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Abstract. We investigate unilamellar membranes and vesicles composed of an
A/B mix-

ture of partially miscible amphiphiles. Assuming
a

simple bilinear coupling between relative

composition and local curvature, and in the strong segregation limit of the A/B mixture, we

show for unilamellar open-shape membranes that the competition between sudace tension and

curvature results in a phase with a selected periodicity (modulated phase) both in the shape and

in the A/B composition. The limits of large and small surface tension are discussed separately.
These findings extend previous results obtained close to the A/B critical point (shallow quench).
For the same limit of strong segregation, we also investigate the coupling between the separa-
tion of the system into A and B domains, and the overall shape of closed-shape vesicles. For

cylindrical vesicles of fixed overall
area

(or equivalently vesicles embedded in a
two-dimensional

space), equilibrium shapes and phase diagrams are obtained. We also consider the effect of an

added pressure difference (osmotic pressure)
across the vesicle. The results are extended to axial

symmetric vesicles embedded in
a

three-dimendional space.

1. Introduction.

Physics of supermolecular structures in mesoscopic scales has been an active area of theoretical

and experimental research in recent years [1-3]. Membranes and vesicles
are

well-known exam-

ples of self-assembled supermolecular structures of amphiphilic molecules, which are formed

when the amphiphilic molecules are dissolved in water. The membrane is composed of a bilayer
of amphiphilic molecules having their head-group pointing towards the water, and the vesicle

is just a closed-form object composed of such a
bilayer membrane. Since Helfrich's pioneering

work on the membrane shape deformation [4], a large number of theoretical works have been

published [1-3, 5-9], most of which is focused on
shape deformations of structureless membranes

and vesicles.
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However, it has recently been recognized that a membrane shape deformation can also be

induced by a change in the internal degrees of freedom within the membrane. For example,

an
order-disorder transition of the hydrocarbon chain conformation,

or an inplane phase sepa-

ration of twc-component amphiphilic mixtures [10-20]. Shape deformations of twc-component
membranes coupled to an inplane phase separation were investigated for the weak-segregation

limit, where the two amphiphiles are only weakly immiscible with each other [12], and in the

strong-segregation limit, where the two amphiphiles
are

strongly immiscible and the mem-

brane is divided into domains separated by sharp domain walls [13]. Similar coupling was used

to study twc-component closed-form vesicles in both strong and weak segregation limits [13,
14]. These works are closely related to some other recent works [16-19]. Seifert investigated
shape deformations of a twc-component membrane in its one-phase region (above the critical

temperature) and showed that the system can be mapped to a one-component membrane with

renormalized bending elasticity moduli [16]. Lipowsky discussed the budding of a membrane

in connection with a phase separation within the membrane and showed that such
a

phase sep-

aration
can cause

the budding [Iii, which are extended by Jfilicher and Lipowsky to a
closed

form vesicle [18]. Very recently, Onuki explored the dynamics of twc-component membranes

and vesicles and proposed a dynamical model of a phase separation process on a membrane

coupled to its shape deformation [19].
In this paper, we present a

detailed study of shape deformations of two-component unil-

amellar membranes as well as closed-form vesicles undergoing
an

inplane phase separation and

concentrating on the strong segregation limit. The other limit of weak segregation, will be

presented in detail in the accompanying paper [20]. Our paper is organized as follows. In

the next section,
we

study shape deformations of a unilamellar membrane. In section 3, we

consider
a

single cylindrical vesicle of constant total membrane area, which can effectively be

treated as a
one-dimensional vesicle embedded in

a
twc-dimensional space, and calculate the

phase diagram of the shape deformations. The constraint
on

the membrane area turns out to

have an important effect on closed-shaped vesicles in comparison with the case of the open
membranes discussed in section 2. In section 4, the formalism is extended to twc-dimensional

uniaxial vesicles embedded in
a

three-dimensional space, and
our conclusions

are presented in

section 5.

2 TJnflamellar membranes.

In this section, we investigate undulations of an almost planar unilamellar membrane. Let us

consider
a

model system of a single membrane (a single bilayer) immersed in
a solution with

an additional "internal" degree of freedom: the membrane is composed of two different species
which have in general

a
miscibility curve

for inplane phase separation. Possible examples

are mixtures of surfactants (anionic, non-ionic or
cationic), mixtures of phospholipids like

phosphatidyl choline (PC) and phosphatidyl glycerol (PG),
or mixtures of surfactant/lipids

as

are commonly used in reconstituted membranes [10].
The free energy of this system [12] is composed of three parts: F

=
Fi + F2 + F3> where

Fi is the deformation free energy associated with shape changes, F2 is the free energy of

mixing associated with the inplane degrees of freedom, and F3 is a coupling term (found
on

phenomenological grounds) which couples the local A/B composition with the local curvature.

Let us
first discuss the shape free energy- Since we assume

that the out-of-plane fluctuations

about
a mean flat plane are relatively of small magnitude and rather gradual in their

wave-

length,
we can use the Monge representation to parametrize the surface by its height function

above
a

reference plane,
z =

h(z,y). The area element and curvature are expressed by the
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lowest terms in a gradient expansion of h. We consider a membrane or rather
an

interface

whose total
area can be changed since the interface composed of amphiphiles is in contact with

an amphiphile reservoir. The relevant energy terms in this case are the interfacial and the

out-of-plan bending energies:

Fi
=

)a /(T7h)~ dz dy + )~ (T7~h)~
dz dy (2.1)

where
a is the surface tension and ~ is the bending modulus. The second term expresses the sc-

called mean curvature elasticity [4]. More generally,
a

Gaussian curvature and a spontaneous

curvature should also be included. However, for the almost planar unilamellar membrane

under consideration, the Gaussian curvature gives only
a constant contribution irrespective

of the shape deformation according to the Gauss-Bonnet Theorem [21] and the spontaneous

curvature contribution is written as a total derivative of some function, which
can be re-

expressed
as

boundary terms using the Gauss'Theorem and is expected to be negligible for

the planar membrane case.

For the inplane degree of freedom, we
choose

a
scalar field which is, for example, the relative

composition of the two amphiphiles, i7(z, y). We do not take into account the possibility of

having two different order parameters, i7i and 172, for the "up" and "down" layers of the

membrane. This type of partitioning has been investigated in detail by Safran and cc-workers

and offers
a

possible explanation of spontaneous vesiculation seen in experiments of surfactant

mixtures [22]. In our case, the free energy of mixing can be written in terms of the scalar order

parameter i7.

