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Abstract. Adhesion between membranes is studied using a phenomenological model, where the inter-
membrane distance is coupled to the concentration of sticker molecules on the membranes. The model
applies to both adhesion of two flexible membranes and to adhesion of one flexible membrane onto a second
membrane supported on a solid substrate. We mainly consider the case where the sticker molecules form
bridges and adhere directly to both membranes. The calculated mean-field phase diagrams show an upward
shift of the transition temperature indicating that the lateral phase separation in the membrane is enhanced
due to the coupling effect. Hence the possibility of adhesion-induced lateral phase separation is predicted.
For a particular choice of the parameters, the model exhibits a tricritical behavior. We also discuss the
non-monotonous shape of the inter-membrane distance occurring when the lateral phase separation takes
place. The inter-membrane distance relaxes to the bulk values with two symmetric overshoots. Adhesion
mediated by other types of stickers is also considered.

PACS. 87.16.-b Subcellular structure and processes – 68.10.-m Fluid surfaces and fluid-fluid interfaces –
82.70.-y Disperse systems

1 Introduction

Adhesion of membranes and vesicles has attracted con-
siderable experimental and theoretical interest because of
its prime importance to many bio-cellular processes [1,2].
Theoretical treatments of membranes composed of single
component lipid bilayers have revealed that generic inter-
actions such as van der Waals, electrostatic or hydration
interactions govern the adhesive properties of interacting
membranes. It is also worthwhile to mention that related
phenomena are found in unbinding transition of nearly flat
membranes [3] or adhesion of vesicles to surfaces [4].

In addition to general non-specific interactions men-
tioned above, it is known from the works of Bell and
coworkers [5,6] as well as others [7], that highly specific
molecular interactions play an essential role in biological
adhesion. This interaction acts between complementary
pairs of proteins such as ligand and receptor, or antibody
and antigen. A well-studied example of such coupled sys-
tems is the biotin-avidin complex. The avidin molecule
has four biotin binding sites, two on each side, and forms
a five-molecule biotin-avidin-biotin complex. The result-
ing specific interaction is highly local and short-ranged.
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Measurements by surface force apparatus [8] or atomic
force microscopy [9,10] have shown that the force re-
quired to break a biotin-avidin bond is about 170 pN. In
related experiments measuring chemical equilibrium con-
stants [11], it was found that the biotin-avidin binding
energy is about 30–35 kBT which is larger than thermal
fluctuations. Other coupled systems are those of selectins
and their sugar ligands where the bond is much weaker,
of the order of 5kBT [12,13].

More recently several models taking into account ther-
mal fluctuations in membrane adhesion have been pro-
posed. Zuckerman and Bruinsma [12,13] used a statistical
mechanics model which is mapped onto a two-dimensional
Coulomb plasma with attractive interactions. They pre-
dicted an enhancement of the membrane adhesion due
to thermal fluctuations. In another work, Lipowsky con-
sidered the adhesion of lipid membranes which includes
anchored stickers, i.e., anchored molecules with adhesive
segments [14,15]. It was shown that flexible membranes
can adhere if the sticker concentration exceeds a certain
threshold. If the multi-component membranes, including
lipids and sticker molecules, undergo a phase separation,
the adhesion is dominated by the sticker-rich domains.
Further studies in this direction using mean-field theory
and Monte Carlo simulations [16] obtained a phase sepa-
ration which is driven both by attractive intra-membrane
sticker interactions and fluctuation-induced interactions
between stickers.
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The problem of multi-component membrane adhesion
is intimately related to that of formation of domains (a lat-
eral phase separation). This has been observed by several
experiments. For example, the biotin-avidin interaction
occurring during vesicle-vesicle adhesion was investigated
by a micropipette technique [17]. The adhesion between
one avidin-coated vesicle and a second biotinylated vesicle
is followed by an accumulation of biotin-avidin complex in
the contact zone. This accumulation of cross-bridges be-
tween the two vesicles is found to be a diffusion-controlled
process.

Adhesion-induced phase separation has been observed
by Albersdörfer et al. and results from the interplay
between long-range repulsive and short-range attrac-
tive interactions [18,19]. The membrane includes repeller
molecules in the form of lipopolymers (modified DOPE
lipid with a polyethyleneoxide headgroup), mimicking
glycocalix in real biological systems. The other compo-
nent is a receptor molecule in the form of biotinylated
lipids (DOPE-X-biotin). This lipopolymer is responsible
for longer-range repulsive interaction, while the short-
range attractive interaction is introduced by adding strep-
tavidin to the extra-cellular solution. The streptavidin
acts as a connector between the biotinylated lipids on the
two membranes. A technique of reflection interference con-
trast microscopy [20] was used to observe domain forma-
tion on a vesicle adhering to a membrane supported on
a solid substrate. The lateral phase separation on both
membranes leads to the formation of domains of tight ad-
hesion separated by domains of loose adhesion [18,19].

In a related work, adhesion between cationic vesicles
and anionic supported membranes revealed that electro-
static interactions induce lateral charge segregation on
the membrane [21,22]. This phase separation leads to
patches of tight inter-membrane contact and decoupled
“blisters”. Furthermore, adhesion of membranes includ-
ing self-recognizing homophilic molecules and lipopoly-
mers has been investigated [23]. It was found that the ini-
tial weak adhesion is followed by slower aggregation into
tightly bound domains coexisting with domains of weak
adhesion. The result has been interpreted in terms of a
double-well inter-membrane interaction potential due to
the presence of the lipopolymers. Let us emphasize that in
all the above-mentioned experiments, it was reported that
adhesion molecules aggregate spontaneously and form do-
mains of tight adhesion.

