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wetting and related phenomena). 

Abstract. - The effects of electrostatic interactions on steric repulsion and curvature elasticity 
are considered for dilute multimembrane systems as a function of the electrolyte strength, 
surface charge and inter-membrane spacing. In the strong electrolyte limit, the electrostatic 
interactions are screened and the steric repulsion dominates. For weak electrolytes, the 
electrostatic interactions cut-off the out-of-plane undulations and change significantly the 
membrane bending constant in qualitative agreement with recent experiments. 

Amphiphiles in solution show a wealth of self-organizing structures [l]. For example, 
natural phospholipids or artificial surfactants dissolved in water can form multilamellar or 
multivesicular structures consisting of a stack of alternating lipid and water layers. Their 
precise structure and stability depend on the lipid chemical character, temperature, lipid 
concentration and surface charge, ionic strength of the aqueous solution (salt concentration) 
and in some cases the type and amount of an added co-surfactant (usually a short-chain 
alcohol). In the lamellar phase, the inter-membrane interactions arise from attractive van 
der Waals and repulsive electrostatic interactions [2]. In addition, for very small inter- 
lamellar spacing of less than 20 A, it has been shown [2-41 that repulsive hydration forces 
play an important role in preventing membranes from adhering to one another. One of the 
unique features of fluid lipid membranes is their extremely low surface tension leading to 
strong out-of-plane undulations governed by the membrane bending rigidity [5-121, k, which 
can be made quite small, e.g., by adding a co-surfactant [8,11] (pentanol) and producing a 
stack of very flexible membranes. 
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In 1978, Helfrich [5] argued that the entropically induced out-of-plane fluctuations of a 
stack of membranes cause an effective repulsion due to the reduction in fluctuation entropy 
experienced by each membrane bounded between its two adjacent neighboring membranes. 
The predicted repulsion interaction per unit area varies as 

or equivalently the disjoining pressure ITd = - aF,lad - l/d3, where d is the average inter- 
membrane distance, T i s  the temperature in units where the Boltzmann constant is set t o  be 
unity. 

More recently, Helfrich's predictions have been tested experimentally using X- 
ray [8,10,11] and light scattering [8,12] experiments. For a lamellar phase diluted with 
oil [121, the analysis of the structure factor, S(q), gives an agreement with the Helfrich 
interactions - lid'. In a different series [lo-121, when the lamellar phase was diluted with 
pure water, electrostatic interactions dominated over the Helfrich interactions (the 
membranes were charged). However, when a substantial amount of salt was added, so that 
the Debye-Huckel screening length was a few angstroms, the signature of the Helfrich 
interactions prevailed again [ 101. One of the important features of the entropically-induced 
repulsion is its u n i v e r s a l i t y ;  namely, the interactions do not depend on any microscopic 
parameters [U]. 

In this letter, we address specifically the cases studied in the experiments: how would 
electrostatic interactions of f l u c t u a t i n g  lamellar phases combine with the entropic-driven 
Helfrich interactions? Motivated by the above-mentioned experiments, we study the 
relatively larger inter-lamellar distances and neglect van der Waals and hydration forces. 
Previous studies on how the direct interactions affect the steric repulsion exist [13,14] also 
in connection with the unbinding transition [ 15,161. We discuss electrostatic interactions in 
two cases: i) within a local approximation valid for weakly fluctuating membranes; ii) a more 
elaborate calculation is done for the high salt case, where the linearized Poisson-Boltzmann 
(PB) equation is solved for fluctuating membranes. In addition, the electrostatic contribu- 
tion to the bending constant k, is also estimated for strong and weak electrolytes. 