F2
=

/ )(17i2)~
+
(

l?~i2)~ + f(i2) Pi2j dz dY (2.2)

where b and b* are
the "stillness" coefficients in this gradient expansion and represent the

resistance to local composition fluctuations of i?. The lateral (homogeneous) free energy of

mixing is f(i7) and the chemical potential coupled to the A/B composition is p.
The last term in the free energy is the coupling term F3. On symmetry grounds, we write

down the coupling term between i7 and even powers of the gradient of h:

F3
=

A li~(z,y)T7~h(z,y)dzdy + A* li~(z,y)T7~h(z,y)dzdy (2.3)

Where A and A* are the composition shape coupling constants. Since the results do not

depend in
a

qualitative way on the higher-order terms in equations (2.2) and (2.3)
we

will set

b*
=

0 and A*
=

0 in the following. The coupling terms introduced in equation (2.3) correspond
to asymmetric membranes, since convex and

concave regions of the membrane will prefer, say,
high and low values of the relative concentration i~. This is possible if the membrane is

a
single

monolayer at the interface of two different liquids. Another possibility is an induced asymmetry
between the "up" and "down" layers of the bilayer-membrane due to a

composition difference

between these two layers.
Combining equations (2.1-2.3) defines

our total free energy F. This model has been studied

in the past close to a critical point by Leibler and Andelman [12]. In the present work we

would like to extend the treatment to deep temperature quenches (far away from the critical

region). Since the free energy functional F depends at most only quadratically in the height
profile h(z, y), we can

write it in Fourier space in terms of the q-modes of i7 and h: i7q and hq,
respectively

Fi + F3
=

(a + ~q~)q~hq h-q + Aq~i7q h-q dq (2.4)
2
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The degree of freedom (hq)
can be traced out by performing

a
Gaussian integral

fDhq exp(-F/kBT). Equivalently, we can find the same result (within
mean field approx-

imation) when the variation of F with respect to hq is zero, bF/bhq
=

0. This condition yields

a
relation between i7q and hq

hq =

~
~i7q (2.5)

a + ~q

Inserting hq from equation (2.5) into F we obtain an effective free energy

~
/ ~

~ ~~~ ~ i~
a

~q~
~~~

~
~~~

+
/

(f1i2) Pi2) dr l~'~~

The coefficient of the i7qi7-q term has
a

q-independent contribution which merely shifts the

critical temperature, the usual stillness q~ term and a third piece which goes to zero in the

limit of large q. For low temperatures we are
interested in the large q limit of the kernel in

equation (2.6), Tq

~~ i~
a

~q~
~~'~~

Close to the lateral critical point, the small q-mode expansion can be justified
as was

investi-

gated in the previous work [12]. Since here we will concentrate on sharp domain walls (for the

A/B concentration profile) we are interested in the competition arising from the fTqi7qi7-qdq
term and the wall energy 7 associated with the change in the sharp change in A/B concentra-

tion. In position space the former can be written as:

FLR
=

/
TIT Y)i7iz)i7(Y) dY

f
= (~

~~~
(2.8b)

a

where, for simplicity,
we

will consider in the remainder section,
a

two-dimensional system with

a
one-dimensional A/B concentration profile and interface. Hence, T(z) is the exponentially

decaying correlation function along the interface.

We would like to show that because of the coupling between curvature and composition,
equation (2.8),

a
periodic arrangement of n

domains of A and n domains of B has
a

lower

free energy than just
a

fully segregated A/B system. If the domain size (of A and B) is D,

then the energy cost for each domain wall in the system is 7. On the other hand, there is an

energy gain resulting from equation (2.8). For a periodic arrangement of A and B domains,
the integral in equation (2.8) can be performed exactly resulting in the following free energy

density fLR
"

FLR/2nD,

fLR
"

j
(e~~ + d I) ~j e~~/~ sinh tanh
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and

Q %

~~
(Ai7)~ (2.9)

where d e D If. The first and second terms in equation (2.9) are the intra-domain and inter-
domain contributions, respectively. The total free energy (per unit periodicity on the interface)

is the sum of fLR and the domain wall energy 7 ID

f(D)
=

)
+ fLR (2.10)

~fl
~

#
~
~

0.o D* I-o 2.o

D

Fig. 1. The free energy per unit length f(D)
as a

function of the periodicity D. The competition
between the domain wall energy and fLR results in

a minimum for D
=

D*. The parameters chosen

are 7 "
1-o, Q

=
I-o and (

=
o.1.

In figure I, f(D) is plotted for the following values of the parameters 7 "
1.0, Q

=
1.0 and

f
=

0.I. Indeed, one finds that the fianction f(D) does have
a single minimum at D

=
0.251.

By taking the variation of f(D) with respect to D, it is possible to see that f(D) always
has a minimum at D

=
D* satisfying

i
~~ ~ ~~~ ~ ~ ~~ ~ ~~ "~~ ~ ~ ~"~ ~ cos/d/2) ~

~~~ ~~~~ ~~'~~~

Two cases can be distinguished: d « I and d » I. In the former case, the correlation length f
is larger than the domain size D and the inter-domain contribution to fLR is important. The
optimal domain size D* is obtained by expanding equation (2.ll) to third order in d

~~ ~~~~~~~ (2.12)

Since d is
assume to be small, a consistency condition is that 7 IQ « I. If only the intra-domain

contribution is taken in this case, the scaling law for D* is different: D*
=

f(7/Q)~/~ instead
of the more accurate result, equation (2.12).
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In the other case of d » I, the correlation length f is small compared to the domain size D.

A solution of equation (2.ll) indicates that for this limit 7/Q cr I yielding an optimal domain

size D*

D*
=

-f log Ii )1 (2.13)

Again, a consistency check verifies that in this case
D*/f » I as long

as
the ratio 7/2Q

approaches one
from below. Equation (2. II)

can be investigated numerically for any value of

d. An optimal finite periodicity D* minimizes the free energy f(D) for any value of D/f in

between the two limiting behaviors presented above.

Since a
periodic domain arrangement is chosen by the system due to the coupling between

curvature and composition, it is also of interest to calculate how the shape profile h(z) follows

the composition profile i7(z). We will consider only the symmetric case of A and B domains

each of size D. Although the composition profile is always very sharp at low temperatures, the

"sharpness" of the shape profile will depend
on

the correlation length f. Taking the inverse

Fourier transform of equation (2.5)
we

obtain that the shape profile h(z) is proportional to the

convolution between the kernel T(z) and the composition profile i7(z):

h(z)
=

-)f /
e-'~-Y'/~i~(y) dy (2.14)

Taking i7(z)
as a

periodic function alternating between two plateaus (i7A # i'o for 2n <

LID < 2n +1 and i7B " -i'o for 2n +1 < LID < 2n + 2), h(z)
can be calculated from