It is generally believed that multi-component biomem-
branes in physiological conditions are close to their criti-
cal point, and membrane functions are partially governed
through phase separation processes. Moreover, concentra-
tion fluctuations in the vicinity of the critical point may
affect biophysical properties of membranes and can be of
importance in regulating membrane processes in a robust
way. Recently this conjecture was supported by an experi-
ment of an insoluble Langmuir monolayer at the air/water
interface [24,25]. The monolayer was prepared in two dif-
ferent steps. The first mimics the composition of the in-
ner leaflet of a cell biomembrane, while the second mimics
the outer leaflet. In both cases, by using fluorescence mi-

(a) (b) (c)

Fig. 1. Schematic representation of various types of adhe-
sion between two membranes. The two membranes are rep-
resented by black lines. (a) Bolaform-sticker adhesion: bridges
consist of a single type of sticker molecules which are anchored
to one membrane (filled circle) and stick to the other mem-
brane by another sticky part of the molecules (open circle).
(b) Homophilic-sticker adhesion: bridges consist of two identi-
cal stickers which are bound together by their respective sticky
end segments. (c) Lock-and-key adhesion: bridges consist of
two different stickers forming a ligand-receptor type bond.

croscopy technique, it was found that the Langmuir mono-
layer is close to its corresponding critical point of demix-
ing.

So far, the interplay between lateral phase separation
and membrane adhesion has not been considered theo-
retically in detail except in references [14–16]. The work
in references [21,22] deals only with the specific case of
oppositely charged membranes. In this paper we provide
a general phenomenological approach for the adhesion of
multi-component membranes. Using a mean-field theory,
we investigate how the lateral phase separation within
the membrane is affected by the adhesion of membranes.
Like in references [14–16], we consider adhesion mediated
by sticker molecules. Sticker molecules are polymers or
macromolecules anchored to one membrane and interact-
ing with the other membrane by another sticky part of
the molecule. They can form bridges between two adjacent
membranes (so-called trans-interaction) [14], and play an
essential role in the adhesion of cell membranes in biolog-
ical systems.

We distinguish three types of adhesion depending
on the structure of bridges as represented in Figure 1.
i) “Bolaform-sticker” adhesion where each bridge molecule
consists of a single sticker having two sticky ends (Fig.
1(a)). One sticker end is anchored to one membrane while
the other end is adhering directly to the second membrane.
ii) “Homophilic-sticker” adhesion where the bridges are
formed by two stickers of the same type (Fig. 1(b)). Each
sticker is anchored on one of the membranes, while their
free ends bind together to form the bridge. iii) “Lock-and-
key” adhesion where the bridges consist of two different
stickers forming a ligand-receptor type bond (Fig. 1(c)).
This case represents an asymmetric adhesion due to the
lack of symmetry between the ligand and receptor. In the
present work, we mainly discuss the symmetric bolaform-
sticker adhesion (case i) above) using a model where the
equilibrium spacing between two membranes is coupled to
the local concentration of stickers. Even in the latter sym-
metric case, a certain asymmetry can be obtained by con-
trolling separately the sticker chemical potentials on the



S. Komura and D. Andelman: Adhesion-induced lateral phase separation in membranes 261

two membranes. An important consequence of our model
is that the lateral phase separation is enhanced.

This paper is organized as follows. In the next sec-
tion, we explain our phenomenological model of bolaform-
sticker adhesion. The mean-field phase diagrams are given
in Section 3. The inter-membrane distance between two
coexisting domains is calculated in Section 4. Finally dis-
cussion is provided in Section 5 where the other types of
adhesion mentioned above are considered.

2 Bolaform-sticker adhesion

In this section, we treat the case where the adhesion is
mediated by a single type of sticker molecules which are
anchored irreversibly to one membrane and stick to the
other membrane by another sticky part of the molecules
as in Figure 1(a). The anchor segments consist of a hydro-
phobic segment and penetrate into the hydrophobic inte-
rior of the lipid bilayer. The sticky segments, on the other
hand, adhere directly to another membrane having some
potential of sticking [15]. As mentioned above, we call
this a “bolaform-sticker”. Consider two interacting mem-
branes labeled by i = 1, 2 consisting of lipid molecules and
bolaform-stickers as schematically shown in Figure 2. Let
the sticker concentration in each membrane be denoted by
ψi(r), where r = (x, y) is a two-dimensional planar vector
and 0 ≤ ψi(r) ≤ 1. Note that the average concentrations
of stickers on the two membranes, 〈ψ1〉 and 〈ψ2〉, do not
have to be the same.

When the adhesion molecules are very flexible, they
can bend back to form arches on a single membrane. In
order to avoid such a situation in experiments and in the
model, the bending rigidity of the sticker molecules should
be sufficiently large. Hence we assume that for stiff enough
stickers all the bonds are inter-membrane ones connect-
ing the two separate membranes as considered in refer-
ences [14,15].

The interaction between two stickers on the same
membrane is called cis-interaction and can be repulsive
or attractive. Here we discuss the case in which this inter-
action is attractive. Then, below a certain critical temper-
ature, the multi-component membrane undergoes a first-
order phase transition and stickers form lateral domains.
As shown in Figure 3, a sticker-poor phase coexists with
a sticker-rich phase in the two-phase region of the phase
diagram. The sticker critical concentration ψc and the crit-
ical temperature Tc are assumed to be the same for the
two planar membranes. We define the concentration dif-
ference φi(r) for each of the membranes with respect to
the critical concentration by

φi(r) = ψi(r)− ψc (i = 1, 2), (2.1)

where φi satisfies −1 ≤ φi ≤ 1.
The total free energy of the two coupled membranes

can be written as a sum of several terms detailed below.
The first contribution describes the lateral phase separa-
tion of each membrane. Motivated by recent experiments
on Langmuir monolayers [24,25] demonstrating that the
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Fig. 2. Two adhering membranes. The reference x-y plane is
shown as a dashed line. The height of two membranes measured
from this plane is denoted as �1 and �2, respectively. The sticker
concentration on each membrane is denoted by ψ1 and ψ2,
respectively.
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Fig. 3. Schematic phase diagram for a single membrane con-
taining sticker molecules. The concentration of the sticker
molecule is ψ. The critical concentration and the critical tem-
perature is denoted by ψc and Tc, respectively. Within the co-
existence curve the membrane separates into sticker-rich and
sticker-poor region (A+B coexistence). The membrane is in a
one-phase outside the coexistence curve.

inner and outer leaflets of biomembranes are close to their
critical point, we employ a phenomenological Ginzburg-
Landau free energy which is an expansion in powers of
the order parameters {φi}. Hence we have

F1 =
1
2

∑
i=1,2

∫
d2r

[
1
2
c(∇φi)2 +

1
2
tφ2

i +
1
4
φ4

i − µiφi

]
.

