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The steady-state motion of a liquid A/liquid B interface on a flat solid surface is investigated. Hydro- 
dynamic equations for the flow are obtained and in principle could yield a solution for the profile of a 
general curved A/B interface. For small contact angles this problem is quite similar to the dynamics of 
a liquid/vapor/solid contact line. We consider both a "dry" solid surface and one that has been prewetted 
by an invading liquid. Interesting Saffman-Taylor-like instabilities could appear close to the tip of the 
advancing contact line for appropriate viscosity ratios. © 1987 Academic Press, Inc. 

I. INTRODUCTION 

The dynamics of  mot ion of the three-phase 
contact line has received much attention over 
the last few years (1, 2), mainly due to the 
apparent incompatibility between the ad- 
vancing motion of the liquid and the no-slip 
boundary condition at the solid surface. 

One of  the ideas proposed to resolve this 
contradiction was to allow a small slip velocity 
of  the advancing liquid at the solid surface. 
This idea, although successful from a mathe- 
matical point of  view, is not well justified from 
a physical point of  view, except in the case of  
polymeric liquids of  high molecular weight. 
There, the presence of  entanglements causes 
aplugf low;  hence entangled polymeric liquids 
behave as solids and therefore have a finite 
slip velocity on the solid surface. Brochard and 
de Gennes (3) have explained in this way the 
special features of  polymeric liquid spreading: 
the appearance of a "foot"  at the edge of  the 
spreading liquid. 

Nevertheless, this mechanism of  entangle- 
ment  is not present for simple liquids, where 
a slip boundary condition cannot be under- 
stood physically. There, it was found quite re- 

1 To whom correspondence should be addressed. 
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cently (4, 5) that long-range molecular forces 
(mainly van der Waals forces) play an impor-  
tant role for very thin liquid films, i.e,, at the 
edge of an advancing liquid. 

A considerable amount  of  work has been 
devoted to the spreading of  a nonvolatile liquid 
surrounded by a vapor phase. In this situation 
two regions can be distinguished in the ad- 
vancing liquid front: 

(1) A macroscopic wedge characterized by 
an apparent (dynamic) contact angle 0d which 
depends on the advancing velocity u, the liq- 
uid/vapor interfacial tension 3", and the liquid 
viscosity 7, through Tanner 's  law (6) 

o~_ ~u. Ill 
3' 

(2a) On a dry solid (with no preexisting liq- 
uid film), Fig. 1, a thin precursor f i lm  advances 
ahead of the macroscopic front. The min imum 
thickness e and the length l of  this precursor 
film (4, 7) depend mainly on the spreading 
power S which is the difference in interfacial 
tensions, 

S = 3,sv - 3' - 3,SL > 0, [2] 

where 3'sv and 3,SL are the solid/vapor and 
solid/liquid interfacial tensions, respectively. 
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FIG. 1. Dry wetting: the macroscopic wedge of liquid 
A is advancing at a constant velocity u on a solid surface 
into an external liquid B. The dynamic contact angle is 0d 
and the wedge is preceded by a precursor film of length 
t(s). 

Since it is a complete wetting situation, S > 0, 
and 

e(S) = a{ 33' 11/2 a2 
~-~] , I ( S )  - eO~'  [3] 

a being the molecular length. 

(2b) On a solid already wetted by a preex- 
isting liquid film, the macroscopic wedge 
crosses over smoothly to this preexisting film 
(5, 8). 

The problem of the no-slip boundary con- 
dition at the actual contact line (at the "tip" 
of the precursor film), Fig. 1, is then solved by 
itself, since the local contact angle (to be dis- 
tinguished from the apparent contact angle, 
0d) has a value of ~r/2. This allows the spread- 
ing motion with a no-slip boundary condition 
at the solid surface. Experimentally, the mac- 
roscopic law, Eq. [1], seems well verified for 
silicon oils (6) and the existence of the pre- 
cursor film has been known for quite a long 
time (9). However, some more quantitative 
experiments are needed, especially in the mi- 
croscopic region described above. 