equation (2.14)

~~~~~ ~~ ~
l +

~Dli
~~~~

+ ~~~ ~~~) (2.Isa)

where

A
~

A
(2 lsb)Ah e -~f A§~ "

-PAi'

and Ai7
= i7A i'B "

2i7o.

As function of the size of the correlation length f vs. the domain size D, the change in the

shape profile h(z) will be either gradual
or

abrupt. For d
=

D/f < I, the shape does not

follow the steps of the concentration profile. Rather,
a

smoothing effect here causes a
parabolic

shape profile extending all over the domain size D

hA(z)
=

$z(D z) (2.16)
f

Here the variation in the height profile is not Ah
as

in the case d » I below, but rather
a

much smaller quantity Ahd~/8 since d « I in this limit.

In the other case of d
=

D/f » I, it is mainly the intra-domain contribution that counts.

Here the variation in h, Ah occurs on
length scales off which is much smaller than the

domain side D. Hence in this case, the shape follows quite closely the concentration profile.
It alternates between two plateau values hA and hB and the variation is limited to a

region of

thickness f around the domain wall.

hA(z)
=

Ah (I e~~/f e(~~~)/f) (2.17)
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(a) (b)

m

fi
X

~
~ # ~j Q

~

~ ~
~

« «e e
o-o o.5 1-o o-o o.5 1-o

~ z

Fig. 2. The shape profile h(~) in an A domain for the case
(a) d « 1 and the

case (b) d » 1,
respectively. Parameters used

are
Ah

=
1.0, D

=
1.o and (a) f

=
10.0 and (b) f

=
0.01, respectively.

The membrane shape is parabolic in case
(a), while the membrane shape is almost flat except for

sudden changes near the domain walls in case
(b).

The two different limits
can be understood physically in terms of the competition between

the surface tension and curvature energies. Example of the membrane shape calculated from

equation (2.15) for these two limits d « I and d » I are
shown in figures 2a and b,

respectively. In the first
case

of large f
=

/fi, the dominant energy is the curvature one.

Here, the line length is not minimized but rather the system follows the curvature in each of

the domains. In the other case, f is small (compared with the domain size D). So here the

surface tension is large and the system prefers to minimize the total line length by having a

large portion of the domain which is flat and
a steep height variation within an interval of size

f around the domain wall.

3. Cylindrical vesicles and vesicles in 2d space.

So far
we

have concentrated on
almost planar membranes surrounded by a reservoir of

am-

phiphilic molecules. In this section we turn our attention to closed-form vesicles and consider

first vesicles with a cylindrical symmetry. The principal axis of the cylinder is assumed to

extend to infinity (no end-caps) so the problem can be reduced to solving a twc-dimensional

(2d) problem of
a

closed one-dimensional (Id) contour defining the vesicle itself, enclosing an

inner area of fluid. For clarity, we will refer in this section to a
Id vesicle embedded in a 2d

space instead of talking of the cylindrical geometry. In addition, we will make the assumption
that the total perimeter length of the vesicle is fixed, I-e-, the amphiphilic layer which forms

the vesicle is assumed to be
an

incompressible fluid layer. This means that not only the total

perimeter length of the vesicle is constant but also the length of every line element on the

perimeter is constant during the shape deformation, although the final results are the same

whether we adopt the local incompressibility or the global incompressibility [23]. Actually,
vesicles are incompressible to a

large degree; namely, their area per amphiphile is fixed. In

addition, processes such
as

exchanges of matter with monomers in solution, fission and fusion

which change the overall size of the vesicle can be ignored if
we consider only

a
single vesicle

in thermodynamic equilibrium. Hence, our
assumption of incompressibility of the line element

on the perimeter is reasonable. Finally,
we

consider only simply connected vesicle shapes of
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genus zero. In 2d this means that we look only at simply connected closed curves describing
the vesicle perimeter.

3. I GENERAL FORMALISM. For contours (vesicles) of fixed total length it is convenient to

introduce a natural coordinate s, which is defined as the distance along the contour (known
also as the chemical length) from a specified reference point on the contour (Fig. 3a). Let the

fized total length of the vesicle be L, then the parameter s varies from 0 to L. Due to the fact

that the vesicle has always a closed-shape form,
a periodic boundary condition is required, I.e.,

r(L)
=

r(0), where r(s) a [z(s), y(s)] is the position vector of a point on the contour specified
by s.

y

«In

~/n

I(£) ~~~

A B

s
r(s) in

L/2n

3~

a) b)

Fig. 3. a) A schematic illustration of the model id membrane and parameters. b) An illustration

of the closure condition for
a

vesicle in 2d space with an
n-fold symmetry.

The total free energy functional F discussed already in the previous section for the nearly
flat membrane can now be expressed in terms of the natural parameter s

F=Fi+F2+F3+AP.S,

and
~

Fi
=

/
[a + j~c~]ds,

o

L

F3
=

A i7(s)c(s) ds. (3.I)

where Fi describes the shape contribution, F2 is the inplane free energy of mixing, F3 is the

coupling term and the last term of F is
a pressure term. The first three terms have been
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introduced in the previous section and
are

expressed here in terms of c(s), the local curvature

of the vesicle at point
s as

defined below. The fourth term is
a new contribution specific to

closed bodies. It is due to a possible pressure difference, AP across the vesicle, AP % Po Pi,
where Po fl) is the pressure of the outer (inner) region, coupled to the inner area S enclosed by
the vesicle. Since the a-term in Fi [Eq. (3,I) is the surface tension term coupled to the over

perimeter length, it
can

be omitted because the total perimeter length of the vesicle is taken

to be constant. It will contribute only
a constant to the free energy irrespective of the vesicle

shape. In equation (3.I),
we did not include the Gaussian curvature and the spontaneous

curvature. In the present cylindrical vesicle case with
a constant membrane area, the Gaussian

curvature vanishes and the spontaneous curvature drops exactly since f) c(s)ds
=

2~.

Denoting the unit tangent vector of the contour at the point s (Fig. 3a) as

I(~)
"

() ~
l~°~i(~)>Silli(~)l (3'2)

where I(s) is the angle between I(s) and the z-axis. The curvature c(s) and the total enclosed

area
S can be expressed in terms of s:

C16) = (I x
()~

=

i(6) (3.3)

and
L L

S
=

/
(r x I)~ ds

= j
/

[z(s) sin I(s) y(s)
cos

I(s)]ds (3A)
2

o o

The dot operator in equation (3.3) means d/ds and (. )~ means the z-component, where the

z-axis is perpendicular to the plane containing the vesicle. Using these relations, equation (3,I)

can be rewritten as:
~

Fi
=

)~ / i~(s) ds

o

and

F3
=

A /~ i7(s)I(s) ds (3.5)
o

Moreover, since
we

limit
our treatment to the strong segregation case

of the A/B mixture,
the expression for F2> the free energy of inplane mixing, can be simplified

as
well. In this

limit, the A/B mixture separates laterally into A-rich domains with i7(s)
= i7A and B-rich

domains with i7(s)
= i7B bounded by sharp domain walls. Without loss of generality,

we
take

the composition of the A and B domains to be i7A = i'o and i7B = -i'o> respectively, since

the free energy F2 can be expressed
as a symmetric form in the order parameter, i7 [24]. In

addition, let
us

consider the simplified case where the vesicle is divided into n domains of the A

species and
n

domains of the B species. In such
a

situation, apart from
an

irrelevant constant

contribution, F2 is merely

F2
=

2n7 (3.6)

where 7 is, as was introduced in the preceding section, the energy cost to produce one domain

wall between
an

A and
a B domain. Note that in 2d the sharp domain wall between A and B

domain is a point defect. Unlike the surface tension
a

in equation (3.I) which is not relevant

for vesicles of constant perimeter, 7 plays an important role.

JOURNAL DE PHYSIQUE II T 1 N'7 JULY 1991 4n



980 JOURNAL DE PHYSIQUE II N°7

The free energy F given above has to be supplemented by the closure condition of the vesicle

shape. From the definition of the unit tangent vector, equation (3.2), we find that

r(6)
=

r(°) + /~ i(6')d6~ 13.7)

Therefore, the closure condition can
be written as:

r(L)
=

r(0) and I(L)
=

R(0) + 2~n (3.8)

As
our

shape equation (derived below from the free energy functional) is
a

second order dif-

ferential equation, the closure condition requires continuity in r(s) and its first derivative

+(s)
=

dr(s) Ids [25].
The equilibrium shape of the vesicle and the equilibrium amphiphile composition profile on

the vesicle are obtained by minimizing the free energy functional F with respect to I(s) and the

positions of 2n domain walls: si, s2,
,

s2n In the strong segregation limit, the concentration

of the amphiphile in the A and B domains is set to be i7o and -i7o> respectively, and is

independent of the vesicle shape. In addition, the ratio between the total line length of the A

and B domains, CA, is also
a constant. From equations (3,I) and (3.4-3.6), the minimization

equations lead to: $
"

0 (I
" 11 2, 211)

1

and

) = [z(6) - )z(L)j
OSi16) + [Y(s) - )YIL)j Siniis)

13.9)

and @(s) should be garded as a set of -functions located at very A/B domain wall since
the domain wall width is always assumed to be the smallest ength

in
the problem.

equation (3.9), we used the assumption that the
vesicle

is composed of
a

locally
incompressible

fluid layer
of amphiphilic molecules, which means that the perimeter ength s is an

parameter of the vesicle shape. Equation (3.9)
hould

be supplemented by the closure condition

equation (3.8). One
way of doing this is to

introduce

equation (3.9) in ccord with the closure
condition, equation (3.8).

Given the
positions of the A/B domain

walls,
we

can
calculate the esicle

shape
which

minimizes the free energy
F. For

simplicity,
we a metrical of n A-

domains
(i7 =

i7o)
of length

LA/n

z(L/2)
=

0 and y(L/2)
=

arbitrary

I(0)
=

0 and I(L/2)
= ~

(3.10)

where we choose the point s =
0 on an axis of mirror symmetry [26] and took the z-direction

to be parallel to the tangent vector I(0). Therefore, the system has
a

nfirror symmetry with

respect to the y-axis [27]. Such a closure condition, equation (3.10), introduces
an

additional