(2.2)
This expansion for the free energy can be justified close
to a critical point where the φi’s are small enough.
The parameter c representing the line tension acting
at the domain boundary, and the reduced temperature
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t = (T − Tc)/Tc are taken to be the same for the two
membranes. On the other hand, the chemical potential
µi, coupled to the membrane sticker concentration φi, can
differ between the two membranes since the sticker con-
centrations on the two membranes do not have to be the
same. We recall that each bolaform-sticker is modeled with
one of its ends anchored irreversibly to one membrane,
while the second sticky end is attracted by the second
membrane. The sticker concentration is associated with
the anchored end of the stickers. The normalization fac-
tor 1/2 in (2.2) is introduced in order to write down the
free energy per single membrane. The coefficient of the
fourth-order term can generally be set as a positive con-
stant without loss of generality.

It is convenient to introduce the following new vari-
ables for the average and the difference between the two
concentrations:

φ+ =
φ2 + φ1

2
=
ψ2 + ψ1

2
− ψc,

φ− =
φ2 − φ1

2
=
ψ2 − ψ1

2
, (2.3)

where −1 ≤ φ+ ≤ 1 and −1 ≤ φ− ≤ 1. In terms of these
new variables, (2.2) can be written as

F1 =
∫
d2r

[
1
2
c
[
(∇φ+)2 + (∇φ−)2

]
+
1
2
t(φ2

+ + φ2
−)

+
1
4
(φ4

+ + 6φ
2
+φ

2
− + φ4

−)− µ+φ+ − µ−φ−

]
, (2.4)

where
µ+ =

µ2 + µ1

2
, µ− =

µ2 − µ1

2
. (2.5)

The chemical potential µ− associated with the order pa-
rameter φ− is non-zero when the symmetry between the
two membranes is explicitly broken. Namely, the two inter-
acting membranes have different average concentrations of
stickers.

Next we consider the out-of-plane deformation energy
of the two membranes. As depicted in Figure 2, the mem-
brane shape is parameterized by their heights �1(r), �2(r′),
above the x-y reference plane. Working in the Monge rep-
resentation it is implicitly assumed that the membranes
remain flat on average and have no overhangs. This ap-
proach can be also useful to treat adhesion of vesicles in
their contact zone. When the vesicle is large enough, it will
be roughly flat close to the contact region, and the entire
vesicle can be thought of as a reservoir for the stickers.
Returning to the deformation energy, it can be written
as the sum of the bending energy and the surface tension
of each of the two membranes separately, as well as the
interacting potential energy between them [26,27]:

F2 =
1
2

∑
i=1,2

∫
d2r

[
1
2
κ(∇2�i)2 +

1
2
σ(∇�i)2

]

+
∫
d2r v(�1 − �2;ψ1, ψ2), (2.6)

where κ is the bending rigidity, σ is the mechanical sur-
face tension acting on the membranes, and v is the poten-
tial energy per unit area representing the inter-membrane
interactions. For simplicity, κ and σ are assumed to be
equal for the two membranes and do not vary as a
function of the sticker concentration ψi. The potential
v(�1 − �2;ψ1, ψ2) can be generally assumed to be a func-
tion of the local relative height coordinate �1 − �2 and the
sticker concentration ψi. The former assumption is the so-
called Derjaguin approximation [28]. The dependence on
the sticker concentration ψi will be considered later.

We now make a change of variables and transform to
the center of mass and relative coordinates given, respec-
tively, by

L =
�2 + �1
2

, � =
�2 − �1
2

. (2.7)

Only terms which depend on � can be considered in the
case where the center of mass is stationary, hence L is a
constant of motion. Then (2.6) can be written as [30]

F2 =
∫
d2r

[
1
2
κ(∇2�)2 +

1
2
σ(∇�)2 + v(�;ψ1, ψ2)

]
.

(2.8)
In the high-temperature phase, the stickers are ho-

mogeneously distributed, and each of the membrane is
in a one-phase region on the phase diagram. We assume
that even in the absence of sticker molecules, such mem-
branes are bound to each other due to the balance be-
tween the short-range repulsive (e.g., hydration interac-
tion) and longer-range attractive interactions (e.g., van
der Waals interaction). Hence, we do not consider the in-
teresting problem of the unbinding transition [14–16]. Al-
though the membranes are always bound together, their
equilibrium distance � depends on the sticker concentra-
tion. Let us consider the potential v(�;ψ1, ψ2) in (2.8) for
φ+ = 0. Note that φ+ = 0 means that (ψ1 + ψ2)/2 = ψc,
namely, the average sticker concentration on the two mem-
branes is at its critical value ψc. The inter-membrane po-
tential v(�;φ+ = 0) is assumed to have a single minimum
at a certain inter-membrane distance � = �0 for φ+ = 0.
This gives the equilibrium distance between the two bound
membranes. The deviation of the inter-membrane distance
from �0 is defined by the dimensionless quantity δ(r) given
by

δ(r) =
�(r)− �0

�0
. (2.9)

For small deviations from the minimum of the potential,
v(�;φ+ = 0) can be expanded to second order. This is
known as the harmonic approximation and gives

v(�;φ+ = 0) ≈ v(�0) +
1
2
v′′(�0)(�− �0)2

= v(�0) +
1
2
V δ2, (2.10)

where v′′(�0) is the second derivative of v with respect to �
evaluated at � = �0, V ≡ v′′(�0)�20, and v

′(�) = 0 at � = �0
[31]. Using (2.9) and (2.10), (2.8) can be written as

F2 ≈
∫
d2r

[
1
2
K(∇2δ)2 +

1
2
Σ(∇δ)2 + 1

2
V δ2

]
, (2.11)
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Fig. 4. Schematic representation of two adhering membranes
undergoing a lateral phase separation in the case of the
bolaform-sticker adhesion. Coexistence between tight (T) and
loose (L) membrane domains is shown. The inter-membrane
distance is smaller than �0 for the tight phase, whereas it larger
than �0 for the loose phase.

with K ≡ κ�20 and Σ ≡ σ�20. This is the expression of the
deformation energy within the harmonic approximation
and it served as a starting point to many calculations on
membrane adhesion [4,27,29].

