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Adsorption of single polymer chains and polymer 
solutions on surfaces has been the focus of numerous 
studies in recent In most of those studies the 
adsorbing surface with whom the polymer has a preferred 
interaction is assumed to be ideal, i.e., the surface is 
completely smooth and chemically homogeneous. How- 
ever, real surfaces are rough and chemically heterogeneous. 
Those nonideal but important situations have been studied 
only sporadically in the past.F7 

In this paper we investigate the adsorption of a sem- 
idilute polymer solution on chemically heterogeneous 
surfaces. We show that the polymer profile equation in 
the presence of annealed heterogeneities, i.e., impurities 
or surfactant molecules in thermal equilibrium, is identical 
with the profile equation of polymers adsorbingon random 
surfaces proposed by Odijka7 The polymer concentration 
profile and the surface excess are then calculated as a 
function of surface heterogeneity, yielding results that are 
quite different from those of ref 7. 

Let us consider a polymer solution in the presence of 
a boundary. This boundary can be either a solid surface 
or a liquid/air interface. If h(i)  is avariable characterizing 
the local concentration of surface impurities, the free 
energy of the combined polymer/impurity system depends 
on whether (It(?)} is a quenched or annealed random 
variable. In the former case, the quenched random variable 
h(F) describes a rough solid surface or chemical impurities 
that are randomly and irreversibly attached to the solid 
surface. Hence, the polymer partition function Z(h(i)] is 
calculated for each configuration of the random surface 
variable Mi) ,  and the free energy 3, is obtained by 
averaging log Z{h(i))  

where ( . . . ) h  denotes the ensemble average of the random 
variable h(i) ,  T is the temperature, and the Boltzmann 
constant is set to be unity. On the other hand, when h( i )  
is an annealed degree of freedom, the average over the h’s 
is done for the partition function itself and the free energy 
3, is given by 

3,7/T = -log (Z(h(i) l )h (2) 
For polymer solution in a semidilute regime,6sg the 

polymer order parameter, $, is proportional to the square 
root of the local polymer concentration, @(F) = c ( i ) .  
Formally, if one ignores correlations and describes the 
polymer chain configurations in a mean-field fashion,’O 

the free energy of a spatidy varying polymer concentration 
can be obtained from the Hamiltonian 

(3) 

where a is a microscopic length associated with the 
monomer size, p is the excluded-volume parameter, and 
po is the polymer chemical potential. The free energy is 
calculated from (3 )  by 

In a mean-field approximation, the equation for the profiie 
is given by a steepest descent approximation on (4) yielding 

”zOZ* + p*3 + po* = 0 
6 (5) 

Taking one boundary condition at  z = 0 and the other a t  
z - m, the concentration $ depends only on the z 
coordinate and the bulk concentration co = $212-, is thus 
related to the chemical potential, po = - 0 ~ 0 .  In terms of 

,a dimensionless concentration x2 = $ 2 / c ~ ,  the profile 
equation (5) can be written as 

where 
We now introduce randomness in the adsorbing surface. 

The surface is taken to be perfectly flat. The z coordinate 
describes the distance from the surface located at  z = 0. 
The local field h(i) represents the local positive (or 
negative) interaction of the surface with the polymer links 
and thus is coupled linearly to the local polymer density, 
resulting in an added term h(i) q2(i) in the Hamiltonian 
(3). For simplicity, we assume that the local field has a 
zero average ( h )  = 0 and the following spatial correlation7 

= (a2/3/3c,3)1/2 is the bulk correlation length. 

(h ( i )  h(?’))h = v(z,z’) 6; 6(x-x’) 6b-y’) (7) 
The correlation in (7) is chosen to be short range within 
the surface plane z = 0, with a surface correlation length 

much shorter than the bulk one &,. The correlation in 
the z direction is also of a finite range: V(z,z’) = 0 if z or 
z’ are larger than a distance d from the surface. The limit 
d - 0 is simply obtained by V(z,z’) = Vd2S(z-z’)6(z) where 
Vis a constant. As was discussed above, the random field 
h(i)  can be viewed as a quenched (stochastic) random 
degree of freedom or as an annealed surface variable in 
thermal equilibrium. Note that the polymer concentration 
itself is an annealed degree of freedom. 

If the remainder of the paper we will treat h(i)  as an 
annealed degree of freedom. From the partition function 
(2) we get 

where P(h) is the probability distribution of the h variable. 
For small fields, (h(i)},  a cumulant expansion of (8) yields 
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Ish p(h) e-Jh(i)J.z(i)di , (1 /2 )11(h( i )h( r ) )J ,2 ( i )J .z (~)dfdp (9) 

Equation 9 is exact for Gaussian-distributed Mi.). Using 
the correlations of h(i.), we get from (7)-(9) 

where the effective interaction part of the Hamiltonian, 

7fint/T = - L5.21 V(z,z') IF/2(z) q2(z ' )  dx dy dz dz' 

7fint, is 

(11) 

The equation for the profile + ( z )  is then obtained by a 
steepest descent approximation on (10). Since there is no 
in-plane correlation, + depends only on the coordinate z .  