term of the form q~[z(L/2) z(0)] into F, where q~ is a Lagrange multiplier. As is seen from

equation (3.10), there is no constraint for y(L/2) because of the mirror symmetry, and
no

other
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Lagrange multiplier for y(L/2) is needed. Using equations (3.2) and (3.7), equation (3.9) is

rewritten within each domain as:

ds
(3 Ii)~j(s) + qz sin I(s) AP ~ "

°

The amount of the discontinuity in I entering at the I-th domain wall, hi;,
can

be obtained

by integrating equation (3.ll) including the A@(s) term within
a

small
s

interval around the

I-th domain wall:

Aij
=

(-11'+~ ~~'°~
e

(-1)~+~Ai (3.12)
~

where the domain walls
are

numbered sequentially as I
=

1, 2, 3,.
,

2n and
we use the con-

vention that the zeroth domain (containing the s =
0 point) is an A-domain. Although the

curvature changes discontinuously at every domain wall, 9(s) itself is continuous and the vesicle

shape is still smooth at the domain wall.

The vesicle shape is obtained by adjusting So + I(0) and q~ in such a way that the solution

of the set of equations (3.ll) and (3.12) satisfies the closure condition equation (3.10). Such
a

solution can be obtained analytically for the special case of no imposed pressure difference, AP

=
0, and is detailed in the next section. For a

general AP # 0 we
have to rely on a numerical

calculation.

Finally, we would like to remark about the relation between our shape equation, equa-

tion (3.9), and shape equations derived by others [9, 19]. In fact, our shape equation resembles

that of Seifert [9], while it looks differently than the
one

derived by Onuki [19]. Such differences

originate from different definitions of the Lagrange multipliers which
are

related to the shape
constraints. Although the Lagrange multipliers add extra terms to the shape equation, some

of them cancel each other, resulting in the
same final form as our

equation (3.9). In fact, unlike

what is stated in reference [19], it can be shown precisely that our shape equation and the one

derived in reference [19] are equivalent, if the Lagrange multiplier terms are explicitly included

in equation (3.9).

3.2 VESICLE SHAPES WITHOUT IMPOSED PRESSURE DIFFERENCE. When there is no im-

posed pressure difference, AP
=

0, equation (3. Ii) reduces to the well-known pendulum (Sine-
Gordon) equation:

~i(s) + q~ sin I(s)
=

0 (3.13)

We separate the discussion about the solution of equation (3.13) into two cases: n =
I and

n > 2.

The
n > 2 case: in this

case one finds that the Lagrange multiplier q~ vanishes for any n > 2.

As is shown in figure 3b, the vesicle shape has a mirror symmetry with respect to the line in.
The closure condition is satisfied simply by guaranteeing I(L/2n)

=
~/n. No constraint on

z(L/2n) is required and q~ can
be dropped. Using equation (3.12) we find

I(s) e So +
~

~

~~'~~
hi (3.14)

in the I-th domain. The vesicle is composed of consecutive circular arcs with the curvature

changing alternatively between two values, So and So + hi. Note that the elastic energy is

distributed uniformly on the vesicle in this case. This can be confirmed by verifying that I(s) +

(A/~)i7(s) e const. everywhere
on

the vesicle. Integrating equation (3.14) and substituting
the result into equation (3.10), So is given by

So
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where LA and LB are
the total lengths of the A and B domains, respectively, and LA + LB

=
L.

In figure 4, we show vesicle shapes for different numbers of domains: n =
2, 3 and 4 obtained for

the case with equal volume fractions of the A and B species, I-e-, cA + LA/L
=

LA/(LA+LB)
"

1/2. The other parameters used are L
= Jc = i7o =

1.0 and A
=

10.0 [See Sect. 3.4 below].
The vesicle shape is composed of consecutive circular arcs of alternating curvatures and the

different segments are connected smoothly (no jump of the slope) at the boundary points. It

is also interesting to note that the bi-concave shape for the n =
2 case

somewhat resembles

that of
a

red blood cell.

The n =
I case:

this is a
special case of a vesicle that is fully phase separated into one

single
domain of A and of B each. In this case, the solution of equation (3.13)

can
be expressed by

Jacobi elliptic functions (See Appendix A). The resulting vesicle shape is shown in figure 5,

where the parameters are the same as those in figure 4. Each of the A and B domains is no

longer an arc
of constant curvature.

(a) (b) iC)

,- -,

1' "

I
' ,'

',_
-,

I
'

Fig. 4. Vesicle shapes for n =
2, 3 and 4 with symmetric amphiphile composition, cA "

o.5 under

no imposed pressure difference, AP
=

o. The parameters are L
= ~ = ~ao "

I-o and A
=

lo-o- Solid

and broken curves show A-domains (~aA = ~ao) and B-domains (~aB "
-i~o), respectively. For all

n

values the vesicle shape is composed of consecutive circular arcs.

AP=0

Fig. 5. Vesicle shape for n=1case. The parameters are
the

same as those used in figure 4. The

vesicle shape is not composed of circular
arcs.
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The above discussion for vesicle shapes can
be extended for any volume fraction of the A

and B domains and not only for the case with equal volume fractions of the two species. In

figure fi, we show vesicle shapes for various values of cA> the A/B ratio, while keeping all other

parameters as those used in figure 4. As apparent from figure 6 and in accord with our general

discussion, for any value of cA, the vesicle is composed of consecutive arcs
(with constant

curvature) for n > 2.

cA n=I n=2 n=3

,-~,,

"
" / ~

0.I '
j I',

/ I
',--~ ', ,'

,-,

-_/~,
0.3

~ ~
~,-~--,' l'

,-,

o-I ~~

~~

'~ ~

~~

) fi i~

Fig. 6. Same as figures 4 and 5 but for various values of the composition. Vesicle shapes are also

expressed by consecutive circular arcs for n > 2. For
n =

1, the vesicle shapes cannot be calculated

for cA < o.3 as is explained in Appendix A.

In order to determine the most stable shape configuration of the vesicle under the assumption

of an
n-fold symmetry, one has to evaluate the free energy F for each of the shapes. Using

equations (3.5), (3.14) and (3.15),
we

obtain for n > 2

Fi
=

2~ (~~ + (Ai)~cA(I
CA))

and

F3
=

2Ai~o (~(2cA 1) AicA(I
cA)j (3.16)
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(a) (b)

A
=

i-o A
=

lo-o

.
n=1 .

n=1

a
n>2

a
n>2

# #

Mi e
CQ k~ /

C
m

/
+ ~ '

Q I I
~ /

/
# /

e # W

~
e /

/

/~
fl

/

Z~
,'

/

# #
I'

ki e ~'

~ kD

o-o o-S i-o o-o o.5 1-o

cA
cA

Fig. 7. Comparison of the free energy Fi +F3 between
n =

1 and n > 2 cases for various amphiphile
compositions. The parameters used are A

=
I-o in (a), and A =10.o in (b). In both cases, L

= ~ =

~ao =
1.0 and AP

=
0. For n > 2, analytical expressions for Fi> F2 and F3

are given in equations (3.6)
and (3.16). For

n =
1 we rely on a

numerical solution. Vesicle shape for
n =1 and cA < o.3 cannot

be calculated because of the same reasons as
those appearing in figure 6.

Both Fi and F3 do not depend on n
for n > 2. F2

"
2n7 as in equation (3.6) the total free

energy F
=

Fi + F2 + F3 is found to be
a

monotonically increasing function of n for
n > 2.

In figure 7, we compare the free energy Fi + F3 for
n > 2 as appears in equation (3.16) with

the one for
n =

I which was evaluated numerically, as function of the amphiphile composition
ratio, cA> and for A

=
1.0 and 10.0. Due to the non-uniform curvature of the vesicle in the

n =
I case, Fi + F3 is always the largest for n =

I than that of any n > 2. Therefore,
the most stable configuration with

a
minimum total free energy F

=
Fi + F2 + F3 is either

n =
I or n =

2. Defining AF13 as difference of Fi + F3 between the n =
I and n =

2 cases,
AF13 + (Fi + F3)n=i (Fi + F3)n=2, then the

n =
I configuration is the most stable, if twice

of the domain wall energy, 27, is larger than AF13. On the other hand, if 27 is smaller than

AF13, the
n =

2 configuration is most stable.

3.3 VESICLE SHAPES WITH IMPOSED PRESSURE DIFFERENCE: AP # 0. Up to now the

pressure difference AP across the vesicle, introduced in equation (3.I),
was assumed to be

zero.
If AP is non-zero, we

have to solve equation (3.lI) taking the AP bS/bi(s) term

into account. Thus, for any given value for AP, the equilibrium vesicle shape is obtained by
solving equation (3. ii numerically under the condition equation (3.10). More details about the

solution are presented in appendix A. In figures 8 and 9, we show the vesicle shape calculated

for n =
2 and n =

4, respectively. The pressure difference AP is negative in part (a),
zero

in (b) and positive in (c). Part (b) of these figures corresponds to the case of no pressure
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difference, AP
=

0, discussed in the previous section. Whereas the vesicle shape is composed
of consecutive arc-like segments when AP

=
0 [part (b)], each segment of the vesicle deviates

from an
arc-like shape and the curvature changes even within a single domain when AP # 0

~parts (a) and (c)]. As the pressure difference AP e Po fl becomes more and more negative
(the pressure increases from inside), the vesicle shape swells and approaches a

circular shape

in the limit of AP
- -oo.

On the other hand, if AP becomes large (an increased external

pressure), the vesicle shape becomes squashed until a
point is reached when different segments

of the vesicle start to touch each other. At this point our scheme for evaluating the vesicle shape
breaks down because we do not take into account the interaction between distant segments of

the vesicle.

a ) AP < 0 h) AP
=

0 cj AP > 0

~,
l'

'
,_ ,- -,

~/ '~ ,, ',, ,' ',
,

i
,

,' ,_, _,'
, / '- -'

' /
' '

Fig. 8. Vesicle shapes for n =
2 under imposed pressure difference AP: (a) AP

=
-1.o x 10~, (b)

AP
=

o and (c) AP
=

3.o xlo~. The other parameters are: L
= ~ = ~a0 "

1.o, cA "
o.5 and A

=
lo-o-

a) AP<0 h) AP=0 c) AP>0

Fig. 9. Same as figure 8 but for
n =

4. (a) AP
=

-5.o x 10~, (b) AP
=

o and (c) AP
=

5.o x
10~.

The other parameters are as in figure 8.

3.4 PHASE DIAGRAMS FOR VESCILES IN 2d SPACE. In order to obtain the phase diagram
for closed-shape vesicles, the free energy functional F defined by equation (3.I) is evaluated

numerically for n =
1,2, 3,.. Comparing the different solutions, the most stable n-mode

which has the minimum free energy F is found.



986 JOURNAL DE PHYSIQUE II N°7

Four independent and dimensionless parameters can be identified by rescaling distances by
L and energies by ~/L:

f e (L/Jc)7, I
e (L170/Jc)A, Afl

e
(L~/Jc)AP and cA %

~~
"

~