Now we will include the effect of the adhesion on the
phase separation and suggest a lowest-order coupling be-
tween the composition φi(r) and the inter-membrane dis-
tance δ(r). When the membranes are quenched into a two-
phase region of the phase diagram a sticker-poor phase co-
exists with a sticker-rich phase. As shown in Figure 4, this
can lead to different inter-membrane distance for the dif-
ferent membrane domains. Since the sticky segments of the
bridges adhere directly onto the two membranes, the cou-
pling is proportional to the sum of the local sticker concen-
trations of the two membranes. This can be phenomeno-
logically represented by the following coupling term:

F3 =
α

2�0

∫
d2r (ψ1+ψ2)� = α

∫
d2r φ+δ + · · · , (2.12)

where the coupling constant α is positive preferring
smaller separation δ < 0 in regions where the average con-
centration φ+ is positive (or ψ1 + ψ2 > 2ψc). In the last
expression of (2.12), we have neglected the linear terms
in φ+ and δ, which merely shift the chemical potential or
minimum of the potential, respectively. Depending on the
value of φ+, this coupling term not only introduces a shift
of the minimum of the potential v but also changes the
minimum value of the potential. Note also that (2.12) is
symmetric with respect to the exchange of the two mem-
branes 1↔ 2.

The above linear coupling energy can also be under-
stood in the following way. Let us first consider a sin-
gle flexible membrane with sticker molecules adhering to
a flat substrate. Suppose vr(�) and vf(�) are the poten-
tials for sticker-rich and sticker-free membrane, respec-
tively. Following the same discussion as in (2.10), each
of the potential is parabolic around a different separation:
vr ≈ a(� − �r)2 and vf ≈ a(� − �f)2. The effective poten-
tial can be obtained by a linear combination of these two

potentials, i.e., (1− ψ)vf(�) + ψvr(�). By expanding vf(�)
and vr(�), we get a coupling term which is proportional to
ψ�. In the case of adhesion between two membranes, we
add the contributions from both of the membranes and
obtain the coupling energy as given in (2.12). The same
argument can be repeated for any arbitrary adhesion po-
tentials, vf(�) and vr(�), provided each of them has a single
well-defined minimum at some distance �.

The total free energy considered in our model is the
sum of (2.4), (2.11), and (2.12):

F = F1 + F2 + F3. (2.13)

Here it is convenient to convert to Fourier space. The
Fourier transform of any function f(r) is defined as

f̃(q) =
∫
d2r f(r)eiq·r, (2.14)

where q is the two-dimensional in-plane wave vector. The
total free energy can be expressed as

F =
1
A

∑
q

[
1
2
(t+ cq2)

(|φ̃+(q)|2 + |φ̃−(q)|2
)

+
1
2
(V +Σq2 +Kq4)|δ̃(q)|2 + αφ̃+(q)δ̃(−q)

]

+
∫
d2r

[
1
4
(φ4

+ + 6φ
2
+φ

2
− + φ4

−)

−µ+φ+ − µ−φ−

]
, (2.15)

where A is the area of the membranes projected on the x-y
plane. For convenience the free energy (2.15) is written as
a combination of real space and Fourier space terms.

Within the mean-field level, the free energy in terms
of φ+ and φ− is obtained by functionally minimizing F
with respect to δ̃(q). Then we find

δ̃(q) = − αφ̃+(q)
V +Σq2 +Kq4

. (2.16)

Hence the inter-membrane distance δ = (�−�0)/�0 is fully
determined by the value of φ+. By inserting (2.16) into
(2.15), the resulting free energy depends only on φ+ and
φ−, and becomes

F =
1
A

∑
q

[
1
2
Γ̃+(q)|φ̃+(q)|2 + 1

2
(t+ cq2)|φ̃−(q)|2

]

+
∫
d2r

[
1
4
(φ4

+ + 6φ
2
+φ

2
− + φ4

−)

−µ+φ+ − µ−φ−

]
, (2.17)

where

Γ̃+(q) = t+ cq2 − α2

V +Σq2 +Kq4
. (2.18)
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If we expand the last term in (2.18) for small q, we obtain

Γ̃+(q) ≈ (t− γ) +
(
c+

α2Σ

V 2

)
q2, (2.19)

with

γ ≡ α2

V
. (2.20)

The parameter γ is an important parameter characterizing
the coupling strength. The first two terms in (2.19) implies
an upward shift of the transition temperature, as will be
discussed in detail in the next section. We also find that
the presence of the coupling (α = 0) increases the line
tension c provided the mechanical surface tension Σ is
non-zero; c→ c+ α2Σ/V 2.

3 Phase diagrams

In this section, we calculate the mean-field phase dia-
grams for bolaform-sticker adhesion using the free energy
explained in the previous section. In order to study the
bulk properties of the system, we set q = 0 and study the
homogeneous solutions, φi’s and δ being constants. From
(2.16), the inter-membrane distance which minimizes the
free energy is given by

δ = −αφ+

V
. (3.1)

Since α is positive, δ is negative (smaller inter-membrane
distance) for positive φ+, and δ is positive (larger inter-
membrane distance) for negative φ+. By substituting back
this δ into the free energy f per unit area for homogeneous
(constant) φ+ and φ−, we obtain

f =
1
2
(t− γ)φ2

+ +
1
2
tφ2

−

+
1
4
(φ4

+ + 6φ
2
+φ

2
− + φ4

−)− µ+φ+ − µ−φ−, (3.2)

where γ is defined in (2.20). Notice that γ is never negative
and vanishes only when α = 0. Therefore, when µ+ =
µ− = 0, the field φ+ will order before φ−, and the phase
with φ+ = 0 and φ− = 0 is expected [32]. Although the
phase behavior of this free energy can be examined in
general, we concentrate here only on two particular cuts
in the parameter space, i.e., µ− = 0 and µ+ = 0. In
these cases one can clearly see the effect of adhesion on
the lateral phase separation.

