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Abstract. — We investigate theoretically the behavior of proteins as well as other large macro-
molecules which are incorporated into amphiphilic monolayers at the air-water interface. We
assume the monolayer to be in the coexistence region of the “main” transition, where domains of
the liquid condensed phase coexist with the liquid expanded background. Using a simple mean-
field free energy accounting for the interactions between proteins and amphiphilic molecules,
we obtain the spatial protein distribution with the following characteristics. When the proteins
preferentially interact with either the liquid condensed or liquid expanded domains, they will
be dissolved in the respective phase. When the proteins are energetically rather indifferent to
the density of the amphiphiles, they will be localized at the line boundary between the (two-
dimensional) liquid expanded and condensed phases. In between these two limiting cases, a
delocalization transition of the proteins takes place. This transition is accessible by changing
the temperature or the amount of incorporated protein. These findings are in agreement with
recent fluorescence microscopy experiments. Our results also apply to lipid multicomponent
membranes showing coexistence of distinct fluid phases.

1. Introduction

Monolayers of amphiphilic molecules spread on liquid surfaces have traditionally been studied
as models for biological membranes [1, 2]. Such insoluble and monomolecular films made of
suitable phospholipids or fatty acids are stable over a wide range of surface pressures and
temperatures due to the strong reduction of the water surface tension and are called Langmuir
monolayers [3]. In typical experiments, the amphiphiles are solubilized in a volatile solvent and
placed on the air-water interface. As the solvent evaporates, the amphiphiles spontaneously
spread and form a monolayer. When the insoluble film is then compressed (while keeping
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the temperature fixed), the lateral pressure can be measured as a function of the area per
amphiphilic molecule in analogy to bulk isotherms.

Using film balance techniques [1–5], the following general picture emerged. When the ex-
tremely expanded film is compressed, it produces the liquid expanded phase (LE), which, at
low enough temperatures, transforms upon further compression into the liquid condensed phase
(LC). At much lower surface concentrations and at low enough temperatures, the monolayer
undergoes a first-order transition into a gaseous phase. At very high lateral pressures, solidi-
fication occurs, as indicated by a discontinuity in the pressure-area isotherms. Subsequently,
these systems were also studied using X-ray [6–9] and neutron [10] scattering techniques, indi-
cating the existence of a large number of different condensed phases. In this paper we will be
concerned only with the LE/LC transition. Therefore, we do not introduce appropriate order
parameters needed to distinguish the different condensed phases [11].

The nature of the LE/LC transition has been the subject of much discussion [12]. It is
analogous to the “main” transition in lipid bilayers [3], where domains of the LE and the LC
phases have been shown to coexist over a wide range of lipid surface concentrations (or area per
molecule). In this coexistence region, the condensed domains show a large variety of different
shapes [13] and grow as the area per molecule is decreased, whereas the number of domains
depends on the initial conditions and typically stays fixed. The isotherms in the coexistence
region, however, were found to be non-horizontal, which led to the postulation of a limited
cooperativity of this transition [4]. For the case of single-chain fatty acids, it was later shown
that the isotherms approach zero slope as the material used is progressively purified [12].

On the theoretical side, the LE/LC transition has been modeled based on various microscopic
pictures of the interaction between surfactant (or lipid) molecules including translational as
well as internal degrees of freedom [14–18].

The biological function of membranes depends mostly on the incorporation of proteins and
other macromolecules into the lipid layers. Functionality and efficiency of these inclusions de-
pend crucially on microscopic details of the embedding in the lipid matrix, which can occur
in different ways. Monolayers at the air-water interface are suitable for the study of the in-
teraction between lipids and proteins, since they are rather well-defined and allow the control
of independent thermodynamic parameters which are otherwise fixed in a bilayer membrane,
like the area per molecule. Also, the observational techniques are well developed. Direct visu-
alization of the phase behavior of monolayers can be obtained using fluorescence microscopy
techniques. Here, a fluorescent dye probe is incorporated into the monolayer and its lateral
distribution can be obtained from the analysis of fluorescence micrographs. Contrast in the
images is obtained as a result of different dye solubility, fluorescence quantum yield, or molec-
ular density of coexisting phases [19]. A complementary and recently developed technique
is Brewster-angle microscopy, which allows imaging of a monolayer without the addition of
fluorescent probes [20].

After injection of a water-soluble protein into the aqueous subphase, the surface tension
typically decreases, indicating that the protein is at least partially incorporated into the mono-
layer [3, 21–23]. This is due to the protein affinity to the water/air interface. The specific
type of this attraction is not well understood and probably is due in part to structural changes
(denaturation) of the protein in the monolayer or at the water surface, associated with the
unfolding of hydrophobic groups.

One of the striking experimental observations [22, 24] was that some proteins adsorb pref-
erentially along the boundary line between the LE and LC domains when the monolayer is in
the LE/LC coexistence region. These observations were made for fluorescently labeled small
proteins, such as concanavalin A [24] or streptavidin [22], interacting with phospholipid mono-
layers. These experimental findings motivated our present theoretical study.
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In the following, we describe a simple model, which (i) assumes the LE/LC transition to be a
simple first-order condensation transition, yielding coexisting domains for temperatures below
the critical temperature, and (ii) includes the effect of proteins which are adsorbed into the
monolayer. Assuming that the proteins are completely incorporated into the monolayer, this
simplistic model leads to an entropic force which tends to localize the protein at the boundary
between LE and LC domains. Depending on the energetic preference of the protein for the LE
or LC phase, the protein will be either dissolved in the LE or in the LC domain, or, if there is
no pronounced preference, will be localized at the boundary.

Phase separation in amphiphilic layers is also observed for freely suspended multicompo-
nent bilayers [2]. Here, the coexisting phases are distinguished by their compositions. The
most important examples include mixtures of phospholipids with cholesterol [25] and mixtures
of different phospholipids [26], and in both cases the coexisting phases are in a fluid state.
These phenomena are of great biological interest since biological membranes are always mul-
ticomponent mixtures and lateral organization into domains is supposed to play an important
functional role. We note that our results apply directly to these situations as well, although
we will limit our terminology to the situation of coexisting dense and dilute phases for one-
component systems at the air-water interface. For the case of freely suspended membranes, our
findings imply a simple mechanism for the localization of integral membrane proteins along the
one-dimensional boundary between coexisting domains. The resulting enrichment of proteins
might be a prerequisite for proper biological function in certain cases.

In the following sections we formulate the model (Sect. 2), inspect the minima of the free
energy (Sect. 3), solve the corresponding Euler-Lagrange equations in the coexistence region
(Sect. 4), and calculate profiles both for the lipid and the (coupled) protein densities (Sect.
5). From the profiles we generate a general phase diagram featuring localized, semi-localized
and delocalized protein phases. We also calculate the total amount of adsorbed protein, the
protein excess Γ (Sect. 6), and the line tension τ of the LE-LC line interface (Sect. 7). It turns
out that the line tension is strongly reduced by the adsorption of proteins. A finite solubility
of the proteins in the subphase is taken into account in Section 8. Finally, the connection to
experimentally measurable quantities, such as the surface pressure Π, is made in Section 9.