~~~ (3.17)

According to these scaling properties it is enough to consider the case L
= ~ = i7o =

1.0

without loss of generality.
The overall feature of the phase diagram can be understood by looking at the qualitative

behavior of Fi + F3 and Fi + F3 + AP S for various values of A, AP and
n.

Numerical

evaluations show that the quantity Fi + F3 is almost constant for any n > 2 within numerical

error even under
a nonzero imposed pressure difference, AP, and

a nonzero coupling, A [28].
The

n =
I case

is special, where Fi + F3 has
a

larger value than that for n > 2 as was shown

in the preceding section.

On the other hand, Fi + F3 + AP S changes
as n changes even for

n > 2 due to the

n-dependence of the enclosed area S. In figure 10, the
n

dependence of Fi + F3 + AP S is

shown for a value of the coupling constant, A
=

10.0, and for various values of hp. This figure
and the above argument show that the change in Fi + F3 + AP S is dominated by the changes
in the enclosed area S. Note that Fi + F3 + AP S is

a
monotonically increasing (decreasing)

function of n when AP is positive (negative) except for n =
I. As the total free energy F is

the sum of this function and F2
=

2n7, we deduce that the
n =

2 mode is the most stable

one from all the
n > 2 modes when AP is positive. Therefore, when AP is negative, the most

stable mode depends on the value of the domain wall energy 7 as will be discussed below.

'
'

~ p ~~~ ~
'

i

'

50.0
,

,

,

,

~
10.0

~ j
~ CD

'
+

~~ 10.0
'~

$

50.0
t

t

'

'

t

'

~
~ t 100.0
NP '

5 io

Fig. 10. Fi + F3 + AP S
as a

function of the n
mode for A

=
10.0 (L

= ~ = ~a0 "
1.0). From top

to bottom, AP
=

loo-o, 50.0, 10.0, 0, -10.0, -50.0 and -100.0.
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(a)

2

Q-
~

2 3 4 6
~

8

O-O lo-o 20.O

A

(b) lC)

2 2

~ Q- ~
~

2 3 4 5
~

l

6

q 7 3
o
$
'O,O lo-o 20.O ' O-O lo-o 20.O

A A

Fig. il. Phase diagrams (stability diagrams) for (a) 7 =
o.05, (b) 7 #

o-I and (c) 7 =
1-o (L

=

~ = ~ao "
I-o). The numbers in the figure indicate the values of n.