In what follows, we address the problem of 
the dynamics of a liquid A/liquid B/solid con- 
tact line. This is a generalization of the liquid/ 
vapor/solid problem and is of considerable in- 
terest in the field of surface chemistry. Exper- 
iments where another immiscible liquid is used 
as the external phase (and not the vapor) might 
eliminate some of the difficulties associated 
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with a liquid/vapor front, such as mechanical 
vibration, contamination from the external 
phase, and evaporation and recondensation of 
the liquid which is volatile to some extent. 
However, one must consider in addition the 
effects of a nonnegligible viscosity of the ex- 
ternal liquid. 

In this paper, we show that in the limit of 
small contact angles, 0d (i.e., at later stages of 
the spreading) the spreading dynamics of a 
liquid depends only weakly on the viscosity of 
the external liquid, for viscosities that are not 
too large. For small dynamic contact angles, 
the velocity gradients in the spreading liquid 
are very large and most of the viscous dissi- 
pation occurs in that liquid. 

Very few theoretical studies addressed the 
problem of the dynamics of the liquid A/liquid 
B/solid contact line. Huh and Scriven (1) as- 
sume that the liquid A/liquid B interface is a 
perfect rigid wedge with a given contact angle 
0. Consequently, they derive the solution of 
the hydrodynamic equations as a function of 
this angle 0 and the viscosities of the two in- 
compressible liquids. 

Pumir and Pomeau (10) propose a scaling 
form for the hydrodynamic stress tensor at the 
liquid A/liquid B interface and then qualita- 
tively study the shape of this interface. They 
predict corrugations of the interface with di- 
latational invariance in a two-dimensional ge- 
ometry. 

Our approach lies somewhere in between; 
in the limit of small contact angles we solve, 
in Section II, the flow equation in the external 
phase. We are then left with an integro-differ- 
ential equation for the inner liquid wedge. Its 
solution can, in principle, give the exact shape 
of the A/B interface, without having to pre- 
sume that it is a rigid wedge, as was assumed 
in Ref. (1). We obtain only an approximate 
solution of this integro-differential equation, 
and in the limit of small contact angles we get 
the first correction to the velocity profile in 
the inner phase. Our solution does not show 
any major differences with the liquid/vapor/ 
solid problem. Both "dry" and prewetted sur- 
faces are studied in Section III, in addition, 
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the flow field lines are quite similar to the ones 
calculated by Huh and Scriven (1). Our con- 
clusions are presented in Section IV, where we 
discuss qualitatively larger contact angles for 
which corrugation of the interface might ap- 
pear. The possibility of an instability of the 
three-phase contact line is also proposed. It 
resembles the viscous fingering instability (11) 
in a Hele-Shaw geometry. 

II. HYDRODYNAMIC EQUATIONS 

The geometry of the problem is sketched in 
Fig. 1, where for simplicity we look at a two- 
dimensional geometry. The inner liquid A has 
a viscosity ~in and the external liquid B has a 
viscosity ~/ex. We are interested in the steady- 
state motion where the advancing velocity u 
is constant. All our results will be presented 
in a reference frame for which the solid surface 
is stationary. [In Ref. (1), the reference frame 
is moving with velocity - u  and the liquids are 
stationary.] 

1. The External Liquid Phase 

A simple solution of the flow equation in 
the external liquid is obtained if we assume 
that for the external liquid, the A/B interface 
lies on the x-axis (z = 0, x > 0). This is a good 
approximation for small contact angles, 0d ~ 1. 
The velocity on the interface, V(x), is then 
parallel to the solid surface (the x-axis). The 
flow equation in the external liquid can be de- 
rived from the Navier-Stokes equation for in- 
compressible liquids. It is convenient to intro- 
duce the stream function, ~(x, z), which is 
related to the velocity components by 

0,11 
1) x = - -  

OZ ' 

v z -  Ox" [4] 

In the limit of small advancing velocities, the 
stream function satisfies a biharmonic equa- 
tion (1) 

V2(V2~I/) ~--- O, [5] 

with the following boundary conditions: 

(i) vz = 0 on the solid surface, z = 0. 

(ii) No-slip boundary condition: Vx = 0 on 
the solid surface (z = 0, x < 0). 

(iii) No-slip boundary condition: Vx = V(x) 
at the A/B interface (z = 0, x > 0). 

(iv) The velocity is bounded at infinity. 

