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The critical amplitude of the g-state Potts-model free energy is studied as a function of g in two
dimensions and on the diamond hierarchical lattice. The amplitude diverges at an infinite number
of g values, g,, introducing logarithmic terms in the free energy. We expect that in each interval
(gn»gn+1) there is a value §, where the amplitude vanishes, affecting the singularity of the free ener-
gy as a function of temperature. Possible consequences for gelation and vulcanization of polymers

are discussed.

I. INTRODUCTION

The g-state Potts model has been extensively studied’ in
view of its connection to a variety of experimental systems
undergoing phase transitions, ranging from percolation? to
adsorption of noble gases on various substrates.> The na-
ture of the transition between the low- and high-
temperature phases changes from continuous for low
values of ¢, g <gq,, to discontinuous for high values of g,
g > g., thus enhancing the interest* in this model. In two
dimensions, Baxter® has shown that g, =4, and den Nijs®
proposed a formula which gives the thermal exponent as a
function of g for ¢ <4. However, not much attention has
been paid to the critical amplitude. It is the purpose of
this paper to present a study of the g dependence of the
critical amplitude of the Potts free energy.

A sequence of values of g, {g,}, starting with ¢;=2
(the Ising model) and converging towards zero, where the
critical amplitude diverges, is calculated in Sec. II. For
these values the power law is replaced by a logarithmic
singularity. We present evidence which shows that be-
tween any two consecutive values g, and g, the ampli-
tude varies monotonically between — 0 and + . Hence
there is a value g, in any interval (g,,q, ;.;) where the crit-
ical amplitude is zero, Sec. III, and thus the expected lead-
ing singularity does not occur. We also obtain estimates
for the g, values by using an expression for the g depen-
dence of the critical amplitude which interpolates between
known results.

In Sec. IV numerical estimates of the critical ampli-
tudes of the two-dimensional g-state Potts and bond-
percolation models are obtained by using Migdal-
Kadanoff’ renormalization group. These computations
are, of course, approximations for the square lattice.
However, they are exact when the models are defined on
the diamond hierarchical lattice.>® This is significant in
view of the minimal amount of exact and detailed analysis
of nontrivial models of phase transitions available.

These theoretical predictions may have experimental
consequences, Sec. V, for polymer mixtures undergoing
gelation and vulcanization processes which belong to the
university class of the Potts model with g between zero
and one.'® In this connection we analyze the critical
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behavior of a bond-percolation process in the presence of a
fugacity which controls the number of clusters.

II. DIVERGENCE OF CRITICAL AMPLITUDE
AND LOGARITHMIC SINGULARITIES

In this section we discuss the divergence of the critical
amplitude of the Potts-model free energy at certain values
of g, the number of states. The Potts Hamiltonian is

X
———=2J Os. 5. (1)
kT %’, 5

where & is the Kronecker delta function, s;=1,2,..., q is
a spin variable located at site i of the lattice, and the sum
is over nearest-neighbor sites. Throughout this paper g is
a real variable.>!! The free energy per site f, close to the
critical point, is the sum of a regular contribution f,., and
of a singular contribution fp,,

f =freg +fsing » (2)
fsinngi lt’d/y ’ (3)

where 4, is the critical amplitude, t =(T —T,)/T, is the
reduced temperature, d is the dimension, and y is the
thermal exponent.

Logarithmic modifications of the power-law singulari-
ties can occur!? when one of the scaling fields is marginal,
e.g., at the upper critical dimension,'® or when the critical
exponents satisfy certain relationships.!> We will elaborate
on a particular example of the latter case which is impor-
tant for the Potts model. When the ratio d /y is equal to
an integer mg, d/y =my, the leading singularity of the
free energy is not, in general, [y~ |?| "0 but
f sing~tm°1n |t |. The changeover from power law to log-
arithmic singularity can be traced back to a breakdown in
the power (Taylor) expansion of the regular part of the
free energy when d/y =m,. Indeed, within a typical
renormalization-group scheme, the free energy satisfies
the functional equation

f(O=g@)+b%f (b1, @)

4010 ©1984 The American Physical Society



29 CRITICAL AMPLITUDE OF THE POTTS MODEL

where g is an analytic function of the scaling field ¢, and b
is the rescaling factor. The regular part of the free energy
freg and g can be expanded in powers of ¢,

fregz zfmtmr g = 2 gmtm' &)
m =0 m=0
By using Eq. (4), the coefficients f,, can be expressed as

_ &m
T 1—pdtm

Sm 6
However, if d/y =m, the expansion of f,., is not valid
because f, , from Eq. (6), diverges as (mo—d/y)~L. In
this case, the free-energy singularity is determined by the
combined contributions of f,, otm" and the usual singular

part A, | ¢ |4/ in the limit d /y —my,

0
freg= E fmtm ’
m=0

mstm, ‘ 7)

L : my d/y
fsmg—' d/}:linmo (fmot +Ai ‘ t [ )