The case of A
=

0 (no coupling) should be considered separately. In this case the vesicle

shape is a perfect circle [29] irrespective of the mode, n, of the phase separation because

there is no coupling between the vesicle shape and inplane phase separation. This means that

the value of Fi + F3 + AP S is just the same as that of
a one-component vesicle, which is

independent of the mode
n

of the phase separation. Therefore, the most stable mode for A
=

0

is determined by minimizing F2 and leads to the most stable mode n =
I with just two domain

walls separating the A and B domain.

In figure it we plot the stability diagram showing the most stable mode
n

with the minimum

free energy for several values of 7. The values of 7 are
(a) 0.05, (b) 0,I and (c) 1.0, respectively.

As was
mentioned above, the

n =
2 mode is the most stable

one
when AP > 0 except in the

vicinity of the A
=

0 (no coupling) line. When AP < 0, and
as a

function of A, higher
modes with

n > 2 become the most stable ones. This behavior can be easily understood in the

following way.

The difference in the total free energy F between states with different mode numbers n is

determined only by the enclosed area S and the domain wall energy 7. When AP < 0, a
larger

enclosed area is preferred because the inner pressure is greater than the outer one. In order

to obtain
a

larger enclosed area, a
higher

n
mode is selected because such a higher mode has

a shape which is closer to the asymptotic circular shape. This tendency competes with the
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domain wall energy F2
=

2n7 which imposes
a

penalty for higher
n

modes, and the vesicle

hence selects
a

finite value of
n.

In figure it, one
finds that higher and higher n-modes are selected

as
the pressure difference

AP becomes more
negative while keeping A and 7 constant. This is because the pressure term

in the above competition becomes more and more dominant as AP becomes negative. An

opposite situation takes place when 7 is increased while keeping AP(< 0) and A constant. In

this case, the contribution from the domain wall energy 2n7 increases, which imposes
a

larger
penalty to a

higher mode
n

and the most stable mode is decreased (see Figs. lla-c).
On the other hand, when the coupling A becomes larger while keeping AP(< 0) and 7

constant, the vesicle shape deviates
more

and
more

from a circular shape. This leads to an

increase in the S AP term because AP < 0. The system prefers
a

higher n-mode in order

to compensate such an energy loss. It is worth noting that the overall features of the phase
diagrams for the strong segregation case

shown in figure it are very similar to those for the

weak segregation
case [14, 20].

4. Vesicles in 3d space: axially symmetric case.

Our results for vesicles in 2d space can be extended to vesicles embedded in a three-dimensional

(3d) space. Treating the general shape of 3d vesicles is extremely difficult. Usually it is done by
choosing a

convenient parametrization and an expansion for shapes that have small deviation

from spheres, planes, cylinders, etc. Howeverj if we restrict the treatment to include only 3d

vesicles with a uniaxial symmetry (body of revolution), the parametrization of the surface is

quite simple and the problem reduces to an effective 2d problem. As in the 2d case, we
will

assume that the vesicle
area

is conserved. Namely, the number of amphiphile and the
area per

amphiphile on the surface remain fixed.

The free energy functional, then, is very similar to that of the 2d system, equation (3.1)

F=Fi+F2+F3+AP.V

and

'
/ ~

~
~~~~

~~

F2
"

/ (( (~) ~

+ f(i') pi'j da
s

F3
=

A
/

i7(s)cm da (4.I)

where cm is the
mean curvature, da is the

area
element

on
the vesicle, and AP the _pressure

difference coupled to the inner volume V enclosed by the vesicle. Although
we

do not allow

area changes of the vesicle, changes of the enclosed volume
are

allowed. In this 3d case, we

can no longer assume the symmetry in the i7-field (i7
-

-i7)
as was done in the 2d

case.
A

constant shift in i7 causes an extra spontaneous curvature which cannot be eliminated for 3d

vesicles because fcmda is no longer a constant. Moreover, it is not possible, in general, to

neglect the spontaneous curvature term in equation (4.I).
Nevertheless, for simplicity,

we
consider here only the A/B symmetric case. Namely, i7A "

i7o and i7B " -i'o and setting the spontaneous curvature to zero. In the strong segregation
limit, F2 is estimated to be 1. 73d where I is the sum

of all the domain wall lengths, and 73d is

the domain wall energy per unit length.
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b(s)
, s

l/

Fig. 12. An illustration of a vesicle embedded in 3d space with uniaxial symmetry.

Here, again the Gauss-Bonnet Theorem tells
us

that the Gaussian curvature does not enter

into equation (4.I)
as

long
as

the topology of
a

closed simply-connected (genus zero) shape is

conserved [30]. Moreover, we can also disregard the
a term in equation (4.I) (as

was
done in

2d), because the total area of the vesicle surface is kept constant.

As we assumed uniaxial symmetry, the shape and the free energy can be expressed in
a

similar way as was done for the 2d case
in the preceding sections. The vesicle is described by

the contour of its cross-#ection that contains the axis of symmetry. Introducing the
z

and y

axes
and the angle variable I(s)

as
is shown in figure 12, the mean curvature cm is given by [5]

cm = (I(8) + ~))))~) (4.2)

where the axis of symmetry is taken as the z-axis and the coordinate s is the distance from

a
reference point (z, z)

=
(0j 0) on

the contour. Here, the total contour length is
no

longer
a

constant, because the contour is merely the cross-section of
a

3d body of revolution. It is only
the 2d

area
of the vesicle which is fixed. Equation (4.I)

can be rewritten using the relation

da
=

27rz(s)ds and equation (4.2)

and
~

F3
=

~A
/ ~

(0(s) +
~~))~

)z(s)i7(s) ds (4.3)
o z 8

where the a term is dropped in Fi and 2s0 is the perimeter length of the cross-section to be

determined from the closure condition of the contour and the fixed
area condition. The total
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vesicle surface area SM is given by

So

SM
"

2~ z(s) ds e const. (4Aa)

where SM is constrained to some constant value. The inner volume enclosed by the vesicle, V,
is given by

so

V
= ~

z~(s) sin I(s) ds (4.4b)

Moreover, in this 3d case, we have to take the conservation of the order parameter i7 into

account explicitly: /
i7(a)da

= 170(SA SB) (4.4c)

where SA and SB are the total areas of A and B domains satisfying SA+SB
"

SM, respectively.
This condition

can
be rewritten in the present uniaxial

case as:

2~ f~° z(s)~(s) ds
m

~o(s~ s~) (4.4d)

Using equations (4.1), (4.3) and (4Aa 4Ad),
we see

that only the following free energy
functional has to be considered:

fl
=

) /~° z(6) (I(6) + ~)))~ + ~)i~(6))
~

d6

+ 2~73d ~ z(s;) + AP V (4.5)
I

where the first term equals to Fi + F3 and the second term comes
from the domain wall

energy F2. The difference between the free energies, F and #, is an
irrelevant contribution

f(A~/~~)z(s)#~(s)ds, which has the same form
as

equation (4.4a) since i7~(s)
=

i7(
=

const.,
and thus can be adsorbed into SM.

On the surface of
a 3d vesicle,

a
domain wall separating A and B domains is

a
id line.

However, for the simple
case

of a body of revolution, the domain wall is characterized by
its coordinate si on

the contour (see Fig. 12). In equation (4.5),
we did not introduce any

Lagrange multiplier associated with the constant vesicle area condition, equation (4.4a),
or

the

conservation law for the i7-field equation (4.4d), because such constraints
can

be satisfied by
adjusting the parameter so and the positions of the domain boundaries. When a deformation

of the vesicle shape takes place, the total length of domain walls changes even if the total

amphiphile composition is kept constant. Thereforej we have to include contributions from F2
in equation (4.5), in contrast to the 2d case where only the number of domain walls n entered

into the free energy. The equilibrium contour equation is given by the variational principle of
# with respect to I(s)

~
~ ~/ ~~~ ~~~~ /~~