The Fourier transform in the x-variable of 
the stream function, ~(q, z) = f e-iqX~(x, z)dx, 
can be expressed in terms of the Fourier com- 
ponents of the velocity at the interface, V(q), 

~t(q, z) = 12(q)ze -Iqlz, [6] 

and the velocity in the external liquid is then 
given by 

~x(q,z) = IT"(q)[ 1 - Iq lz le  -J~'z, 

~)z(q, z) = -il~(q)lql ze -~qlz. [7] 

The Fourier transform of the pressure, 
fi(q, z), can then be calculated through the 
Navier-Stokes equation 

P(q, z) = -2ilq]~ex V(q)e Iqlz. [8] 

Finally, the Fourier transform of the hy- 
drodynamic stress tensor, 

[Ovi Ov A 
f f iJ= --P~)iJ'4;-"exl~jXj-~-~iXi ) ' 

is obtained from Eqs. [7] and [8], where xi (i 
= 1, 2) stands for x and z, respectively, 

ai/q, z) 

- _lqtz/2ilq]( 2 - ]ql z) 
= ~e~ V(q)e \ [-2]ql + 2q2z 

-2lq] + 2q2z I 

2iq2z ] 

[9] 

Equations [7]-[9] completely characterize the 
flow in the external liquid B as a function of 
the velocity at the interface, V(x). This velocity 
is obtained in the next section by calculating 
the flow in the inner advancing liquid A and 
by matching boundary conditions on the A/ 
B interface. 
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2. The Inner Liquid Phase 

For the inner phase, even in the limit of 
small contact angles, 0d ~ 1, the profile of the 
A/B interface, f(x), cannot be set to zero (as 
was done for the external liquid). Rather, its 
shape and the velocity profile of the inner liq- 
uid should be determined self-consistently. 
Our approach is to use the lubrication ap- 
proximation (12) in order to get the flow 
equations in the inner liquid, 

lOP 2 
rlinVx(Z)=-~-~xZ +bz, [10] 

where OP/Ox is the pressure gradient in the in- 
ner liquid A and is z-independent in the lu- 
brication approximation (12). The pressure P 
itself is related to the component ~= of the 
stress tensor on the boundary of the external 
liquid B, z = 0, by the Laplace equation 

P(x) = -,~=(z = 0)  - - /v2~'(x) = - - r v 2  ~(x), 

where again the difference between the x-axis 
and the A/B interface is neglected for the ex- 
ternal liquid in the limit of small contact an- 
gles, and b(x) is an integration constant (of the 
z-variable) to be determined below. 

The continuity of the tangential component 
of the stress tensor, ~xz, at the A/B interface 
fixes the integration constant b, 

0 OP b=,~xz(X,Z= ) - ~ .  I l l ]  

In addition, Vx(~') = V(x)[z=o at the interface; 
thus Eqs. [8]-[ 11] relate the interface velocity 
V(x) to the tangential component of the stress 
tensor ~ ( x )  at the interface 

The average velocity 

2 U-~- ~--1 ,Dx(Z)d Z 

is obtained by averaging the lubrication equa- 
tion [10] over the thickness ~'(x), 

lOP 2 1 
l / i n U = - - ~ X X f  (X)-']-'~O'xz(X)f(X). [131 

It is convenient to introduce an excess velocity, 
~o(x) =- V(x) - 3u/2 instead of V(x). 

The excess velocity ~0(x) and the tangential 
stress component, axz, Eqs. [12] and [13], are 
related by two simpler equations 

1 
nin~O(X) = ~ O'xz ( X ) f ( X ) ,  

qex ~, . / t J~ } 1 t 
~o(x) = -~  ~ gtx; J_~ (x_-_-_-_-~) 2 ax ,  [ 14] 

where again the integral in the last equation 
is the Cauchy principal part. 

The solution of Eq. [ 141 and then Eq. [13] 
gives the profile of the advancing liquid inter- 
face. We now study this profile in two situa- 
tions: 

(i) When the solid surface is initially cov- 
ered only with the external liquid B ("dry" 
wetting), Fig. 1. 

(ii) When the solid was previously wetted 
by a thin layer of the inner liquid A ("moist" 
wetting), Fig. 2. 

The terminology "dry" and "moist" is given 
in analogy with the liquid/vapor case where 
the external liquid is the vapor. 