2. The Mixed Lipid and Protein Free Energy

Consider the air-water interface with proteins, lipid molecules, and artificial “vacancies”, with
area fractions φP, φL, and φV, respectively, satisfying φP + φL + φV = 1. The vacancies are
introduced in order to allow for independent variations of the protein and lipid concentrations,
hence making coexistence of dilute and condensed regions of the monolayer possible. Inscribing
the system on a lattice, with a lattice constant corresponding to the size of a lipid molecule,
the free energy of mixing per lattice site within a mean field theory can be written for the
three-component mixture as a sum of the enthalpy and entropy of mixing, F = U − TS. The
enthalpy of mixing includes all pair-wise interactions between the three species:

U/T = ELLφ
2
L + EVVφ

2
V + EPPφ

2
P + ELVφLφV +EPLφPφL +EPVφPφV (1)

and the Eij are the dimensionless interaction parameters for all possible pairs. The entropy of
mixing is related to the total number Ω of distinct microscopic configurations

S =
log Ω

N
(2)
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where N is the total number of lattice sites and the Boltzmann constant is set to unity (kB = 1).
In the random-mixing approximation,

Ω =
(N(φL + φV + φP/α))!

(NφP/α)!(NφL)!(NφV)!
(3)

where the constant α > 1 denotes the ratio between the compact area occupied by a protein
molecule and a lipid molecule at the interface. The above expression is a modification of the
usual Flory-Huggins formula for the entropy of mixing, and yields the correct behavior in the
limit φP → 0 (see Sect. 9). It is exact for the one-dimensional case. Using Stirling’s formula
in the thermodynamic limit, defined by N →∞, the expression for S can be simplified

S = −φL log(φL)− φV log(φV)− φP

α
log(

φP

α
) + (1 − φP +

φP

α
) log(1− φP +

φP

α
) (4)

It is convenient to define the thermodynamic potential

G/T = F/T − µPφP − µL(φL − φV) (5)

where the chemical potentials µP and µL are coupled to the protein concentration φP and the
difference between the lipid and vacancy concentrations, φL − φV, respectively.

In (1)-(5), long-range interactions between the proteins, such as electrostatic forces, are
not taken into account. In addition, the free energy of mixing assumes a confinement of the
protein and lipid to the two-dimensional plane of the air-water interface. In fact, the variation
of the protein concentration perpendicular to the monolayer in the subphase can be taken into
account approximately and leads to a renormalization of the parameters of the two-dimensional
model, as shown in Section 8.

The lipid order parameter η, corresponding to the density of lipid molecules, can be written
as

η ≡ φL − φV (6)

Using that φP +φL +φV = 1, and defining the protein concentration as φ ≡ φP, the free energy
F and the potential G can be rewritten as

F/T = −(J + 1/2)η2 + Lφ2 + ληφ (7)

+(1 + η − φ) log[(1 + η − φ)/2]/2 + (1 − η − φ) log[(1− η − φ)/2]/2

+φ log[φ]/α− (1− φ+ φ/α) log[1− φ+ φ/α]

and
G/T = F/T − µηη − (µ + log 2)φ (8)

where constant terms have been omitted and linear terms in η and φ have been dropped out
from F for convenience. They merely contribute a constant shift to µ and µη in G. The reduced
interaction parameters: J , L, µ and λ are related to the original Eij and µP in the following
way

−J ≡ 1

4
(ELL +EVV −ELV) +

1

2
(9)

L ≡ 1

4
(ELL +EVV +ELV) + EPP −

1

2
(EPL +EPV) (10)

λ ≡ −1

2
(ELL − EVV − EPL + EPV) (11)

µ ≡ µP +
1

2
(ELL + EVV + ELV − EPL −EPV) − log 2 (12)
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The constant log 2 appears in the definition of µ in order to render the simplified expression
(13) in a simpler form.

The above expression for G is studied in Section 3 for different values of the various parame-
ters and the corresponding bulk phase-diagrams are obtained. For the study of protein profiles,
one can further simplify this expression. First, for small values of the order parameters, i.e.,
relatively close to the critical point of demixing of the lipid and for small protein concentra-
tions, it is legitimate to expand the free energy of mixing up to order O(η4) and O(φ2). In
addition, since typical proteins occupy a much larger area than lipids, the area ratio is in the
range of α ∼ 50− 100, and the protein entropy terms (of order 1/α) can be neglected in (7).
The validity of the latter (α→∞) approximation will be reexamined in Section 3 [27]. With
these simplifications, the approximated free energy density can be written as

F0/T = −Jη2 +
1

12
η4 + Lφ2 + ληφ +

1

2
η2φ (13)

where the simplified thermodynamic potential using (8) is given by G0/T = F0/T −µφ−µηη.
The free energy density (13) needs some further discussion. Coexistence between dense (η > 0)
and dilute regions (η < 0) requires that J > 0 and a positive fourth-order term η4 is needed to
stabilize the free energy. The protein itself is assumed not to be close to any phase transition.
Hence L > 0 and no higher order terms in φ are needed. We include in the expansion only the
two lowest coupling terms between the protein and lipid concentrations. The first is the bilinear
coupling ηφ and has an enthalpic origin. It reflects the overall preference of the protein to more
condensed (λ < 0) or more dilute (λ > 0) regions of the lipid monolayer. The second coupling
is the symmetric η2φ term, which is invariant under η → −η transformation and provides the
driving force for the localization of proteins at the LE-LC interface. In our mean-field model,
taking into account only pair interactions, this coupling has a purely entropic origin. More
generally, it can also include interaction terms of higher-order in a virial expansion. Finally, the
higher-order coupling terms η2φ2 and η4φ are not considered here since we try to investigate
the most simple and yet non-trivial type of coupling. A similar free energy coupling has been
introduced in the context of polymer adsorption at liquid-liquid interfaces, where in analogy
the polymer adsorbs preferentially at the interface from the bulk solution [28].

For the case where the proteins in the monolayer are in equilibrium with a solution of proteins
in the aqueous subphase, the protein chemical potential µ corresponds to the free energy of
adsorbing proteins from the subphase into the monolayer and depends on the concentration
of proteins in the subphase; this is discussed in Section 8. Since we consider an insoluble
(Langmuir) monolayer, similar considerations do not apply to the chemical potential µη of
the lipid order parameter η. In fact, µη will be uniquely determined by the requirement of
coexistence between dense and dilute lipid regions. For proteins which are insoluble in the
subphase, the chemical potential µ acts as a Lagrange multiplier fixing the total amount of
protein in the monolayer, which is a conserved quantity in this situation.

In the LE/LC two-phase region, obtained for J > 0, one finds experimentally [3] domains
of typically circular shape of LC phase immersed in a background of LE phase. Since the
domains are rather large (∼ 10− 100 µm), we neglect the shape of the line boundary between
the LC and LE regions and assume variation of the lipid concentration only along one spatial
direction (the x direction) and translational invariance along the perpendicular direction. The
free energy γ per unit length of this line boundary (related to the line tension τ of the interface
as calculated in Sect. 7) is given by

γ =

∫ ∞
−∞
I dx (14)
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where the free energy density I includes contributions associated with spatial variations of
the concentrations. Defining the “stiffness coefficients” gφ and gη for the protein and lipid
concentration profiles, respectively, the free energy density I is given by

I = G/T +
1

2
gφ

(
dφ

dx

)2

+
1

2
gη

(
dη

dx

)2

(15)

In the next section we study the bulk phase diagram based on the thermodynamic poten-
tial (8). In the subsequent sections we use the simplified expression (13) and determine the
concentration profiles φ(x) and η(x) by applying a variational principle to the free energy
functional γ.