~~~~~~
~

~~'~~'~~ ~ ~~)~~'~ ~
~~~

j~ z(s)j (i(s) + 2)~(s) +
ij))~6)

2~ 7~~ sin I(s) L H(sj s) + AP
)

(4.6)
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(a) (b)

'

Fig. 13. Cross-section of vesicles with uniaxial symmetry are shown for (a)
an A-B-A configuration

and (b)
a

B-A-B configuration. The parameters used are ~ = ~a0 #
SM

"
i-o, A

=
o.5, AP

= 73d =
o

and cA "
0.5.

where H(z) is the Heavyside function defined as
H(z)

=
I for

z > 0 and H(z)
=

0 for
z < 0.

The explicit expression for bV/bi(s) is given by

~~r So

=
~z~(s)

cos
I(s) 2~sin I(s) z(s~) sin I(s~) ds' (4.7)

d$(S)
z

The discontinuity in I at every domain boundary in 3d is given by integrating equation (4.6)

as

hi;
=

2(-1)~+~Ai (4.8)

which is different from equation (3.12) by
a

factor 2 due to the difference in the dimensionality.
In solving equations (4.6) and (4.8),

we
have to adjust #(0), so and the positions of domain

boundaries si, s2, under the closure condition at s = so

For simplicity,
we present here the case where the vesicle has

a
mirror symmetry about

a

plane perpendicular to the axis of uniaxial symmetry and with the parameters 73d "
AP

=
0.

In such
a case

the closure condition is just I(so/2)
=

~/2, whereas the values of z(so/2) and

y(so/2) remain arbitrary. Then, the equilibrium condition is obtained from equation (4.6) as

sin R(s)
~°~~

j(I(s/) + ~jq~(s/)j~
~~j)j~~j~j

ds'

+ 2z(6)
)

[I(6) + )i7(6) +
~)))~

=
° 14.9)

subjected to conditions, equations (4.4a) and (4.4d).
Note that equation (4.9) does not allow

a solution when the bending energy is distributed

uniformly
on

the vesicle even in the
case

AP
=

0. One
can

easily confirm this by assuming

R(s) + ~)~(s) +
~j))~~~

=
c (4.io)

where ~C~/8 is a measure of the bending energy per unit area on the vesicle [31], assumed to

be
a constant throughout the vesicle. For further details

see
appendix B (and the discussion

above Eq. (3,15) for the 2d case).
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Table I. Comparison between the free energy of the A-B-A and the B-A-B configurations
shown in figure13. Parameters are

A
=

0.5,
~ = i7o "

SM
=

1.0, AP
=

0, 73d =
0 and

cA "
0.5.

type Fi F3 Fi + F3 t

(a) A-B-A 6.41 -0.23 6.18 3.18

(b) B-A-B 6.76 -0.37 6.39 2.77

Two simple cases of symmetrical domain arrangement are considered: A-B-A (a B domain

in between two A's) and inversely B-A-B. More details are given in Appendix C. In figure 13,

we give examples of the cross-sections of the vesicles for (a)
an A-B-A configuration and for

(b)
a B-A-B configuration. Vertical lines show the axis of uniaxial symmetry. Parameters

used are ~ = i7o "
SM

=
1.0, cA + SA/SM

"
0.5 and A

=
0.5 in both (a) and (b), while

keeping always 73d =
AP

=
0. As the A (B) domains tend to be less (more)

convex towards

the outer side, the vesicle is elongated in the direction perpendicular to the axis in case
(a)

and in the direction parallel to the axis in
case

(b). In table I, we
give a comparison of the

free energy values of these two vesicles. The A-B-A configuration has the lower free energy
but has the larger domain wall length I than those of the B-A-B configuration. Therefore,
the A-B-A configuration is more stable than the B-A-B configuration when the domain wall

energy is small. When the domain wall energy becomes larger, the B-A-B configuration will be

selected. This conclusion is valid
as

long as we neglect the change in the vesicle shape imposed
by

a non-zero domain wall energy 73d. When the domain wall energy is large enough, it
can

dominate the shape deformation and
can

induce budding of the membrane [11, 18].

5 Conclusion.

Twc-component membranes and vesicles can undergo an appreciable shape deformation through

a
coupling between spontaneous curvature and the local composition of the twc-component am-

phiphiles. We find that twc-component (A/B) membranes and vesicles show periodic domain

structure in two situations: (a) unilamellar membranes with both surface tension and curva-

ture; and (b) closed shape vesicles subjected to an external pressure (osmotic pressure).
In the former case, the membrane is assumed to be in equilibrium with the surrounding

reservoir of the amphiphilic molecules, dictating
a

surface tension. Previous studies have

been carried out close to the critical temperature ill, 12], while here
we look at the strongly

segregated A/B mixture. The intrinsic domain periodicity of the membrane may correspond
to a

particular example of a ripple phase of the membrane. This periodicity is determined by
the competition between the A/B domain wall energy (7) and the energy which arises from

the local coupling between the concentration and curvature of the different domains. The

shape of the membrane is shown to be quite different in two limiting cases: when the domain

size D is smaller than the correlation length, f
=

/fi, (e.g., large bending modulus) the

membrane shape profile is piece-wise parabolic with a small out-of-plane amplitude around the

flat reference plane. In the other case
of small bending modulus, D much bigger than f, the

membrane shape has sharp height variations at the domain boundaries. The variation
occurs

over a
short length scale of order f. Hence, here the membrane shape follows almost precisely

the steps of the concentration profile.

In addition to unilamellar membranes, we treated also the
case

of closed shape vesicles. To a
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good approximation their perimeter can be considered as constant so their energetics depends
entirely on curvature and not on surface tension. An intrinsic wave number is found only
when there is

an
imposed pressure difference (osmotic pressure)

across the vesicle. In this casej

the intrinsic wave number arises from the competition between the domain wall energy and

the work done by the vesicle against the imposed pressure difference. Our formalism is easily
extended to uniaxial vesicles (body of revolution) in 3d space, where

we
find that the domain

wall energy plays an
important role in determining the equilibrium shape deformations.

We would like to comment about the relation between this work and several other recent

papers. Whereas we
concentrated here on two-component membranes and vesicles in the

twc-phase region (temperatures below the critical one), Seifert [16] investigated a
similar two-

component membrane problem but in the homogeneous one-phase region (temperature is above

the critical temperature). In his case, the problem can be mapped into an effective
one-

component problem as long as the system does not approach the phase separation region.
This cannot be done in our case of

a
segregated system below Tc. We note as well that the

importance of the domain wall energy on
the shape deformation has also been addressed by

Lipowsky and Jfilicher [Ii, 18] in connection with budding phenomena of vesicles.

Other interesting directions of research are investigations of shape deformations of mem-

branes coupled to a vector field on the membrane [15] or a
study of the dynamics, where the

phase separation process is affected by the geometrical changes of the membrane shape [19].
Another possible extension is to try to include singular (cusp-like) domain walls

as
is expected

in the ripple phase [10]. Although at present we assumed that the vesicle shape is smooth at

the domain walls, such
a

singular nature may be incorporated into our model.

Finally, we performed similar investigations also for the weak segregation case, and the

results will be given in the accompanying paper [20].
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Appendix A. Technical details for 2d vesicles

In this appendix, we present a
detailed procedure to calculate numerically the vesicle shape for

2d closed-shape vesicles with n-fold symmetry. Unlike the
n > 2 case, where q~ vanishes and

the vesicle shape is obtained analytically, for the
n =

I case we
have to rely on numerical cal-

culations to solve equation (3.13). The Lagrange multiplier q~ no longer vanishes
on symmetry

grounds, since it is impossible to connect smoothly two semi-circles of different curvatures (no
change in the slope) at the two joining points. Thus, we have to solve equation (3.13) with

appropriate non-zero values of q~ and So The solution of equation (3.13)
can

be expressed by
the Jacobi elliptic functions, and q~ and So are found numerically by

an
iteration method that
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ensures the closure condition equation (3.10). Such an
iteration procedure does not always

converge and sometimes we cannot get the solution for the shape. For example, we
could not

find any solutions for cA < 0.3 (Fig. 6). When
we

approach cA ~
0.3, the convergence of the

iteration scheme fails to converge for reasons which are not entirely understood at the moment.

When the vesicle is subjected to a non-vanishing imposed pressure diflerencej AP # 0, the

shape evaluation is always numerical and is different for
n > 2 and for

n =
I. First, we discuss

the
n > 2 case. As the vesicle has

an
n-fold symmetry, the third equation of equation (3.9)

and equation (3. II)
can

be rewritten in such
a way that L

-
L/2 in equation (3.9) and

an

extra factor of 2 in front of AP in the I-h-s- of equation (3.ll) due to the mirror symmetry.
Using the n-fold symmetry, equation (3,10),

we
find that z(L/2) vanishes and y(L/2)

can be

combined with the Lagrange multiplier q~ yielding

~i(s) + q~ sin I(s)
=

AP [z(s)
cos

I(s) + y(s) sin I(s)] (A. I)

Integrating equation (A. I) with respect to s over the interval [0, L /n] and using z(0)
=

y(0)
=

0,

we arrive at

~li(L/n) Rio) (Aii + Ai~)] + n~y(L/n)
=

§[z2(L/n) + y2(L/n)] (A.2)

where A#I is the discontinuous change in the slope I(s) at the I-th domain boundary, equa-

tion (3,12). Since I(L/n)
=

I(0) from the n-fold symmetry and Ail + A12
=

0, we obtain

z~(L In) + (y(L/n) ~~ ~

=

~~ ~

A_3)
AP AP

which states that the points (z(iL/n), y(iL In)), I
=

I,.
.,

n, are on a circle of radius q~ lap

centered at (0, q~ lap). Another way of writing equation (A.3) is

I
=

~~(L/n) + Y~(L/n)
~ ~~

AP Y(L/n)

Substituting equation (A.4) back into equation (A.I), yields

~i(6)
= AP(z16) CDS

I(6) +
Y16) ~~~()j (~~~~'~~

Sin i16) (A.5)

For a
given AP,

we
have to determine I(0), z(L In) and y(L In) self-consistently under the

closure conditions I(L/n)
=

2~/n. This can be done by the following procedure. First
we

select a trial value for I(0). Using such a value of I(0),
one can solve equation (A.5) where the

values of z(L/n) and y(L/n)
are determined by

an
iteration procedure. The value of I(0) is

adjusted till the iteration procedure converged to a
closed-shape vesicle with smoothly joining

boundaries.

The above procedure cannot be applied to the n=I case. Although equations (A.I-A.4)

are still valid, we cannot use
equation (A.5) because we

obtain y(L In)
=

y(L)
=

0 in
n =

I.

The appropriate iteration procedure can be obtained by integrating equation (A,I) ttoice with

respect to s:

L/2 ~ p L/2

q~ y(6)d6 [Z~(6) + y~(6)]d6
2

+~ (~ [i(0) + hill
~

+ Aiisi)
=

0 (A.fi)
2

where we
used the closure condition I(L/2)

= ~.
This equation can

be used as an
iteration

relation for q~ instead of equation (AA).
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Appendix B. Nonuniformity of the bending energy for 3d vesicles

In this appendix we show that the assumption of uniform distribution of the bending energy,

equation (4.10), conflicts with the equilibrium condition equation (4.9)j in 3d.

Substituting equation (4.10) into equation (4.9) leads to

~°~~
c jR(s') + ~)q~(s')

~j()j'~
ds'

=
o (B.1)

~

which should hold for any value of s. Thus,

i16) + )i7(6) ~]))(~ =
° iB.2)

From equations (4.10) and (B.2),
we obtain

~(6)
" )[C

)§~(6)]
(B.3)

As i7(s) takes a constant value (i7o or
-i7o) within the interval

s E [0, si] and I(0)
=

0, we see

that I(s) from equation (B.3) is proportional to s, and