10P 2 
= - -  ~ ~ (x) + ,,x~(X)~(x), rtin V(x) 2 

2 f+~ V(x') 
'~xz(X) = gnex J_~ (x_x,)~ dx'' [12] 

Note that the integral in Eq. [ 12], which was 
obtained by the inverse Fourier transform of 
Eq. [9], is the Cauchy principal part," thus, it 
is well defined. 

u 

Liquid B d A 

" / / ' / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / ~ z  x 

FIG. 2. Moist wetting: as in Fig. 1, but the sohd is already 
covered by a film of  thickness z = h of  liquid B (before 
the spreading of  liquid A). 
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III. THE LIQUID A/LIQUID B 
INTERFACE PROFILE 

1. Dry Wetting 

In the case of  dry wetting, Fig. 1, the solid 
is entirely covered with liquid B before the 
spreading of  liquid A. The advancing velocity 
u is a constant. Part of  the solid (all the region, 
x < 0) is still covered by liquid B. For x < 0 
and z = 0, the no-slip boundary condition im- 
poses 

V(x)=0  or w ( x ) = - 3 u  f o r x < 0 .  [151 

It is extremely difficult to solve Eq. [14] ex- 
actly because of  the singular kernel in the in- 
tegral. Instead, as a first approximation, we 
neglect in Eq. [14] the excess velocity at the 
interface (x > 0), o~(x) = 0. This leads to a 
simplified equation for the profile, 

1 20Pff .  3 

We note that this equation has the same struc- 
ture as that proposed by Pumir and Pomeau 
(10). However in the limit of small dynamic 
contact angle, 0a ~ ~i,/n~x, the viscous friction 
in the external liquid (the third term in Eq. 
[16]) is small compared to the viscous friction 
in the inner liquid (first term in Eq. [16]) and 
one can thus neglect viscous dissipation in the 
external liquid as in the liquid/vapor case. 

Within this approximation [ V(x) = 0, x < 0; 
V(x) = 3u/2, x > 0] we can calculate the 
stream function in the external liquid using 
Eq. [6], 

q~ 3u _llx~ 3 
(x,z)=~-~rztg ~z)+-~uz, [17a] 

or in polar coordinates (r, if) 

3u 
• (r, ~) = ~--~r r(Tr - if)sin ~. [17b] 

Equation [17b] is related to the flow-field 
equation derived by Ref. (1) for a perfect rigid 
wedge in the limit of  small wedge angle, 0 
"~ r/i,/~ex. Their flow field is exactly 

- ur sin ~, 

where the additional term expresses a different 
choice of a reference frame; theirs moves with 
velocity u with respect to ours. In Fig. 3, lines 
of  constant stream field are shown for three 
cases: ~ / u  = 3, 3, and 3. 

A better solution of Eq. [14], which is self- 
consistent for o~(x), can be obtained by ne- 
glecting the variation with x of0a = ~/x in Eq. 
[141, 

3 ~ex ~ 

47r "/']in X 
o4x) = 1 n~x ~" u x >  0, 

1-~ 
27r Tin X 

3 
o~(x) = - ~ u  x < 0 .  [18] 

The equation that gives the interface profile is 
then derived from Eqs. [13] and [18], 

- -  ~ e x  

-~l~20P 3 x (u .  [191 
Tin U 

., Ox 2~r 1 flex 
lq 

27r Tin X 

We can further distinguish two limits: 

12 [ I I 

\ 
k_ 

I 

- 2 0  - 1 0  10 20 

x ~ 

FIG. 3. Flow lines in the external liquid phase as deter- 
mined from Eq. [17a] in the limit 0d ~ nin/nex. The liquid 
A/liquid B interface is shown schematically. Three flow 
lines with ~Y/u = 3, 3/2, 3/4 are shown. 
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(i) In the limit where 0 d ~ nin/'g]ex, Eq. [19] 
reduces to Eq. [ 16]. Note that this particular 
limit can be more restrictive than the general 
limit of small contact angles, 0d ~ 1. The ve- 
locity 60(x) can then be neglected on the in- 
terface ~'(x) for x > 0. 