3.1 The case µ− = 0

When µ− = 0 the two membranes have the same chemi-
cal potential µ1 = µ2. Since the chemical potential µ+ is
coupled to φ+, f can be minimized first with respect to
φ−. A “symmetric phase” is obtained for t+3φ2

+ > 0 with

φ− = 0, (3.3)

where the two membranes have the same concentrations,
φ1 = φ2. Likewise, two “asymmetric phases” are obtained
for t+ 3φ2

+ < 0 with

φ− = ±
√
−t− 3φ2

+. (3.4)

In the asymmetric phase the two membranes have different
concentrations φ1 = φ2. After inserting these expressions
into (3.2) with µ− = 0, the free energy becomes

f1 =




1
2
(t− γ)φ2

+ +
1
4
φ4

+ − µ+φ+ ,

for t+ 3φ2
+ > 0 ,

−1
4
t2 − 1

2
(2t+ γ)φ2

+ − 2φ4
+ − µ+φ+ ,

for t+ 3φ2
+ < 0 .

(3.5)

Notice that this free energy is continuous at t = −3φ2
+.

This free energy f1 can now be minimized with respect to
φ+. The resulting equation of state is written as

µ+ =

{
(t− γ)φ+ + φ3

+ , for t+ 3φ2
+ > 0 ,

− (2t+ γ)φ+ − 8φ3
+ , for t+ 3φ2

+ < 0 .
(3.6)

The phase diagram can now be calculated and the two-
phase region is obtained by the Maxwell construction. The
phase diagram for µ− = 0 is illustrated in Figure 5.

For t > 0, only the symmetric phase with φ− = 0
can appear since t+3φ2

+ > 0. Two symmetric phases with
different φ+ can coexist when t < γ. The coexistence curve
is simply given by

φ+ = ±√−t+ γ, (3.7)

and the associated critical point is located at

(t, φ+, µ+)c = (γ, 0, 0). (3.8)

We stress that the critical temperature is increased from
tc = 0 to tc = γ = α2/V due to the coupling between
the composition φ+ and the inter-membrane distance δ as
given in (2.12). In other words, the phase separation is
enhanced by the adhesion of membranes. As presented in
Figure 4, the two coexisting values of φ+ given by (3.7)
lead to different inter-membrane distances δ according to
(3.1). Since α > 0, δ is negative (� < �0) in the sticker-rich
domain, and this phase is called the “tight phase” (T). On
the other hand, δ is positive (� > �0) in the sticker-poor
domain and this phase is called the “loose phase” (L).
However, for each of the coexisting tight and loose phases,
φ− = 0, which means that the sticker concentration is the
same in the two membranes, φ1 = φ2.

For −γ/2 < t < 0, the asymmetric phase with φ− = 0
is always unstable, and the tight and loose phases coexist
according to (3.1) and (3.7). For t < −γ/2, the asymmet-
ric phase can be locally stable but it is only metastable.
Namely, its free energy is higher than that of the symmet-
ric phase. Hence the coexistence between the tight and
loose phases given by (3.1) and (3.7) preempts the asym-
metric phase. The limit of metastability of the asymmetric
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Fig. 5. The phase diagrams for the bolaform-sticker adhesion
when µ− = 0 as a function of (a) rescaled average composition
φ+/γ1/2 and temperature t/γ, and (b) rescaled average chem-
ical potential µ+/γ3/2 and temperature t/γ. The continuous
line is a first-order phase transition line, whereas the dotted
line is the limit of metastability of the asymmetric phase with
φ− �= 0. The metastable region of the asymmetric phase is indi-
cated by a thick line in (b). Open circle (◦) indicates a critical
point. Below the critical temperature, there is a coexistence
region between the loose (L) and the tight (T) phases as de-
noted by L+T. The phase diagram is symmetric with respect
to both φ+ → −φ+ and µ+ → −µ+.

phase is obtained by calculating the second derivative of
the second equation of (3.5) with respect to φ+. This leads
to

φ+ = ±
√

−2t− γ

24
, (3.9)

which is also shown as a dotted line inside the L+T coex-
isting region of Figure 5(a).

In summary, for µ− = 0, the asymmetric phase φ− = 0
does not exist as a stable phase for any temperature.
At most it is metastable and occurs within the L+T co-

existence region. The tight and loose phases coexist for
t < γ = α2/V according to (3.1) and (3.7).

3.2 The case µ+ = 0

Next we consider the case of µ+ = 0 but with µ− = 0.
This means that the chemical potentials of the two mem-
branes have the same magnitude but opposite sign, i.e.,
µ1 = −µ2. This is a special case of the more general situ-
ation where the symmetry between the two membranes is
explicitly broken. Now f in (3.2) can be minimized with
respect to φ+ first. As long as t+3φ2

− > γ, the only solu-
tion is

φ+ = 0. (3.10)

This is called the “middle phase” (M) where the inter-
membrane distance is exactly �0 (or δ = 0). Again note
that φ+ = 0 means that ψ1 + ψ2 = 2ψc. For t+ 3φ2

− < γ,
we have the tight (or loose) phase with

φ+ = ±
√
−t+ γ − 3φ2−, (3.11)

where � deviates from �0 (or δ = 0) according to (3.1).
Since µ+ = 0, both the tight and the loose phases are en-
ergetically degenerated and they coexist. By substituting
φ+ back into (3.2) with µ+ = 0, the free energy becomes

f2 =




1
2
tφ2

− +
1
4
φ4
− − µ−φ− ,

for t+ 3φ2
− > γ ,

−1
4
(t− γ)2 +

1
2
(−2t+ 3γ)φ2

−
−2φ4

− − µ−φ− ,

for t+ 3φ2
− < γ .

