solution of 2.0×10−4 M SDS with
0.5 M NaCl. (Adapted from [55].) Filled circles and right
ordinate — surface coverage deduced from second harmonic
generation measurements on a saturated aqueous solution of
SDNS with 2% NaCl. (Adapted from [56].) The asymptotic
t−1/2 dependence shown by the solid fitting lines is a ‘foot-
print’ of diffusion-limited adsorption.

Common non-ionic surfactants, not hindered
by high adsorption barriers, are shown to un-
dergo diffusion-limited adsorption, in agreement
with experiments. In the non-ionic case our gen-
eral formalism coincides with earlier ones and
helps clarify the validity of their assumptions. The
adsorption process can be roughly divided into
three temporal stages. At extremely early times
the surface coverage and surface tension change
linearly with time because of interfacial kinetics.
This stage, however, is in most practical cases too
short to be observed experimentally (usually less
than microseconds). Due to this fast adsorption
stage, the sub-surface layer becomes nearly empty,
which in turn drives a second, diffusion-limited
stage, where the surfactant diffuses from the bulk
with a t1/2 time dependence. The final relaxation
towards equilibrium is usually diffusion-limited,
exhibiting an asymptotic t−1/2 behavior.

In non-ionic surfactant mixtures, the initial ad-
sorption stages are dominated by the more mobile
species. In cases where the less mobile species is
more surface-active, an intermediate stage is pre-
dicted — while one species undergoes desorption,
the coverage gradually becomes dominated by the
other, energetically favorable surfactant. The ki-
netic behavior of the mixture can be evaluated
based on equilibrium isotherms and single-surfac-
tant data, yielding good agreement with experi-
ments. For surfactant mixtures exhibiting
kinetically limited adsorption, we find a ‘synergis-
tic’ effect, where the mixture kinetics may be
considerably different from that of the individual
species. In cases of high equilibrium surface cov-
erage, a significant decrease in adsorption rate is
predicted due to coupling between the two
surfactants.

Strong electrostatic interactions in salt-free
ionic surfactant solutions are found to have a
dramatic effect. The adsorption becomes kineti-
cally limited, which may lead to an unusual time
dependence, as observed in dynamic surface ten-
sion measurements. Such a scenario could not be
accounted for by previous models. Addition of
salt to ionic surfactant solutions leads to screening
of the electrostatic interactions, and the adsorp-
tion becomes similar to the non-ionic one, i.e.
diffusion-limited. The departure from the non-

totic time dependence, is observed in experiments,
as is demonstrated in Fig. 9. Consequently, the
scheme described in previous sections for solving
the adsorption problem and calculating the dy-
namic surface tension in the non-ionic case is
applicable also for ionic surfactants with added
salt, and good fitting to experimental measure-
ments can be obtained [23].

6. Summary

We have reviewed a theoretical approach to the
fundamental problem of the adsorption kinetics of
surfactants. The formalism is more general than
previous ones as it yields the kinetics in the entire
system, both in the bulk solution and at the
interface, relying on a single functional and reduc-
ing the number of externally inserted assumptions
previously employed.
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ionic behavior as the salt concentration is lowered
has been described by a perturbative expansion.

A general method to calculate dynamic surface
tension is obtained from our formalism. In the
diffusion-limited case it coincides with previous
results, which used the equilibrium equation of
state. In the kinetically limited case it produces
different expressions leading to novel conclusions.

Our kinetic model is restricted to simple relax-
ation processes, where the free energy
monotonously decreases with time. In order to
provide a quantitative treatment of more compli-
cated situations, such as the ones described for
salt-free ionic solutions, a more accurate theory is
required, including, e.g. a nucleation mechanism.

Finally, as was demonstrated by the various
cases treated in this review, the approach pre-
sented here can be easily extended to include
additional components and interactions. This can
be done by incorporating other terms in the excess
free energy Eq. (2.1) and working out the kinetics
using the same scheme as presented above. Exam-
ples for interesting extensions are adsorption from
micellar solutions and the incorporation of lateral
diffusion.
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