(ii) Another special case is the case of  very 
viscous external liquid (e.g., for a polymeric 
oil). In this case we may have 0 d > ~/in/~ex, 
even though 0d ~ 1. The interface profile is 
then obtained from Eq. [19], 

1 2 0 P  
~/in U = -- ~-~ ~" ~XX" [20] 

We note that Eq. [20] is similar to the equation 
for the liquid/vapor interface profile with the 
only difference that the numerical prefactor 
1 replaces the usual ½. This correction is easily 
understood if we consider an external liquid 
with infinite viscosity, ~/ex = oo; this "liquid" 
behaves as a solid and Eq. [20] is then exactly 
the Poiseuille equation for a viscous liquid 
moving between two parallel plates which are 
at a distance ~" from one another. 

The introduction of viscous dissipation, Eq. 
[16], in the external liquid phase does not 
eliminate the problem of  the moving contact 
line. (Equation [16] does not have any solution 
with ~" = 0 at finite x.) The solution to this 
problem is to consider the effect of  long-range 
(e.g., van der Waals) forces which are impor- 
tant close to the contact line; this was applied 
successfully to the liquid/vapor case (2, 4, 5). 
Here as well, they are responsible for the ex- 
istence of a precursor film which moves ahead 
of the macroscopic wedge. The profile of the 
precursor film can be determined by neglecting 
viscous dissipation in the external liquid (this 
approximation is even better justified for the 
precursor film than for the macroscopic wedge 
since the effective contact angle, 0d -- 0, in the 
film); hence its thickness e(S) and its length 
I(S) are still given by Eq. [3]. 

It should also be noted that the existence of 
the precursor film further reduces the dissi- 
pation in the external liquid. The nominal 
contact line is not at x = 0 (the position of  the 

apparent macroscopic wedge in the moving 
reference frame), but at x = - l .  The excess 
velocity w(x) in the precursor film is, in a first 
approximation, also zero i fx  > - I  and is given 
by Eq. [ 18] for x < - / .  One should thus replace 
~/x by ¢/(x + l) in Eq. [ 16]. 

2. Moist Wetting 

In this case, before the spreading of  liquid 
A, the solid is already covered with a thin film 
of liquid A of thickness h, as is shown in Fig. 
2. The advancing velocity is not the average 
velocity u but rather (4, 5) 

U ' =  ~----~R. 

One of  the most strildng results in this case 
is that the excess velocity w(x) is identical to 
zero everywhere in the inner liquid phase. In 
order to prove this we introduce the positive 
definite quantity (13) 

I f+oo ~o(x)2 d 
~---~oo r/in ~ - ~  X 

= ~ n e x  _~ ° dx _~ x ( x _ x , )  2.  

The integral in Eq. [21 ] is defined again as the 
Cauchy principal part, and can thus be written 
as 

1 f+oo .--I '-°°oo oo(X)x_x,- o,(x') 2 I= -~nexj_~  ,Ix ax' . 

[22] 

The integrand [w(x) - , , , ( x ' ) l / ( x  - x ' )  has no 
singularity at x = x'; thus the integral is well 
defined and positive. On the other hand, I is 
itself positive definite, Eq. [21 ]. It vanishes only 
if ~(x) = 0, since ~(x) is always positive for 
moist wetting. Hence, the only possible value 
for I is I =- 0 and thus w(x) = ~rxz(X) = O. 

The equation for the profile itself is then 

~ - h  lOP 2 
r/in T g/' = 30XX ~ ' '  

which has been studied in great detail in Refs. 
(2, 5, 8) for the liquid/vapor case (neglecting 
the external phase viscosity). 
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In summary for the case of moist wetting, 
the dynamics of spreading is found to be 
independent of  the viscosity of  the external 
liquid, in the limit of  small dynamic contact 
angles. However, note that the disjoining 
pressure would explicitly depend on the nature 
of the external liquid. Moreover, we expect 
this result to hold only for small contact angles. 

IV. C O N C L U D I N G  R E M A R K S  

The important conclusion of  this paper is 
that even in the limit of  small contact angles, 
viscous dissipation in the external liquid phase 
is extremely difficult to treat exactly. However, 
our approximated solution suggests that the 
external phase viscosity plays only a secondary 
role in this limit; the laws derived for the 
spreading in the presence of a vapor are still 
valid with only minor changes. 