3. The Phase Diagram

The phase diagram as a function of the chemical potentials µη and µ can be obtained from
the thermodynamic potential (8) by minimizing G with respect to the order parameters η and
φ in the two-phase coexistence region [29]. The coexisting solutions, denoted by (η1, φ1) and
(η2, φ2), are determined from the equations

µη =
∂F
∂η

∣∣∣∣
η1,φ1

=
∂F
∂η

∣∣∣∣
η2,φ2

=
F(η1, φ1) −F(η2, φ2)

η1 − η2
(16)

µ + log 2 =
∂F
∂φ

∣∣∣∣
η1,φ1

=
∂F
∂φ

∣∣∣∣
η2,φ2

(17)

which correspond to a common-tangent construction. These equations can be easily solved
numerically. In order to estimate the role of the protein-lipid area ratio, α, and to compare
the results with the calculations presented in the next section based on the simplified expres-
sion (13), where α→∞, we restrict the numerical analysis to the values J = 1/10 and L = 10.
The small value of J means that one is close to the critical point of the lipid phase separation,
and the expansion in powers of η, leading to (13), is appropriate. The large value of L means
that the protein concentration is rather small everywhere and can be treated as a small pertur-
bation. We will need this assumption for the analytic solution of the Euler-Lagrange equations
in Section 4. The parameter α will be scanned in a rather wide range. With this choice of L
and J , it is clear that the simplified free energy expression (13) is asymptotically obtained for
α→∞.

The protein concentrations in the coexisting dense and dilute lipid regions scan a whole
range of different values, depending on the values of the remaining parameters µ and λ, but
are strictly bounded below by∼ exp(−α). In contrast, the simplified free energy expression (13)
has solutions with non-zero and strictly zero protein concentrations, because of the α → ∞
limit. It therefore allows for straightforward classification of the bulk protein ordering into
a phase with finite protein concentration and a phase with no proteins at all. We need a
similar criterion for the case of the full free energy expression (7) with α finite, allowing us to
distinguish in a categorical manner the presence of proteins from the absence of proteins, even
in the inevitable presence of a protein concentration exponentially small in α. We adopt the
simple criterion which consists of calculating the Laplacian of the protein concentration in the
parameter space (µ, λ),

∂2φi
∂µ2

+
∂2φi
∂λ2

(18)

in the two coexisting phases φ1 and φ2. This scalar quantity shows a pronounced line of maxima
in the parameter space, separating two phases with small and large concentrations of proteins.
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Fig. 1. — Bulk phase diagram for L = 10, J = 1/10, and for α = 10 (short dashes), 50 (long dashes),
and 200 (long-short dashes) as a function of the rescaled chemical potential parameter a and the
interaction parameter c. The solid lines denote the phase boundaries for the limiting case α→∞. In
the delocalized-phase region the protein concentration in the dense and dilute lipid regions is finite; in
the so-called “semi-localized” region only the dilute lipid region contains proteins (for negative values
of c only the dense lipid region contains proteins), and in the region denoted by “no proteins” the
protein concentration is very small (∼ exp[−α]) in both coexisting lipid regions. In part of the “no
protein” region, the solution of the Euler-Lagrange equations gives a new localized protein distribution
in the neighborhood of the LE/LC boundary, see Figure 2.

The position of this ridge is determined numerically and defined as the boundary between the
two phases rich and devoid of proteins, respectively, for each solution φi. The result of this
operation leads to three distinct phase regions and is shown in Figure 1 for the values α = 10,
50, and 200. Anticipating the definitions (28) and (30), we present the results in terms of
the rescaled variables a ≡ µ/(3J) and c ≡ λ/

√
3J/2. The results obtained for α = ∞ are

denoted by solid lines. In the region denoted “no proteins” both protein concentrations φ1 and
φ2 are very small (exponentially in −α); in the region “semi-localized” only one concentration
is small while the other is finite (distinguished by the criterion described above), and in the
region “delocalized” both phases have finite protein concentrations.

In the next section we will calculate the protein profile explicitly and, in addition, obtain
a “localized” phase. This phase cannot be distinguished from the “no protein” phase by just
looking at the bulk free energy. In fact, in this phase there is a finite protein concentration
only at a finite distance from the boundary between the LE and LC regions. As one can see
from Figure 1, the phase boundary for α = 50 (long dashes) is already fairly close to the
asymptotic boundary (α →∞, solid line), so that neglecting the protein entropy is already a
good approximation for moderately large macromolecules.

4. Euler-Lagrange Equations

In this section we calculate the protein concentration profile based on the free energy expres-
sion (15). Minimization of the line free energy γ (14) leads to the Euler-Lagrange equations
(denoting dφ/dx by φ′, etc.)

∂I
∂η
− d

dx

∂I
∂η′

= 0 (19)
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∂I
∂φ
− d

dx

∂I
∂φ′

= 0 (20)

Using the full free energy of mixing (7), one obtains two coupled second-order and non-linear
differential equations of the form

−µη − (2J + 1)η + λφ+
1

2
log

(
1 + η − φ
1− η − φ

)
= gη

d2η

dx2

−µ − log 2 + 2Lφ+ λη +
1

2
log

(
4(1− φ)2

(1 + η − φ)(1− η − φ)

)
+

1

α
log

(
φ

1− φ

)
= gφ

d2φ

dx2

For the actual calculation of concentration profiles, we will use the simplified free energy
expression (13), leading to the more compact expressions (which are expansions in η and φ)

−µη − 2Jη +
1

3
η3 + λφ + ηφ = gη

d2η

dx2
(21)

−µ+ 2Lφ+ λη +
1

2
η2 = gφ

d2φ

dx2
(22)

These are the same equations that were considered by Halperin and Pincus in the context of
polymer adsorption at liquid-liquid interfaces [28].

Instead of solving (21), (22) numerically, we recall that for large values of L we can treat the
protein area fraction as a small parameter. As a zeroth-order approximation, we neglect the
terms depending on φ in (21) and obtain as a solution the lipid order parameter profile η0(x)
in the absence of proteins. This profile is then inserted into (22), yielding the protein profile
φ(x). The validity of this approach, namely solving the equation (21) while neglecting the
coupling between η and φ and inserting the solution into equation (22), is critically examined
in Appendix B. There, it is found that this approximation indeed corresponds to the first term
in an expansion, in which the protein concentration functions as the expansion parameter and
which therefore is valid for small protein concentrations.

To proceed, setting φ = 0 in (21) leads to

η0(x) = η∞ tanh(x/ξη) (23)

with the definitions

η∞ ≡
√

6J (24)

ξη ≡
√
gη/J (25)

This is the solution of the usual 4th order Ginzburg-Landau free energy expansion and is
strictly valid here only for the pure lipid. The lipid order parameter varies between +η∞
for x → ∞ and −η∞ for x → −∞, and its width is characterized by the correlation length
ξη. The chemical potential µη is zero in the approximation employed above. The origin is
chosen as the symmetric point between the liquid condensed phase (x > 0) and the liquid
expanded phase (x < 0). Defining a rescaled length u ≡ x/ξη and a rescaled protein density
Φ(x) ≡ 4Lφ(x)/(η∞)2, the second differential equation (22) is reduced to

Φ(u)− h(u) = b2
d2Φ(u)

du2
(26)
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with the inhomogeneous term h(u) given by

h(u) ≡ a− tanh2(u) − c tanh(u) (27)

The remaining rescaled parameters are

a ≡ 2µ

(η∞)2
=

µ

3J
(28)

b2 ≡ Jgφ
2Lgη

=
ξ2
φ

ξ2
η

(29)

c ≡ 2λ

η∞
=

λ√
3J/2

(30)

The parameter a ∼ µ is the rescaled chemical potential, b is the relative stiffness of the lipid
concentration profile compared to the protein concentration profile, and c ∼ λ measures the
preference of the proteins for the dense (c < 0) or dilute (c > 0) lipid domains. The correlation
length of the protein distribution is defined by ξφ ≡

√
gφ/2L.