(3.12)

After minimizing with respect to φ−, the equation of state
is given as

µ− =



tφ− + φ3

− , for t+ 3φ2
− > γ ,

(−2t+ 3γ)φ− − 8φ3
− , for t+ 3φ2

− < γ .
(3.13)

The calculated phase diagrams for µ+ = 0 are shown in
Figure 6. The phase diagram is symmetric about φ− = 0
and µ− = 0 as a consequence of the φ2

+φ
2
− coupling term,

and lack of any odd terms in φ+ in the free energy. For
t > γ there is a one-phase region of the middle phase
with φ+ = 0 since t + 3φ2

− > γ. For 5γ/6 < t < γ, the
system undergoes a second-order phase transition between
the middle phase (φ+ = 0) and the tight (or loose) phase
(φ+ = 0). The analytical expressions of the second-order
phase transition lines are

φ− = ±
√

−t+ γ

3
, (3.14)

and

µ− = ±2t+ γ

3

√
−t+ γ

3
, (3.15)
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Fig. 6. The phase diagrams for the bolaform-sticker adhesion
when µ+ = 0 as a function of (a) rescaled composition differ-
ence φ−/γ1/2 and temperature t/γ, and (b) rescaled chem-
ical potential difference µ−/γ3/2 and temperature t/γ. The
continuous line is a first-order phase transition line, whereas
the dashed line is a second-order one. The loose, tight and
middle phases are denoted as L, T, and M, respectively. The
two tricritical points are indicated by a filled circle (•). Below
them there are two regions of coexistence of the middle phase
(φ+ = 0) and the tight phase (φ+ �= 0) denoted as M1+T and
T+M2. The phase diagram is symmetric with respect to both
φ− → −φ− and µ → −µ−. Because µ+ = 0 there is a degen-
eracy between the tight (T) and the loose (L) phases on the
phase diagram.

in Figure 6, respectively. On the second-order phase tran-
sition line, φ+ goes continuously to zero.

For t < 5γ/6, the transition changes to first order. This
has been numerically determined by the Maxwell con-
struction. The point which connects the first- and second-
order phase transition lines is a tricritical point [32]. In

our model, it is located at

(t, φ−, µ−)tcp =

(
5
6
γ, ± 1

3
√
2
γ1/2, ± 4

√
2

27
γ3/2

)
.

(3.16)
The first-order phase transition corresponds to the coex-
istence of the middle phase with φ+ = 0 and the tight (or
loose) phase with φ+ = 0. The obtained two-phase coexis-
tence region is indicated by “M+T” in Figure 6(a). Within
the present Ginzburg-Landau expansion, the tight phase
persists even if we go to low temperatures. Because of the
degeneracy between tight and loose phases, the first-order
line near the tricritical point actually corresponds to co-
existence of three phases: tight, loose, and middle phases.

In continuation to the discussion of the previous sub-
section (µ− = 0), we see that the phase separation is
also enhanced for the µ+ = 0 parameter space. It occurs
at higher temperatures, since the tricritical temperature
ttcp = 5γ/6 = 5α2/6V is positive for α = 0. It is impor-
tant to notice that in the middle phase with φ+ = 0, the
inter-membrane distance is �0 since δ = 0. On the other
hand, in the tight (loose) phase with φ+ > 0 (φ+ < 0),
according to (3.1) and (3.7), � < �0 (� > �0). The coexist-
ing membrane domains between tight and middle phases,
or between loose and middle phases is schematically rep-
resented in Figure 7.

We end this section by commenting on the general
case when both µ+ and µ− are non-zero. When µ+ be-
comes non-zero, the degeneracy between the tight and
the loose phases is lifted. In such a case, instead of the
three-phase coexistence for µ+ = 0, there is a coexistence
between either tight and middle phases, or between loose
and middle phases as shown in Figure 7(a) and (b), respec-
tively. Notice that the tricritical point exists only when
µ+ = 0. In a more general phase diagram drawn in the
(t, µ+, µ−) space, three second-order lines meet at the tri-
critical point. In the three-dimensional parameter space,
these second-order lines lie on the perimeter of two-phase
coexistence planes between either tight and middle phases
(T+M) or between loose and middle phases (L+M).

4 Non-monotonous membrane profile

One of our assumptions was that the inter-membranes po-
tential v(�;φ+ = 0) has a single minimum at � = �0 when
φ+ = 0. In the absence of thermal fluctuations, two ho-
mogeneous membranes are bound with inter-membrane
distance �0 for φ+ = 0. In this section, we calculate the
profile of the inter-membrane distance between two mem-
branes which are quenched below the phase separation
temperature.

We first expand the potential v(�;φ+ = 0) up to the
fourth-order terms in δ;

v(�;φ+ = 0) ≈ v(�0) +
1
2
V δ2 +

1
4
Uδ4, (4.1)

where V ≡ v′′(�0)�20 as before and U ≡ v(4)(�0)�40 > 0.
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Fig. 7. Schematic drawing of the inter-membrane distance
of two adhering membranes with coexisting domains between:
(a) tight (T) and middle (M) phases, and; (b) loose (L) and
middle (M) phases, as applies from Figure 6 for bolaform-
sticker adhesion. The inter-membrane distance is exactly �0
for the middle phase, whereas it is smaller (larger) than �0 for
the tight (loose) phase.

Both V and U are positive constants because of the con-
vexity of v at its minimum. Suppose that each of the mem-
branes is in its high-temperature phase (t > 0). Then the
fourth-order φi terms in the Ginzburg-Landau expansion
(2.4) can be neglected since the second-order terms are
positive. The resulting free energy with µ+ = µ− = 0 is

F =
∫
d2r

[
1
2
c
[
(∇φ+)2 + (∇φ−)2

]

+
1
2
t(φ2

+ + φ2
−) + αφ+δ

+
1
2
K(∇2δ)2 +

1
2
Σ(∇δ)2 + 1

2
V δ2 +

1
4
Uδ4

]

=
1
A

∑
q

[
1
2
(t+ cq2)

(|φ̃+(q)|2 + |φ̃−(q)|2
)

+αφ̃+(q)δ̃(−q)

+
1
2
(V +Σq2 +Kq4)|δ̃(q)|2

]
+

∫
d2r

1
4
Uδ4. (4.2)

We now minimize F with respect to the concentrations
φ̃+(q) and φ̃−(q) and obtain

φ̃+(q) = − α

t+ cq2
δ̃(q), φ̃−(q) = 0. (4.3)

By inserting these equations into (4.2) and expanding for
small q, the free energy can be written as

F =
∫
d2r

[
1
2
Ke(∇2δ)2 +

1
2
Σe(∇δ)2 + 1

2
Veδ

2 +
1
4
Ueδ

4

]
,

(4.4)
with

Ke ≡ K − α2c2

t3
, Σe ≡ Σ +

α2c

t2
,

Ve ≡ V − α2

t
, Ue ≡ U. (4.5)

We see that for t > 0 the coupling always increases the me-
chanical tension Σe > Σ, but reduces the rigidity Ke < K
and the potential strength Ve < V .