~~~~ "~
~~ ~ ~~i'°~~ ~" ~ ~ [°> 61] (B.4)

where a is a constant whose value is found using equations (3.2) and (3.7)

"

~~)~i~
f/

~~j~~
ds'

~°~
~ ~ ~~' ~~~ ~~'~~

One can easily confirm that equations (B.4) and (B.5)
are

compatible with equation (B.2) only
if A

=
0 (or equivalently if i7o =

0).

Appendix C. Technical details for 3d vesicles

Here, we describe how to solve equation (4.9). Defining

~j
Sin ~(6)

6 =

~ 6

f16)
=

/~ ((i(6') + )i~(6'))~ 1b~(6')j
d6'

and

A
=

f(60/2) (C.I)

Keeping in mind that the i7(s) term is constant within a single domain, it
can

be dropped out

and equation (4.9) can be rewritten
as

~
(i(s) + ~l(s)) + ~fi(s) (A f(s))

=
0 (C.2)
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We solve equation (C.2) using the initial condition, I(0)
=

0, I(0)
=

io> 11(0) =

io and

f(s)
=

0, where So is the curvature at s =
0 to be determined. In order to solve equation (C.2)

we
employ an iteration method to obtain A in a self-consistent manner and also to adjust #o,

so and si to the conditions equations (4.4a) and (4Ad).
Extra attention should be paid to the singularity at s=0. The evolution equation for the

variable i~(s)

ll~(6)
= ~~~ (zi sin ii (C.3)

appears to have
a

singularity at s=0 where z(s) vanishes. However, expanding the r-h-s- of

equation (C.3) in a
Taylor series in s and using equation (4.9), we obtain

lim )i~(s)
= )I(0) =

-jioA (C.4)

which has
a

finite limiting value.
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moduli for both domains). As the vesicle shape itself is smooth (not cusp-like), the Gaussian

curvature does not diverge but only changes discontinuously at the domain walls. Therefore,
the contribution from such

a
discontinuity to the elastic energy is negligible because the width

of the domain wall region is taken to be smaller than any other length in the problem in the

strong segregation limit.

[31] One
can

confirm this from equation (4.3), which leads to :

~ ~ ~ ~~
~~

~~~~
°~~~

~ ~~))i~ ~ ~) i~(S))
~

+ const.

=

~ SMC~ + const.
8