The general solution of the second order differential equation (26) can be written as

Φ(u) = A sinh(u/b) +B cosh(u/b) + a−Φ1(u)/b− cΦ2(u)/b (31)

where the functions Φ1(u) and Φ2(u) are given in Appendix A. The constants A and B have
to be determined in accord with the boundary conditions.

5. Protein Distribution

5.1. Solution for the Case b = 0. — It is instructive to treat first the limiting case where
the stiffness of the protein distribution vanishes, i.e., gφ = 0 and ξφ = 0. Then, one has b = 0
and the solution of (26) is trivially given by Φ(u) = h(u). This leads to the protein distribution

Φ0(u) =

{
h(u) for h(u) ≥ 0
0 for h(u) < 0

(32)

where the restriction to a finite range in u follows since the protein concentration Φ0(u) has to
be positive. In fact, for b = 0, only for h(u) ≥ 0 the protein distribution is correctly described
by the differential equation (26); inspection of the free energy density I in the limit α → ∞
shows that the value of Φ(u) which minimizes I for h(u) < 0 is given by Φ(u) = 0. This failure
of the variational methods used in deriving (26) is due to the fact that one requires Φ(u) to be
positive in the limit of very large proteins, α→∞.

Hereafter, we choose c ≥ 0 with no loss of generality, since the problem defined by (26) and
(27) is symmetric under a simultaneous inversion of c and u (c→ −c and u→ −u). Using the
asymptotic behavior of h(u),

h(u) =

{
a− 1 + c for u→ −∞
a− 1− c for u→ +∞ (33)

the following classification emerges: (i) For a ≤ 1 − c, the protein distribution vanishes both
for positive and negative values of u at a sufficiently large but finite distance from the interface
(which is located at u = 0); one actually obtains a nonvanishing, localized distribution of
proteins provided that h(u) > 0 for some range of u, but this cannot be seen from the bulk
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Fig. 2. — Phase diagram for general protein stiffness b, valid in the limit of large proteins, α→∞, as a
function of the protein chemical potential a and protein-lipid interaction parameter c. The shaded area
denotes the localized regime, in which the protein distribution is localized at the boundary between
dense and dilute lipid regions. The special point S is the limiting localized case where the maximum
of the protein distribution is infinitely far away from the interface between the liquid condensed and
liquid expanded phases. The broken lines denote lines of constant excess protein Γ calculated for the
special case b = 0. The phase diagram is symmetric with respect to the a axis (c = 0 line).

behavior; (ii) for 1 − c < a ≤ 1 + c, the distribution is semi-localized and vanishes only for
sufficiently large positive values of u and stays finite as u → −∞, and (iii) for a > 1 + c the
distribution is delocalized and stays finite in both limits u→ ±∞. These three regimes are in
accord with the α→∞ limit of the phase diagram shown in Figure 1.

An additional observation can be made for c ≤ 2, where h(u) has one maximum located at

umax = − tanh−1(c/2) (34)

with a height
h(umax) = a+ c2/4 (35)

(in the limit c→ 2 one obtains umax ' log(2−c)/2). Consequently, for c ≤ 2, the line defined by
a = −c2/4 marks the border between a fourth regime where the protein distribution vanishes
identically (for a ≤ −c2/4) and the regime where this distribution is non-zero (for a finite
distance from the boundary between dense and dilute lipid regions). Figure 2 summarizes
these borderlines in a phase diagram, which is in fact valid also for b 6= 0, as will be discussed
in the next subsection. The localized regime is shaded in gray and ends at a special point S,
at which the maximum of the protein distribution is at infinity; as pointed out before, there is
an overall symmetry around the a−axis (c = 0).

The effective correlation length ξeff for the proteins in the localized regime can be estimated
from the curvature of Φ0(u) at the maximum umax,

ξ−2
eff ≡ −h′′(umax) = 2(1− c2/4)2 (36)

This length diverges as one approaches the special point S, where the distribution becomes
indefinitely broad.

5.2. Solution for b > 0 − General Considerations. — On physical grounds, the
solution for non-zero b, i.e., for a finite stiffness of the protein distribution, has to coincide
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with the solution found for b = 0 in the preceding section very far from the interface located
at u = 0. This leads to the general boundary condition

Φ(u) = Φ0(u) for u→ ±∞ (37)

where Φ0(u) is given by (32) and the general solution Φ(u) is defined to be the concentra-
tion profile which minimizes the free energy functional (14). In the following, we discuss the
properties of the general solution Φ(u) separately for the four regions distinguished in Figure 2.

i) In the delocalized case, the boundary conditions (37) occurring at infinity together with
the differential equation (26) valid for the entire (−∞,∞) range in u are sufficient to determine
the distribution Φ(u).

For the other cases, the boundary conditions (37) have to be supplemented by additional
conditions at finite values of u; the distribution Φ(u) is described by (26) only in a finite interval
of u.

ii) In the case where h(u) < 0 for all u, it follows from the requirement Φ(u) ≥ 0 that
Φ(u) − h(u) > 0 and thus all possible solutions of (26) have strictly positive curvature as
can be seen by looking at (26). The boundary conditions (37), which imply that Φ(u) = 0
as u → ±∞, can not be satisfied for any non-vanishing solution of (26). Consequently, the
protein distribution which minimizes the free energy is given identically by Φ(u) = 0. This
vanishing solution was also found for b = 0.

iii) When h(u) is positive in some finite interval of u but negative for u→ ±∞, all solutions
of (26) which are positive definite everywhere have positive curvature for u→ ±∞ and are not
compatible with the boundary conditions as given by (37). This merely reflects the fact that
(26) describes the distribution Φ(u) only in the finite interval u1 ≤ u ≤ u2, in which Φ(u) > 0.
The same was found to be true for b = 0 in the last section. From (37) in combination with
(32), Φ(u) has to vanish for u → ±∞, and can be positive for finite u. As follows from
minimizing the free energy functional γ (14), the solution Φ(u) has to be smooth everywhere
and thus fulfills Φ(u) = Φ′(u) = 0 at the two boundaries u = u1 and u = u2.

Now the following statements can be made: a) There have to be intervals of u where Φ(u)
has negative curvature in order to fulfill the boundary conditions Φ(u) = 0 at u = u1 and
u = u2; b) close to the boundaries u = u1 and u = u2, the curvature has to be positive in
order to fulfill Φ′(u) = 0 at u = u1 and u = u2; c) consequently, the solution Φ(u) crosses h(u)
at two values of u inside the region bounded by u = u1 and u = u2, at which the curvature
of Φ(u) vanishes; this can be seen from (26). It follows that the boundaries u1 and u2 do
not coincide, which means that the protein distribution Φ(u) does not vanish identically. We
conclude that whenever the distribution Φ0(u) does not vanish for b = 0, it is non-vanishing
for any b 6= 0. Note that it is actually possible to construct a solution Φ(u) in accord with the
boundary conditions at u1 and u2 since the general solution (31) has two adjustable parameters
A and B.

iv) For the semi-localized case, the boundary condition (37) applies to the solution of (26)
for u → −∞ only. The protein distribution is non-zero in the u interval (−∞, u2) and the
boundary value u2 satisfies Φ(u2) = Φ′(u2) = 0.