In order to estimate how the electrostatic interactions modify the membrane fluctua- 
tions, we imagine one of the membranes fluctuating against curvature with small 
displacement U ( % ,  y )  relative to a reference plane. The increment in the free energy of the 
fluctuating membrane (per unit area) is [17] 

where AFel = (l/2)(a2Fe1/ad2) U', and Fbend is the cost in curvature energy (1/2) ~ , ( V * U ) ~  
where surface tension is explicitly taken to be zero. Estimation of the electrostatic term 
relies on a Deryagin-like approximation [2], in which an expansion about the flat result is 
performed. In Fourier space 

where E-4 = k;' a2F,,iad2 and E is the in-plane electrostatic correlation length. 
In the limit of small fluctuations, we determine E from the solution of the Poisson- 

Boltzmann (PB) equation [18,2] for two flat and charged plates with surface charge 5 and 
separation d. Figure 1 shows the various crossover regimes in the PB equation as a function 
of the three relevant lengths: the separation d, the Debye-Huckel screening length, 
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x-l = (8x72, 1)-1’2, and the Gouy-Chapman length, A = e/2xlg, where n, is the bulk electrolyte 
concentration, 1 = e2/4x&&,, T = 7 A is the Bjerrum length for an aqueous solution of dielectric 
constant, E = 80. Four regions are seen in fig. 1: i) the Debye-Huckel region (IV), where the 
PB equation can be linearized xd > 1 and A > x - l ,  or xd < 1 and x2Ad > 1. ,ii) The 
intermediate nonlinear but weak overlap region (111), xd > 1 and A < x- ’ .  iii) The ideal-gas 
region (I) xd < 1, A > d, x2Ad < 1, and iv) the Gouy-Chapman region (11) xd < 1, A < d. 

- 
d X -1 

Fig. 1. - Various regimes for the electrostatic interaction between two flat and charged plates in an 
electrolyte. Region I: the ideal-gas regime, with a free energy of interaction between the plates, 
Fel = (Tlxhl) logd. Region 11: Gouy-Chapman regime with Fe, = xTlZld. Region 111: the intermediate 
regime with F,I = (8Tx/xE) exp [- xdl. Region IV: the linear Debye-Huckel regime, Fel = 
= (T/dh2X)(Ctghxd/2 - 1). 

In experiments[8-12], the char e density is one unit charge per polar head, i.e. 

20 < d < 800 A. Thus, we concentrate only on the three regions (11, 111, IV) with d > A. In 
the Gouy-Chapman region (II), Fe, = xT/(2Zd), leading to t; = d(k,  2I~Td)l’~. Assuming (and 
later checking) that we are in the small fluctuation limit, i . e .  the r.m.s. fluctuation (u2)  is 
much smaller than d2, the equipartition of energy gives 

e/cr = (30 t 100) Hi2, and A = (2 t 3) 1 is much smaller than the inter-lamellar spacing 

(4) 

For flexibile and dilute lamellae [12], k ,  = T and Z < d so that from (4) (u2) << d2.  
Comparing the electrostatic and undulatory parts of the free energy, FeI = xT/2ld and 

F,  = T/(S?), we get F,/FeI = (1/4x)(Zd/?) = (TZ/k, d)”2 < 1. Therefore, in the limit of weak- 
electrolyte concentrations ( x  + 0), and nonscreened electrostatic interactions, the bending 
repulsion and the correction to the electrostatic interaction can be treated as small 
perturbation since (u2) = (T/8k,) E’ < d2. The hard-wall repulsion between neighboring 
membranes has up to now been neglected; as soon as the fluctuation ( u2} is smaller than d 2 ,  
it gives an exponentially small correction to the bending energy. 

We now turn to the limit of screened electrostatic interactions, xd >> 1. As shown in fig. 1, 
there are two different regimes in this limit: for x - l >  A (region 111), the PB equation is 
nonlinear and Fel = (8Tdl;Z) exp [- xd], whereas for the Debye-Huckel regime, x- l<  A 
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(region IV), FeI = 2T/(i7xZh2) exp [- xd] .  Calculating t: from (4) we get 

E = (7;lk,/8x3 T)''4 exp [xd/41, x - l >  2 ,  ( 5 4  
E = ( d h 2  k , / 2 ~ T ) l ' ~  exp [xd/4] , (5b) 

Clearly, in this limit the dominant interaction is the steric repulsion calculated by 
imposing the constraint (u2) = d2. One of the ways to estimate the effect of the constraint is 
by an addition of a ASu; dq term (Lagrange multiplier) in the free energy and adjusting the 
value of A t o  satisfy the constraint ( U ' )  = d2 

x- l  c ii . 