Let us consider the strong coupling case when Ve < 0
but still having Ke > 0, namely,

V <
α2

t
< K

(
t

c

)2

. (4.6)

For t > 0, although no phase separation occurs in the
absence of coupling (α = 0), it occurs for non-zero α. The
minimum free energy of the membranes is given by solving
the Euler-Lagrange equation obtained by minimizing (4.4)
with respect to the inter-membrane distance δ:

Ke∇4δ −Σe∇2δ + Veδ + Ueδ
3 = 0. (4.7)

The two uniform (bulk) solutions of (4.7) are

δ0 = ±
√
−Ve/Ue. (4.8)

We assume a one-dimensional profile δ(x) describing
the inter-membrane distance along the x-direction. A typi-
cal profile determined by a numerical solution of the Euler-
Lagrange equation (4.7) using a relaxational method is
shown in Figure 8. It is convenient to rescale the variables
δ and x as ζ = U

1/3
e δ and u = K

−1/4
e U

1/12
e x, respectively,

yielding the following one-dimensional profile equation:

d4ζ

du4
−

(
Σe

K
1/2
e U

1/6
e

)
d2ζ

du2
+

(
Ve

U
1/3
e

)
ζ + ζ3 = 0. (4.9)

Only two independent combinations of the four parame-
ters Ke Σe, Ve and Ue exist. In Figure 8 they are set to
be Σe/(K

1/2
e U

1/6
e ) = 0.1 and Ve/U

1/3
e = −1, respectively.

The profile has a large slope at the interface x = u = 0,
but relaxes to the bulk values ±δ0 at x = ±∞ in a non-
monotonic fashion with two symmetric overshoots, having
a height greater than δ0. These overshoots are suppressed
by increasing Σe or by increasing the coupling strength α.
The maximum value of δ at the overshoot scales as |Ve|1/2

as can be seen from (4.8). The overshoot of the profile is
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Fig. 9. Schematic drawing of the domain boundary and inter-
membrane distance of two adhering membranes. Two symmet-
ric overshoots in the interface region between the loose and
tight domains are shown, in agreement with the model and
Figure 8. They result from the combined effect of membrane
curvature and lateral tension.

followed by a damped oscillation which minimizes the cur-
vature energy. This behavior is similar to the non-linear
response of membranes to local pinning sites [33–35] or
membranes adhering to a geometrically structured sub-
strate [29] and is a result of the 4th-order derivative in
the profile equation. The oscillatory decay has been also
predicted for the membrane profile between two inclusions
such as proteins [36–39].

The configuration of the phase separated membranes
corresponding to the above inter-membrane distance δ
is schematically represented in Figure 9. In the case of

the adhesion of a single flexible membrane onto a sup-
ported membrane, the supported membrane cannot have
any shape fluctuations. Therefore, the inter-membrane
distance profile calculated in this section can be regarded
as a distance of the flexible membrane from the substrate
with respect to its equilibrium distance �0.

5 Discussion

5.1 Main findings

In this paper, the interplay between adhesion and lat-
eral phase separation of multi-component membranes is
investigated. We consider the “bolaform-sticker” adhesion
where adhesive bridges are formed by a single sticker hav-
ing two sticky segments and adhere directly onto the two
membranes, as shown in Figure 1(a). We proposed a phe-
nomenological free energy consisting of three parts: i) the
free energy describing the lateral phase separation of stick-
ers on each membrane (see (2.2)); ii) the deformation en-
ergy of the two membranes, which is the sum of the bend-
ing energy, the surface tension, and the potential energy
(see (2.6)); and, iii) the coupling energy between the inter-
membrane distance and the average concentration of stick-
ers on both membranes (see (2.12)). The difference of the
chemical potentials between the two membranes is also
taken into account because the sticker concentrations do
not have to be the same.

We calculate the phase diagrams describing the bulk
properties for two particular choices of the chemical po-
tentials, i.e., µ− = 0 (µ1 = µ2) and µ+ = 0 (µ1 = −µ2).
In the case of µ− = 0, the critical temperature increases
depending on the coupling strength and the potential
strength (see (3.8)). Hence the lateral phase separation
is enhanced due to the adhesion. This is one of the main
consequences of our model. When the phase separation
takes place, the inter-membrane distance is smaller for the
domains rich in the sticker molecules (“tight phase”), and
larger for the domains poor in the stickers (“loose phase”).
In the case of µ+ = 0, our model exhibits a tricritical be-
havior. The upward shift of the tricritical temperature also
indicates the enhancement of the lateral phase separation.

We find that the line tension for the lateral phase sep-
aration increases because of the coupling effect as long as
the mechanical surface tension is non-zero. We have also
calculated the inter-membrane distance profile between
the two membranes which are quenched below their phase
separation temperature. Because the membrane shape is
governed by the bending rigidity, the inter-membrane dis-
tance profile relaxes to the bulk values in a non-monotonic
way with two symmetric overshoots.

5.2 Membrane adhesion on solid surfaces and
supported membranes

So far, we have mainly discussed the adhesion of two mem-
branes. Our model also applies to the case where a single
flexible membrane with sticker molecules adheres to a flat
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substrate or a supported membrane [20]. Let us discuss
these two cases separately. For a flat substrate without
any supported membrane on it, the contributions from
the second membrane (say i = 2) can be dropped from
the model. The coupling term (2.12) simply reduces to
αφ1δ because the stickers are assumed to adhere directly
to the substrate. The second case is that of a supported
membrane with sticker molecules. Unlike the case of two
fluctuating membranes discussed in Section 4, the sup-
ported membrane does not have any shape fluctuations.
However, even in such situations, there is an enhancement
of the phase separation due to the coupling effect and the
upward shift of the critical temperature is given by (3.8).
Another related situation is the case where a membrane
is composed of two different lipids and the membrane is
put close to a flat substrate. If the two lipids feel differ-
ent hydration force and prefer different distances from the
substrate, the phase separation between the two compo-
nents will be enhanced by the adhesion for the same reason
described in this paper.