Putting together these arguments for the different regimes, it follows that the phase diagram
in Figure 2 is valid for general b > 0.

5.3. Boundary Conditions. — In the following, we specify the boundary conditions for
general b for the three different cases showing non-vanishing protein distributions:
In the delocalized regime, the boundary conditions obtained from (37), (33), and (32) are

Φ(±∞) = h(±∞) = a− 1∓ c (38)
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These boundary conditions determine the coefficients A and B of the general solution (31).
In the semi-localized regime, one has the conditions

Φ(−∞) = h(−∞) = a− 1 + c (39)

and
Φ(u2) = Φ′(u2) = 0 (40)

which determine the position of the boundary value, u2, and the coefficients A and B.
In the localized regime, one has

Φ(u1) = Φ′(u1) = 0 (41)

Φ(u2) = Φ′(u2) = 0 (42)

Here, the boundary conditions determine u1, u2, A, and B. In what follows, we always assume
that u1 ≤ u2, with no restrictions on the generality.

In the following, we present explicit protein profiles Φ(u) for the limiting cases b = 0 and
b = 1. The latter value corresponds to the case where the correlation lengths of the lipid and
protein concentration profiles are equal, ξη = ξφ. Also, for b = 1, the general solution of the
protein profile as given in Appendix A can be written in a simpler analytical form.

5.3.1. Delocalized Regime. — For b = 1, the coefficients are determined to be B = π/2−2 and
A = c(1− π/2); the protein distribution, given by (31), then reads

Φ(u) = a− 2 + 2 tan−1[tanh(u/2)](c coshu− sinhu) + π(coshu− c sinhu)/2 (43)

Using the equalities

tan−1[tanh(u/2)] = tan−1[eu]− π/4 = π/4− tan−1[e−u] (44)

the protein distribution can be rewritten as

Φ(u) = a− 2 + πeu(1− c)/2 + 2 tan−1[eu](c coshu− sinhu) (45)

or
Φ(u) = a− 2 + πe−u(1 + c)/2− 2 tan−1[e−u](c cosh u− sinhu) (46)

in accord with the limiting values Φ(u) = a− 1± c for u→ ∓∞.

5.3.2. Semi-Localized Regime. — For b = 1, the boundary condition at u = −∞ leads to the
relation A = 2 + B + c− π(1 + c)/2. The protein distribution can be written as

Φ(u) = a− 2 + eu(B + 2− cπ/2) + 2 tan−1[eu](c coshu− sinhu) (47)

which indeed satisfies the boundary condition as given by (39). The coefficient B and u2 are
in turn determined by the second boundary condition (40).

5.3.3. Localized Regime. — For general b, the boundary conditions (41) and (42) can be cast
in a more explicit form. Defining

cosh(u/b)Φ(u)/b− sinh(u/b)Φ′(u) = B/b + ρ(u) (48)

with
ρ(u) ≡ cosh(u/b)(a/b− Φ1(u) − c Φ2(u)) + b sinh(u/b)(Φ′1(u) + c Φ′2(u)) (49)
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Fig. 3. — Protein distributions for the symmetric case defined by vanishing lipid-protein interaction,
c = 0, for different values of the protein chemical potential a; solid lines denote vanishing protein
stiffness, b = 0, and broken lines denote b = 1.

and
sinh(u/b)Φ(u)/b− cosh(u/b)Φ′(u) = −A/b+ κ(u) (50)

with
κ(u) ≡ sinh(u/b)(a/b−Φ1(u)− c Φ2(u)) + b cosh(u/b)(Φ′1(u) + c Φ′2(u)) (51)

leads to the equations
− B/b = ρ(u1) = ρ(u2) (52)

A/b = κ(u1) = κ(u2) (53)

Equations (48)-(51) have to be solved simultaneously in order to determine u1, u2, A, and B.
For the case b = 1, the functions ρ(u) and κ(u) take the simpler form

ρ(u) = (a− 2) coshu+ 2 + tanhu sinhu+ 2c tan−1[tanh(u/2)]− c sinhu (54)

κ(u) = (a− 1) sinhu+ 2 tan−1[tanh(u/2)] + c(1− cosh u) (55)

In the remainder of this section, we present protein profiles calculated from the above equa-
tions for several values of the three parameters a, b, and c. Figure 3 shows protein distributions
for four different values of a and for the two simple cases b = 0 (solid lines) and b = 1 (broken
lines). We set c = 0, so the protein profiles are symmetric about the LE/LC boundary located
at u = 0, where the lipid concentration profile as given by (23) has an inflection point. For
vanishing stiffness of the protein distribution (b → 0), the profiles have discontinuous slopes
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Fig. 4. — Asymmetric protein distributions at the boundary between the localized case and the semi-
localized case, defined by a = 1− c; solid lines denote b = 0 and broken lines denote b = 1. The left
boundary u1 is located at u1 = −∞ for all values of b.

for a < 1 at the points where the protein concentration vanishes; the main effect of a non-
vanishing stiffness parameter b is to eliminate these discontinuities, thereby flattening the entire
concentration profile, as is clearly seen in Figure 3.

Figure 4 shows asymmetric protein distributions for four different values of c on the transition
line between the localized and the semi-localized regimes, defined by a = 1 − c. Again, solid
lines denote results for b = 0 and broken lines denote results for b = 1. As for the symmetric
distributions shown in Figure 3, a non-zero stiffness parameter b removes the discontinuity of
Φ′(u) at the boundary u2 and flattens the concentration profile. As c approaches the value 2,
the maximum of the distribution moves progressively away from the LE/LC boundary located
at u = 0. Also, the overall protein concentration rapidly decreases. In the limit c → 2, the
position of the maximum actually diverges logarithmically, as follows from (34).

Figure 5 gives the localized protein distribution Φ(u) for c = 0 and a = 0.5 for six different
values of b, where u2 and B have to be determined numerically from (42) applied to the general
solution (31). Interestingly enough, the boundary values u2 = −u1 do not diverge as b → ∞
but approach finite values u1,2 = ∓1.915. As the stiffness of the protein distribution increases,
the concentration is flattened and the area under the curves decreases, but the profile does not
spread out indefinitely and stays localized.
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Fig. 5. — Protein distribution Φ(u) for vanishing lipid-protein interaction c = 0, and fixed protein
chemical potential a = 0.5 for the following values of the protein stiffness b (from top to bottom):
b = 0, 0.2, 0.6, 1, 1.6, and 2.8. The limiting value of u2 for b→∞ is given by u1,2 = ±1.915.

6. The Protein Excess

The protein excess is the total amount of adsorbed proteins. In the localized regime, this
quantity is defined as

Γ ≡
∫ +∞

−∞
Φ(u)du =

∫ u2

u1

Φ(u)du (56)

In the delocalized and the semi-localized regimes, the quantity Γ as defined above diverges
since the protein distribution approaches a constant non-vanishing value as u→ −∞ (for the
delocalized case the same is also true as u→∞). One can still extract a meaningful quantity
defined by the excess amount of protein adsorbed by subtracting the protein concentration
at u = ±∞, where Φ(±∞) = a − 1 ∓ c. For −2 < c < 2 the protein distribution has one
maximum, and we define the protein excess as

Γ ≡
∫ umax

−∞
(Φ(u)− Φ(−∞))du+

∫ ∞
umax

(Φ(u)− Φ(∞))du (57)

where umax is the value of u for which Φ(u) reaches its maximum.