2 

yielding the profile equation 

or for the dimensionless profile variable x2(z) = I $ ~ ( Z ) / C ~  

C , [ , ~ X ( Z ) J ~ V ( Z , Z ' )  ~ ~ ( 2 ' )  dz' = 0 (14) 

Equation 14 is identical with the profile equation that 
has been derived by Odijk' as an approximation to a 
quenched surface randomness using the Furutsu-Novikov 
identityI2 for Gaussian stochastic fields. The last term in 
(14) is the sole effect of the randomness. When V(z,z') = 
0, eq 14 reduces to the ideal surface problem (6). We note 
that using results for annealed randomness as approxi- 
mations for quenched randomness can lead in some cases 
to incorrect interpretations of random fields." We have 
verified that a second-order cumulant expansion of the 
polymer free energy gives different results for the profile 
equation and surface excess in the quenched and annealed 
cases. 

We discuss now the solution of (14) in the case where 
the annealed impurities lie only on the z = 0 plane 
(insoluble surfactant molecules), and V(z,z') = Vd26(z) 
6(z-2'). 

It is convenient to introduce the reduced coordinate u = 
Z/[b and a dimensionless parameter A = ,$s2d2v/p5b. The 
latter is proportional to the surface random field V and 
to the square root of the bulk polymer concentration, (co)1/2. 

The profile equation (15) is then reduced to 

- d2X + 2x(x2 - 1) = 2A6(u) x3 (16) 
du2 

The polymer profile x(u) from (16) is the same as that in 
the nonrandom case 

x(u) = coth (u + b) (17) 
while the sole effect of the randomness is on the boundary 

condition at  u = 0 

where xs = x(u=O) is the surface concentration. 
A quantity of experimental interest is the total excess 

of polymer concentration above its bulk value. This 
surface excess is defined as: 

Since the randomness affects only the boundary condition, 
(18), r can be calculated by integrating the profile equation 
(16) and is simply related to the surface concentration xs: 

The profile x(u), the surface value xs, and the surface 
excess r can now be obtained from (16)-(20) as functions 
of the surface randomness strength A. For weak random 
field, A << 1 

This is an interesting result since it shows that for annealed 
randomness the surface excess is positive, i.e., bigger than 
r = 0, corresponding to an ideal surface (A = 0). For the 
pure case the wall is neutral since the average of h(i.) is 
chosen to be zero. Hence, although randomness has no 
average positive interaction with the polymer, ( h )  = 0, 
the collective behavior of the surface with the polymer 
solution is attractive and the surface excess is positive. In 
addition, it can be seen from (21) that r is an increasing 
function of the surface randomness A. 

Furthermore, from (18) it is also apparent that a solution 
for the polymer profile exists only for 0 < A < Am= = 
1/(3v'g). For A > Am,, no value of xs satisfies the 
boundary condition. The homogeneous surface concen- 
tration of impurities (surfactant molecules) becomes 
unstable for A > Am, and indicates a tendency to phase 
separate. A complete investigation of this transition 
involves higher order terms in a Landau expansion of the 
impurity free energy and will be published e1~ewhere.l~ 
The maximum surface excess is found to be 

rm, = C & ( d / 3  - 1) for v,, = p5b (22) 
3d/35,2d2 

and r has a square root singularity close to rmax. 
The results above, (18), (21) and (22), do not agree with 

previous results of ref 7, treating the same profile equation 
(14) but for different boundary conditions for the surface 
randomness. In the limit of strong randomness with finite 
correlations in the z-direction [as in our (7)], the surface 
excess r was found' to scale like (/3V)-1/2. This is in 
qualitative disagreement with our results (21) and (22) 
since we find that r increases with the randomness strength 
V up to a maximum value above which no solution exists, 
whereas in ref 7, r is found to be a decreasing function of 
V. 

The results presented here are of relevance to mixed 
polymer/ surfactant systems where both the surfactant 
and polymer are in thermal equilibrium. The surfactant 
can either lie on a liquidfair interface or on a solid surface 
assuming that the adsorption process is reversible. On a 
liquidfair interface, the surfactant concentration can be 
conveniently adjusted either directly or by changing the 
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surface pressure. The annealed randomness treated here 
in very different from the quenched 01118~3 where the sur- 
factant molecules or impurities are irreversibly attached 
to a solid surface in contact with a polymer solution. 
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