5.3 Relation to other models

There exists an analogy between the phase behavior of
our membrane system with that of metamagnets (mag-
nets which undergo fist-order phase transitions in an in-
creasing magnetic field) or 3He-4He mixtures described by
the BEG (Blume-Emery-Griffith) spin-one model [40,41].
Moreover, the phase diagrams for µ+ = 0 are analogous
to those describing the phase separation of two-component
mixtures in fluid bilayers which also exhibits tricritical be-
havior [42] and other related amphiphilic systems [43–47].
However, in the former case of two-component bilayers
the concentration difference between the two leaflets of
the membrane is linearly coupled to the curvature of the
bilayer and the difference in the chemical potential is not
taken into account.

In our paper, we did not address the problem of the
unbinding transition. We rather assumed that the mem-
branes are always bound together, even in the absence
of any sticker molecules. This assumption is partially
motivated by the experimental study of reference [23]
where suspended membrane (part of the giant vesicle)
was claimed to be bound to the supporting membrane
even in the absence of sticker molecules. In this case, the
inter-membrane distance � stays finite and it is permissi-
ble to expand the free energy around the minimum. Hence
the phase separation consists of loosely and tightly bound
patches. The interplay between unbinding transition and
phase separation of multi-component membranes has been
considered in other theoretical works [14–16]. The adhe-
sion there is only brought about by sticker molecules, and
the phase separation is induced both by attractive inter-
actions and fluctuation-induced interactions between the
stickers. Although their model treats a different aspect
of the more general problem, the fluctuation effect yields
similar consequences compared to ours. We assumed that
the cis-interaction in (2.2) is attractive, and tracing over

the inter-membrane distance δ yields a term proportional
to γφ2

+. Since this term does not depend on the sign of
φ+, it has a similar effect as fluctuations although our
treatment is restricted to the mean-field level.

It is worthwhile to comment here the difference be-
tween the present study and that of reference [23]. In their
paper, it is found that the adhesion between the mem-
branes including homophilic recognition molecules and re-
peller molecules is controlled by lateral phase separation.
The multiple competing states of adhesion is attributed
to the double-well inter-membrane interaction potential
generated by the competition of two forces; attraction be-
tween homophilic molecules and the repulsion between
repeller molecules. By changing the repeller concentra-
tion, the double-minimum potential causes the first-order
transition between a state with inter-membrane spacing
set by the thickness of the repeller molecules to a state
with a spacing set by the bare potential (van der Waals
plus hydration interactions). In our work, the effect of re-
peller molecules is not taken into account and the mini-
mum of the potential depends on the sticker concentra-
tion through the coupling term (2.12). When the stick-
ers are phase separated and two different values of the
sticker concentration coexist, the inter-membrane poten-
tial has double-minimum. However the physical origin of
this double-minimum potential is different from that in
reference [23] because it is not due to the presence of re-
peller molecules.

5.4 Other types of sticker molecules

As mentioned in the introduction, “homophilic-sticker”
adhesion occurs when the adhesive bridges are formed by
two stickers of the same type bound together by their two
sticky segments (see Fig. 1(b)). Suppose ψi (i = 1, 2) de-
notes the sticker concentration on each membrane. Then
the inter-membrane distance depends on the product of
each sticker concentration expressing the probability to
have two stickers —one on each membrane— at the same
position. Using (2.1) this coupling term can be written in
terms of φi as

ψ1ψ2 = φ1φ2 + ψc(φ1 + φ2) + ψ2
c . (5.1)

An interesting remark can be made for homophilic-sticker
adhesion. The resulting phase separation within each
membrane leads to three different values for the inter-
membrane distance. The inter-membrane distance be-
tween domains rich in stickers on both membranes (rich-
rich), as well as between rich-poor domains, and poor-
poor domains can be different [14,15]. Notice that these
three different inter-membrane distances correspond to
the tight, middle, and loose phases in our model.

A third case is that of “lock-and-key” adhesion due
to the formation of chemical bonds between lock-and-key
types of stickers, e.g., ligands and receptors (see Fig. 1(c)).
Suppose that both types of stickers are distributed on the
two membranes and ψi now represents the local concen-
tration, say, of the lock molecules. First let us assume
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that the membranes are saturated with sticker molecules
(no lipid). Then, 1−ψi(r) represents the concentration of
key molecules. Since domains rich in lock (key) molecules
on one membrane adhere with domains rich in key (lock)
molecules on the other membrane, the coupling term in
the free energy F3 will be a coupling between the inter-
membrane distance and

ψ1(1− ψ2) + (1− ψ1)ψ2 =

−2φ1φ2 + (1− 2ψc)(φ1 + φ2) + 2ψc(1− ψc). (5.2)

This term is symmetric with respect to the exchange of
two membranes. Both in (5.1) and (5.2), we see that the
lowest-order term in the concentration (except the con-
stant term) is proportional to φ+. If there is a linear
coupling between the inter-membrane distance and φ+ in
these cases, we expect an upward shift in the transition
temperature and the phase separation will be enhanced as
argued above. Due to the presence of higher-order terms
in (5.1) and (5.2), however, the phase behavior will be
more complex.

Let us now take into account the presence of lipids
in the lock-and-key adhesion. If a single type of sticker
is present on each membrane, namely, lock molecules on
membrane 1 and key molecules on membrane 2, we can
regard ψ1 and ψ2 as the concentrations of lock and key
molecules embedded in the lipid membrane, respectively.
Then 1 − ψ1 and 1 − ψ2 describe the concentration of
the second component (lipid) on each membrane, respec-
tively. In this case, the inter-membrane distance depends
on ψ1ψ2 as in (5.1). When both lock and key molecules
are present on both membranes, one has to start with
a three-component mixture for each of the membranes.
The generic lattice model to study the behavior of ternary
membranes of monolayers is the BEG spin-one model [40,
41,48]. Here one has to include the coupling between the
two membranes. If we denote the concentration of lock and
key molecules on each membrane as ψL

i and ψ
K
i (and hence

the concentration of the dilution lipid is 1−ψL
i −ψK

i ), the
inter-membrane distance now depends on ψL

1ψ
K
2 + ψK

1 ψ
L
2

which is similar to (5.2). More detailed calculations for the
homophilic stickers and lock-and-key stickers and their in-
fluence on membrane adhesion are left for future studies.
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