6.1. Protein excess for b = 0. — The protein excess Γ can be calculated for b = 0 in
closed form for all parameter values. With Φ0(u) = h(u) = a−tanh2(u)−c tanh(u), the excess
can be written as

Γ ≡
∫ u2

u1

(a− tanh2(u)− c tanh(u))du (58)

where the integration boundaries are given by

u1,2 = tanh−1

[
− c

2
∓
√
c2

4
+ a

]
(59)

For the symmetric case, c = 0, the boundaries u1 and u2 have the values

u1,2 = ∓ tanh−1√a (60)
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and on the transition line between the localized and the semi-localized regimes, given by
a = 1− c, one obtains u1 = −∞ and

u2 = tanh−1(1− c) (61)

For general a and c, the integral (58) yields

Γ =
√
c2 + 4a+ (a− 1 + c) tanh−1

[√
c2 + 4a

1 + a

]
− c tanh−1

[√
c2 + 4a(2 + c)

2 + 2a+ 2c+ c2

]
(62)

In the symmetric case, c = 0, this expression reduces to

Γ = (a− 1) tanh−1

[ √
4a

1 + a

]
+
√

4a (63)

and on the localized to semi-localized transition line, a = 1− c, it reduces to

Γ = 2− c − c tanh−1

[
4− c2
4 + c2

]
= 2− c− c log(2/c) (64)

Lines of constant Γ for b = 0 calculated from (62) are shown as broken lines in Figure
2. Those lines can be helpful in interpreting experimental findings when only the integrated
protein amount is known and not the entire profile.

6.2. Protein excess for b = 1. — For the symmetric case (c = 0) the excess is given by
the closed-form expression

Γ = 2(a− 1)u2 + 2 tanhu2 (65)

with the boundary value u2 determined by

tan−1[tanh(u2/2)] =
1− a

2
sinhu2 (66)

as follows from (53) and (55) and noting that A = 0 in (31).
For the localized to semi-localized transition line, a = 1− c, the excess is given by

Γ = 1− c log(2) + tanhu2 − u2c − c log(coshu2) (67)

with the boundary value u2 determined by

2c+ 1 = tanhu2 + (1 + c)(cosh u2 − sinhu2)(π/2 + 2 tan−1(tanh[u2/2]) (68)

as follows from applying (42) to (47).
The protein excess Γ for the symmetric case c = 0 is shown in Figure 6a as a function of

a, where the solid line denotes results for b = 0 and the broken line for b = 1. These results
correspond to the concentration profiles plotted in Figure 3 and are given by (63) and (65).
The protein excess for b = 1 is smaller than for b = 0, which is also visible in Figure 3. The
overall flattening of the distributions for non-zero b causes the area under the distribution to
decrease. For a = 1, the protein excess is given by Γ = 2 for both values of b. The same value
holds for general b, as can be demonstrated by numerical solutions of (56). The boundary
values u2 given by (60) for b = 0 and determined by (66) for b = 1 are plotted in Figure 7a.

In Figure 6b we show the protein excess on the localized/semi-localized transition line,
a = 1− c, as a function of c, as given by (64) and (67). As in the symmetric case, the protein
excess Γ decreases as b becomes non-zero. The boundary values u2, obtained from (61) and
(68), for b = 0 and b = 1, respectively, are plotted in Figure 7b.
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broken line denotes b = 1. At a = 1 the excess is Γ = 2 independently of the value of b. (b) Protein
excess Γ on the localized/semi-localized transition line, defined by a = 1− c.
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Fig. 7. — (a) Boundary value u2 for the symmetric case c = 0 for b = 0 (solid line) as given by (60)
and for b = 1 (broken line) as determined by (66); note that here u1 = −u2. (b) Boundary value u2

for the localized to semi-localized transition line, defined by a = 1 − c, for b = 0 (solid line) as given
by (61) and for b = 1 (broken line) as determined by (68); note that here u1 = −∞.

7. LE/LC Line Tension in the Presence of Protein

First we calculate the line tension of the liquid expanded-liquid condensed (LE-LC) interface
in the absence of proteins, denoted by τ0. This energy per unit length follows from the total
free energy density γ as given by (14) after subtraction of the bulk free energy density infinitely
far from the interface and can be defined by

τ0
2

=

∫ ∞
0

dx

{
−Jη2

0(x) +
1

12
η4

0(x) +
1

2
gη

(
dη0(x)

dx

)2

+ Jη2
∞ −

1

12
η4
∞

}
(69)

recalling that
η0(x) = η∞ tanh(x/ξη) (70)

and η∞ =
√

6J and ξη =
√
gη/J . In writing (69) we used the symmetry around x = 0. The

integral (69) is elementary and gives the standard result

τ0 = 8J3/2g1/2
η (71)
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The total line tension is given by τ = τ0 +τφ. The line tension contribution τφ due to adsorbed
proteins in the localized phase region can be written as

τφ =

∫ ∞
−∞

dx

{
Lφ2(x)− µφ(x) + λη0(x)φ(x) +

1

2
η2

0(x)φ(x) +
1

2
gφ

(
dφ(x)

dx

)2
}

(72)

For simplicity, we will restrict ourselves to the limit gφ = 0, because the integration in (72) can
then be done in a closed form. The line tension contribution τφ can be expressed in reduced
variables as

τφ =
ξηη

4
∞

8L

∫ ∞
−∞

du

{
1

2
Φ2(u) − aΦ(u) + c tanhu Φ(u) + tanh2 u Φ(u)

}
(73)

Using the solution found for b = 0 (or, equivalently, ξφ = 0), Φ(u) = a− tanh2 u− c tanh u, the
integral can be solved for general a and c. Here, we only present the solution for the symmetric
case, c = 0, which is given by

τφ =
9J3/2g

1/2
η

2L

{√
a(1− 5a/3)− (1− a)2 tanh−1(

√
a)
}

(74)

The limiting values are τφ = 0 for a = 0, since in this case no proteins are adsorbed, and

τφ = −3J3/2g
1/2
η /L for a = 1, to be compared with τ0 = 8J3/2g

1/2
η . This is the smallest

value possible, for larger values of a the line tension contribution τφ remains constant. The
adsorption of proteins thus leads to a reduction of the total line tension τ = τ0 + τφ. In
principle, the total line tension τ can take negative values for sufficiently large a if L < 3/8,
which amounts to an instability of the LE-LC interface, possibly signaling a depression of the
lipid phase transition. Of course, in this limit the approximations used in deriving (26) break
down, since we assumed L to be large and the proteins being only a small perturbation on the
pure lipid phase transition.