The undulating forces are thus reduced by the electrostatic interactions. Since 
E -  exp [xd/4] ,  the correction term in (6) is exponentially small and the main contribution to 
the undulation free energy is the Helfrich steric repulsion. 

To complete the calculation presented above within the Deryagin approximation, we 
study the linearized version of the PB equation (region IV) for the electric potential $, 
V2$ = 2 $, valid for concentrated electrolytes. For simplicity, a one-dimensional membrane 
described by a displacement u(x) is considered. One of the boundary conditions is the 
discontinuity of the normal component of the electric field on the membrane, and the other is 
chosen Uo be the vanishing of the x-component of the electric field at  the midplane between 
membranes. 

Lookiklg at a single q-mode undulation of the membrane u(x) = ug cos qx, and solving the 
Debye-Hiickel equation up to  second order in the undulation amplitude, 
electrostatic free energy of the membrane (bilayer) is 

the resulting 

(7) 

where x f  = x2 + q2. 
It is useful to expand (7) in powers of q. The zeroth-order term is the overall electrostatic 

contribution, and the second-order term renormalizes the surface tension but is dropped 
altogether, since we assume a zero surface tension 

EX 2 

The fourth-order term in q in (7) renormalizes the bending constant, k: = k ,  + 6k,l,1, 
where for xd > 1 

and for xd<  1, x2Ad > 1 

6k, 1 el = (Tlx3 zA2)(xd)-3. 

Using (8) and (3 ) ,  the in-plane correlation length is then given by 

t - 4 =  x 1 ' cosh - xd  ~ i n h - ~  xd  . Ekf 2 
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We note that in the limit xd >> 1, (11) reduces t o  the previously obtained result, eq. (5b) ,  with 
the renormalized k: replacing k,. 

Equation (9) is in agreement with a previous solution of the electrical bilayer problem for 
a single charged cylinder or sphere [19,20]. Moreover, it reveals an additional important 
effect of electrostatic interactions. Not only they introduce a cut-off in q-space for the 
undulations, but they change the bending constant as well. In the above results, one should 
thus replace the bending constant k, by a renormalized one kE = k, + 6k,/ el, where 6k,l el is the 
electrostatic contribution. In recent studies [21,22], 6k, 1 el has been calculated in the 
intermediate regime (region 111) and found t o  be 

6k,)e1 = Tlxxl, xA < 1 and xd >> 1. (12) 

For the no-electrolyte limit (region 11), we estimate 6k,/e1 using scaling and continuity 
arguments 

This result crosses over smoothly to the intermediate-regime result (12) by replacing d by 
x-'. It is also in agreement with an expansion of the exact result of an aqueous solution in 
between cylinders [23]. Similarly, in the ideal-gas limit (region I), 6k,l el is conjectured to be - T N l  with a correct crossover into the Gouy-Chapman (region 11) and Debye-Huckel 
(region IV) regimes. We note that for any physical system, there is a finite amount of ions in 
solution and (13) holds only for small enough d. 

To summarize, we have investigated the effect of electrostatic interactions on undulating 
lamellar phases. When the interactions are screened (xd >> l), the long-range steric 
repulsion is dominant and the change in the bending constant is small, 6k, 1 << 1. As xd 
decreases by decreasing d or reducing the salt concentration, we expect a crossover first 
into an intermediate regime and then into the strong overlap Gouy-Chapman regime where 
the electrostatic repulsion controls the membrane undulations. For d = 20 A, 6k,l is 
estimated to be of the order of T from (13) in qualitative agreement with experiments [12], 
where the increase of the bending constant in the nonscreened electrostatic case compared 
with the screened one can be interpreted as an increase due to electrostatic interactions. 
This increase has been estimated experimentally to be about 0.8 T. 

On the theoretical side, a more refined calculation for 6k,Iel is desirable in the Gouy- 
Chapman regime, since it was obtained only through scaling arguments. On the 
experimental side, a systematic study of undulations and changes in k, as function of 
electrolyte strength is needed to check some of our findings. It will be interesting t o  see if 
the two crossovers for d > A can be observed. 
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