We would like also to make four additional 
remarks: 

1. The study presented here is limited to 
small contact angles. To extend it to larger 
contact angles one would need to solve the 
hydrodynamic equations in the external liquid 
phase which, in a first approximation, is a rigid 
wedge of angle 2a, a = ~r - 0/2. For a wedge 
bounded by two solid plates, Moffat (12) has 
shown that if o~ is smaller than a critical value 
ac - 44 °, eddies appear in the flow, and in 
particular along the bisector plane of the 
wedge, the velocity varies as v ~ sin(In r). In 
our problem, the wedge containing the exter- 
nal liquid is bounded by one solid and one 
liquid boundary. If eddies still exist here, they 
could change the A/B interface profile. More- 
over, they might create corrugations of the in- 
terface with dilatational invariance (10). We 
conjecture that such possible oscillations are 
important for dynamic contact angles 0d that 
are larger than a critical value 0c (which might 
depend on the viscosity ratio nJnin). 

2. When the external liquid is much more 
viscous than the inner one, there is a small 
change in the numerical coefficient in Eq. [ 16] 
and in Tanner's law, Eq. [ 1 ]. However, in front 

of the macroscopic wedge, there is an advanc- 
ing precursor film. We are thus in a geometry 
where a very thin slab of a less viscous liquid 
(thickness e) is pushing a more viscous liquid; 
hence an instability of  the Saffman-Taylor- 
type (11) can appear as shown schematically 
in Fig. 4. In a Hele-Shaw cell of thickness b 
and in the limit where ~/i, ~/'/ex, all wave vec- 
tors smaller than 

1 ~1/2 
are unstable. In the spreading liquid case, the 
restoring force at the contact line can be de- 
scribed by a line tension (2, 14) z --- 3'a, where 
the equivalent line tension in the Hele-Shaw 
geometry is Tb. One expects all wave vectors 
smaller than 

= 12~/ex u 1/2 
ko e~" [23] 

to be unstable (the role of  b is played by the 
precursor film thickness e). 

The instability can develop if both kol >> 1 
and kc~ ~ 1,/being the length of the precursor 
film and ~ being the smallest size on which 
the film can be distorted (2) (the so-called 
healing length, ~ = e2/a). If we introduce a 
characteristic contact angle, 0* = a/e, and 
make use of  Tanner's law, we find 

II Precursor Film 

Liquid B ~ 1  ~ Liquid A 

Macroscopic 
Wedge 

Liquid A 

• ~ 5 ̧  1~ 

FIG. 4. A schemat ica l  top  view of  the Sa f fman-Tay lo r  

ins tabi l i ty  at  the contac t  l ine of  a low viscosity l iqu id  
push ing  a more  viscous one  on  top  of  a solid surface. The  
precursor  film has  a length  l and  the wavelength  of  the 
ins tabi l i ty  is 2~r/k. For  a side view see Fig. 1. 
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(k3)2=(°*]  3 ox 

=(0/37ex  
(k~)2 \ ~ ]  ~i~ 41 .  [241 

(The inequality signs in Eq. [24] are required 
for the instability to occur.) When the precur- 
sor film exists, (0/0") ~ 1, and thus we always 
have kcl >> 1. The largest wave vector of an 
instability is obtained for k ~  ~ 1. In this case, 
the wave vector of  the instability is 

k c = U  1 if O >  ~/i._..En 1/3, 
Inexl 

and 

kc=~-l~exl/2{LI3/2 if  0 7/inl/3 [25] 
\0"1 b " 

We note that the Saffman-Taylor instability, 
which was treated here quite qualitatively, is 
only one of the plausible instabilities. Another 
possibility is the pinning of the contact line by 
impurities on the solid surface (14). 

3. We have used crude approximations to 
study Eq. [ 14]. A more detailed mathematical 
treatment is needed in order to get a better 
solution of this integro-differential equation. 
Hence, further verification of our solution for 
the excess velocity o~(x) is needed. 

4. Finally, another special case that was not 
considered here, but was previously discussed 
(1), is the dynamics of deposition of a mono- 
layer from a liquid/vapor interface onto a 
moving solid surface. This is known as a 
Langmuir-Blodgett film (15), and in this case 
some of the boundary conditions for the flow 

equations are different (1). It will be of interest 
to further apply our results to this case as well. 
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