8. Protein Profile in the Subphase

Up to now the coupled protein-lipid system was considered as a pure two-dimensional system
on the water/air interface which is positioned at z = 0. It is possible to evaluate the influence of
a finite solubility of the proteins in the subphase on the protein distribution in the monolayer,
and, in addition, to give a more precise meaning to the protein parameters µ and L used in
(13). The vertical protein concentration profile in the subphase can be calculated as a function
of the distance z from the monolayer. For the calculation of this profile, which is denoted
by φ⊥(z), we neglect any variation in the horizontal direction. Assuming that the water is a
good solvent for the protein (and, therefore, that the aqueous protein solution is far from its
demixing curve), we can write the free energy per unit area on the surface as

γ⊥ =

∫ ∞
0

dz

{
1

2
gb
φ

(
dφ⊥(z)

dz

)2

+ Lbφ
2
⊥(z) − µbφ⊥(z)

}
+ Lsφ

2 − µsφ (75)

where φ = φ⊥(0) is the protein concentration at the surface (or, equivalently, in the monolayer).
This expression is very similar to free energy functionals studied in the context of wetting and
other surface phenomena [30]. In analogy to the parameters used in (13) and (15), gb

φ, Lb,
and µb are the protein parameters in the “bulk” subphase, and Ls and µs are the bare protein
parameters at the “surface” (or in the monolayer). The chemical potential µs measures the



N◦7 PROTEIN ADSORPTION ON LIPID MONOLAYERS 1041

free energy difference between a protein molecule in the subphase and in the monolayer, and
it contains contributions due to van der Waals interactions of the protein with its surrounding
media as well as hydrophobic contributions coming from structural changes of the protein at
the surface. It is believed that proteins unfold their hydrophobic parts when they are inside a
monolayer or even at the free air-water interface. The energy gained by such conformational
transformations can be extremely high.

The Euler-Lagrange equation for the bulk density profile takes the form

2Lbφ⊥(z)− µb = gb
φ

d2φ⊥(z)

dz2
(76)

The bulk protein concentration infinitely far from the monolayer is given from (76) by

φb ≡ φ⊥(∞) =
µb

2Lb
(77)

When the protein adsorbing on the surface is in contact with a large bulk reservoir of proteins,
the bulk concentration φb can be regarded as a fixed parameter and the chemical potential µb

acts as a Lagrange multiplier satisfying the relation µb = 2Lbφb.
The solution of (76) compatible with the requirement φ⊥(∞) = φb is given by

φ⊥(z) = (φ− φb)e−z/ξ
b
φ + φb (78)

where the correlation of the protein distribution in the subphase is ξb
φ =

√
gb
φ/2Lb and φ ≡

φ⊥(0) is the surface value. The surface free energy, which is the total free energy due to the
presence of the monolayer at z = 0, can be expressed as

∆γ⊥ = γ⊥ −
∫ ∞

0

dz
{
Lbφ

2
b − µbφb

}
(79)

For the density profile given by (78), it takes the form

∆γ⊥ = (φ − φb)2
√
Lbgb

φ/2 + Lsφ
2 − µsφ (80)

Minimizing this expression with respect to the surface protein concentration φ leads to the
value

φ =
µs + φb

√
2Lbgb

φ

2Ls +
√

2Lbgb
φ

(81)

Effectively, the presence of a finite concentration of proteins in the subphase can be modeled
by using the modified parameters

µ = µs + φb

√
2Lbgb

φ (82)

L = Ls +
√
Lbgb

φ/2 (83)

for the two-dimensional description of the protein distribution in the monolayer, given in
(13). With these effective parameters, the φ-dependent part of the surface free energy can be
rewritten (up to a constant) as ∆γ⊥ = Lφ2−µφ. For very large values of the protein adsorption
free energy µs, as observed for proteins which change their structure considerably as they
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approach the air-water interface, and a rather small reservoir of proteins in the subphase, most
of the proteins will be incorporated in the monolayer leading to a depletion in the subphase,
i.e., φb ≈ 0. In this case the total amount of protein in the monolayer is a conserved quantity
and µ then acts as a Lagrange multiplier. In the case of a large reservoir of proteins in the
subphase, conservation of protein particles is taken care of primarily by adjusting the bulk
concentration φb. In both cases, the parameter µ, which appears in (13), can be tuned by
changing the total amount of protein added to the system.

9. Surface Pressure

We discuss now how the parameters used in our calculation can be related to experimentally
measurable quantities, such as the lateral pressure Π. This will be done for the simplified cases
where there are either only proteins or only lipids at the water surface. We calculate the lateral
pressure in the limit of small coverage with proteins or lipids, leading to a modified ideal gas
law; the correction to the limiting ideal gas behavior gives information about the interactions.

In the case where no lipid is present at the water surface, one sets η = φ− 1 in (7) and the
free energy per lattice site (neglecting linear terms in the protein concentration φ) is

F(φ)/T = Kφ2 +
φ

α
log(

φ

α
) + (1− φ) log(1− φ)− (1− φ+

φ

α
) log(1− φ+

φ

α
) (84)

where α is the area ratio of the protein and the underlying lipid/vacancy lattice. K ≡ L+λ−
J − 1/2 is an effective interaction parameter. For the case where only lipids are present one
has to make the replacements K → −4(J + 1/2), φ → φL and α → 1. The thermodynamic
potential for a system covering N lattice sites is defined by

NG = NF − µTNφ+ ΠNa2 (85)

with a being the lattice constant of the underlying lattice of vacancies or lipids. Minimizing
the potential with respect to the number of occupied lattice sites N and the protein density φ
leads to

µ =
dF(φ)/T

dφ

∣∣∣∣
φ=φeq

(86)

−F(φeq)+µTφeq = Πa2 = φ2 dF(φ)/φ

dφ

∣∣∣∣
φ=φeq

= TKφ2
eq−T log(1−φeq)+T log(1−φeq+φeq/α)

(87)
Expanding the logarithm, one finds the behavior valid for small surface pressures

ΠA = T + A−1a2αT (1 + αK − 1/2α) ' T + Πa2α(1 + αK − 1/2α) (88)

where A = a2α/φeq is the surface area available per protein (or lipid if one makes the replace-
ment α = 1). The first term in (88) corresponds to the ideal gas behavior, the second term
is an enthalpic and entropic correction from which the effective interaction term K can be
deduced, if the area of a protein, a2α, and the protein-lipid area ratio α are known.

Measurements of ΠA as a function of Π for the hydrophobic polypeptide cyclosporin A in the
relevant temperature range showed positive slopes [21], indicative of an interaction parameter
K far above the critical value. The sign of the parameter λ indicates the preference for the
protein to enter dense (λ < 0) or dilute lipid regions (λ > 0); experiments indicate that this
parameter is close to zero, so that L is larger than zero. Neglecting higher-order terms in φ in
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the free energy expression (13) thus seems justified, assuming that cyclosporin A is a typical
protein.

For fitting experimental data to the above expression it is important to note that the inter-
action parameters J , L, and λ as defined by (9-11) depend on the temperature.

10. Discussion

We studied a simple model which explains possible aggregation of proteins or other large macro-
molecules at the boundary between coexisting liquid condensed and liquid expanded domains
of lipids. Such a preferential adsorption of proteins has been observed experimentally [22].
Based on the general phase diagram, shown in Figure 2, obtained in the limit of proteins with
large areas compared with lipids (α →∞), we predict a transition from protein distributions
localized at the LE/LC boundary to semi-localized and delocalized distributions, for which
the protein concentrations remain non-zero in the coexisting lipid phases. Such a transition
can be observed by either changing the total amount of adsorbed proteins (corresponding to a
change in a), or by changing the temperature (influencing the parameter c). We also calculated
various experimentally accessible quantities, such as the protein excess Γ and the LE-LC line
tension τ . The line tension is predicted to decrease upon adsorption of proteins.

The mechanism leading to the preferential adsorption of proteins at the one-dimensional
boundary line between LE and LC phases is due to a competition of the different contributions
to the entropy of mixing of the three components: proteins, lipids, and vacancies. We recall that
vacancies are artificially introduced just to allow the Langmuir monolayer to be compressible.
Our model assumes that the protein actually penetrates into the monolayer. A partial intrusion
is also possible and can be described by the model, if the proteins take up at least some
area at the air-water interface. Other mechanisms based on long-ranged interactions such as
electrostatic forces are also important and could lead to similar results.

The affinity of the proteins to the LE/LC boundary can also originate from other enthalpic
reasons: If the protein itself has amphiphilic properties with respect to the density of the
surrounding medium, i.e., if one moiety of the protein favors a denser environment while the
other moiety favors a more dilute environment, it would be driven into the interface between
the LE and LC phases. However, such an amphiphilic property of the proteins seems to be
unlikely, and, if present, too weak to produce the effects observed in experiments.

Finally, we mention that similar effects should be observable for freely suspended multicom-
ponent membranes which show phase separation into coexisting domains with different lipid
compositions [2, 25, 26]. Here, integral membrane proteins should be either dissolved in one of
the domains, depending on the enthalpic preference, or, if this preference is very weak, enriched
and localized at the one-dimensional boundary line between the domains.
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Appendix A

Solution of Differential Equation

Here we derive the solution of the differential equation

Φ(u)− h(u) = b2
d2Φ(u)

du2
(A.1)

with the inhomogeneous term h(u) given by

h(u) ≡ a − tanh2 u− c tanhu (A.2)

Denoting by ΦA and ΦB two independent solutions of the homogeneous differential equation
Φ(u) = b2Φ′′(u), the particular solution of the inhomogeneous differential equation is formally
given by

ΦP(u) = − 1

b2

∫ u

0

dw h(w)
ΦA(w)ΦB(u)−ΦA(u)ΦB(w)

ΦA(w)Φ′B(w)−Φ′A(w)ΦB(w)
(A.3)

Choosing ΦA(u) = A sinh(u/b), ΦB(u) = B cosh(u/b), and defining the particular solution as

ΦP(u) = a− 1

b
Φ1(u)− c

b
Φ2(u) (A.4)

the integrals to be solved are

Φ1(u) ≡
∫ u

0

dw tanh2(w) sinh

(
w − u
b

)
(A.5)

Φ2(u) ≡
∫ u

0

dw tanh(w) sinh

(
w − u
b

)
(A.6)

The integration is straightforward and yields

Φ1(u) = b− b cosh(u/b) + sinh(u/b)

+
1

4b
e−u/b

(
Ψ

[
1

2
+

1

4b

]
−Ψ

[
1

4b

])
+

1

4b
eu/b

(
Ψ

[
1

2
− 1

4b

]
−Ψ

[
− 1

4b

])
+2bF

[
2;− 1

2b
; 1− 1

2b
;−e2u

]
+ 2bF

[
2;

1

2b
; 1 +

1

2b
;−e2u

]
−2bF

[
1;− 1

2b
; 1− 1

2b
;−e2u

]
− 2bF

[
1;

1

2b
; 1 +

1

2b
;−e2u

]
(A.7)

Φ2(u) = b− b cosh(u/b)

+
1

4
e−u/b

(
Ψ

[
1

2
+

1

4b

]
−Ψ

[
1

4b

])
− 1

4
eu/b

(
Ψ

[
1

2
− 1

4b

]
−Ψ

[
− 1

4b

])
−bF

[
1;− 1

2b
; 1− 1

2b
;−e2u

]
− bF

[
1;

1

2b
; 1 +

1

2b
;−e2u

]
(A.8)

where Ψ[z] denotes the digram function and F [α; β; γ; z] denotes the hypergeometric function
[31]. These special functions are defined by

Ψ[z] =
d[log(Γ[z])]

dz
(A.9)
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with the gamma function defined as usual as

Γ[z] =

∫ ∞
0

tz−1e−tdz (A.10)

and

F [α; β; γ; z] =
Γ[γ]

Γ[β]Γ[γ − β]

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−αdt (A.11)

For the special case b = 1, the above expressions simplify and can be expressed as

Φ1(u) = 2− 2 cosh(u) + 2 tan−1[tanh(u/2)] sinh(u) (A.12)

Φ2(u) = sinh(u)− 2 tan−1[tanh(u/2)] cosh(u) (A.13)

The general solution of the differential equation is given by

Φ(u) = A sinh(u/b) +B cosh(u/b) + a− Φ1(u)/b− c Φ2(u)/b (A.14)

where the constants A and B are determined from the boundary conditions (see text).

Appendix B

Low Protein Concentration Expansion

Here we discuss the validity of the approximations leading from the Euler-Lagrange equations
(21) and (22) to the differential equation (26). Namely, the use of the solution η0(x) in (22)
which was obtained by neglecting the two terms λφ and ηφ in (21). The solution η0(x) of
the simplified differential equation obtained by setting φ = 0 in (21) can be regarded as a
zeroth-order approximation to the full solution in an expansion in powers of φ(x). The validity
of this approximation can be estimated by reconsidering the differential equation (21) and
substituting for φ the solution φ(x) which was found initially by neglecting the coupling terms
between η and φ in (21).

Consider first the second coupling ηφ between φ and η in (21). This term is unimportant
as long as φ � J . This is a reasonable assumption given that the protein concentration is
small and one is not too close to the critical point of the liquid-expanded liquid-condensed
lipid transition. This term will not be considered any further.

In order to estimate the effect of the other term which was neglected, λφ, we define

η(x) ≡ η0(x) + δη(x) (B.1)

with η0(x) given by (23) and η(x) denoting the exact solution of (21). Since η0(x) solves
equation (21) without the terms proportional to φ, the differential equation for δη(x) neglecting
terms of O(δη2, δηφ) is given by

δη(x)(−2J + η2
0(x)) + φ(x)(λ + η0(x)) = gηδη

′′(x) (B.2)

From the differential equation (21), one sees that the correction we are estimating here is
important only for

λφ� |− 2Jη0 + η3
0/3| ' | − 2Jη0| (B.3)

The last step follows since η0(x) has to be much smaller than unity for the inequality to hold.
This can only be true in the close vicinity to the interface between dense and dilute lipid
regions, i.e., for x ≈ 0. Consequently, the correction δη(x) is only important around x = 0.
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Then, the terms proportional to η0(x) can be neglected and the differential equation (B.2)
simplifies to

− 2Jδη(x) + λφ(x) = gηδη
′′(x) (B.4)

Replacing φ(x) by its value at the origin, φ(0), the solution of (B.4) is formally written as

δη(x) =
λφ(0)

2J
+ C sin(

√
2x/ξη) +D cos(

√
2x/ξη) (B.5)

In order for the correction δη(x) to vanish outside the region of interest centered around x ≈ 0,
both coefficients C and D have to be of the order as the constant λφ(0)/2J . The magnitude
of the correction is thus given by

δη ' λφ(0)

J
∼ cφ(0)

η∞
(B.6)

Note that c is a parameter of order unity (or smaller) in the localized protein region (see
Fig. 2). Thus, the correction δη enters in the calculation of the protein distribution φ(x) as a
higher order contribution in terms of the ratio φ(0)/η∞, which is a small parameter. Neglecting
this correction is a controlled approximation corresponding to keeping only the first order in
a general expansion in terms of φ(0)/η∞, the ratio of the protein concentration and the lipid
concentration difference.
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[30] Brézin E., Halperin B.I. and Leibler S., J. Phys. France 44 (1983) 775.
[31] Handbook of Mathematical Functions, Chapter 15, M. Abramowitz and I.A. Stegun Eds.

(Dover, New York, 1972).