= lim

(frnt O+A st (sgnt)"®
d/y—mg 0

X[1+(d/y —mo)n|t|]1},
where sgnt is 1 if £ >0 and —1 if t <0. By denoting

a= lim At(sgnt)mo(d/y —myg) ,
d/y-»mo

(8)
lim [A44 +fm0(sgnt)m°] ,

Cy=
d/y—m

and assuming the existence of these limits, we can rewrite
f sing a8

fang=at °ln|t| +cy|t]™. )
Equation (8) and the assumption that ¢ is finite imply

a=-— lim f,(d/y—mq), (10)
d/y—m
which shows that the amplitude a is the same above (¢ > 0)
and below (¢ <0) the critical temperature.'* It also fol-
lows, Eq. (8), that 4. diverges as

Ay ~(d/y —mgy)~! ford/y—my . (11)

These results, Eqs. (8)—(11), though discussed here in
the context of the Potts model are more general. Indeed,
they are confirmed by the exact solutions of the eight-
vertex model'® and of the Ising model on a Cayley tree.'®
For both models a symmetry, duality in the former and
time reversal in the latter, forbids the occurrence of odd
powers of the scaling field in fy,,, thus allowing logarith-
mic modifications of the power law only when d/y is an
even integer. The same holds for the Potts model which is
self-dual when defined on the square lattice. The self-
duality also implies that the amplitudes 4. and ¢ are the
same above and below the critical temperature,
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A, =A_, c,=c_
and (12)
a=0 if d/y is an odd integer .

den Nijs has conjectured® that the thermal exponent y
of the g-state Potts model in two dimensions varies with q
as

1—u
2—u’

where 0<u =(2/m)cos™ (Vg /2)<1 and 0<g <4. Ac-
cording to this conjecture which has been verified numeri-
cally*'” and analytically,'® and agrees with all exact
known results, d /y decreases monotonically from + o at
g=0to + at g =4, thus spanning all integers larger than
unity. The values of ¢ for which d/y =2m, m =1,2,. . .,
and where logarithmic singularities occur, Eq. (9), can be
obtained from Eq. (13),

y=3 (13)

Gm =4sin® , m=1,23,.... (14)

T
6m —2
This sequence starts with g; =2, corresponding to the Is-
ing model which exhibits a logarithmically divergent
specific heat,'” and the next following values are in the
internal (0,1): ¢,=0.3820, ¢;=0.1218, ¢4,=0.0810, etc.
For large m, Eq. (14) is approximated by g,, ~m*/9m?
and the accumulation point of this sequence is 0.

When d/y=2m +1, m=1,2,3,..., corresponding to
the following ¢ values,

. . T
q,,,=4smz6m+1 , m=12,3,... (15)
there is no logarithmic contribution because the amplitude
a is zero, Eq. (12). In this case

Ssmg=cy [t *1, m=1,23,... , (16)

and thus the (2m + 1)th derivative of the free energy with
respect to t is discontinuous at the critical point ¢t =0, i.e.,
the transition is of (2m + 1)th order in Ehrenfest’s sense.?®

III. CRITICAL AMPLITUDE DEPENDENCE ON ¢

A. Monotonicity ansatz

In this section we make the ansatz that the critical am-
plitude of the two-dimensional Potts free energy is a
piecewise monotonic function of g, and we discuss the
consequences of the ansatz. The exact solution of the
eight-vertex model'® has proven to be useful for acquiring
information on the Potts model. Indeed, Baxter,’ using a
mapping between the two models, has shown that for
g <4 the transition is continuous while for q > 4 the Potts
transition is discontinuous. Moreover, den Nijs’s conjec-
ture,® which determines the thermal exponent of the Potts
model, is a relationship between the exponents of this
model and the eight-vertex model. It is then plausible that
insight can also be gained on the critical amplitude of the
Potts model by examining the exactly known critical am-
plitude of the eight-vertex model.



4012

The critical amplitude of the eight-vertex free energy
diverges when d /y (7 /u in Baxter’s notation'”) is equal to
even integers (consistent with our discussion in Sec. II),
and in between two such values it varies monotonically be-
tween — oo and + oo. By analogy with the eight-vertex
model we make the ansatz that the critical amplitude of
the Potts model is a piecewise monotonic function of d/y
where y is the Potts-model thermal exponent and d =2.
Since d /y is a monotonic function of g, Eq. (13), the am-
plitude also varies monotonically with g. We verified this
ansatz by computing the g dependence of the amplitude
within the Migdal-Kadanoff’ renormalization-group
scheme, and the results are presented below in Sec. IV.

For 2 < g-<4 the specific heat, which is a positive quan-
tity, diverges with an exponent a=2—d/y >0 [Eq. (13)],
and thus for small 7 it can be approximated by its singular
contribution,

CrAQ2—a)l—a)|t| >0, 17)

where A=A, =A_. Equation (17) implies that 4 >0.
Hence as g—qi" =27, the amplitude 4 — + o, while for
g—q1 =27 it diverges to — o according to Eq. (11). At
g =1 the Potts model is trivial; the free energy f is pro-
portional to the coupling J. This is consistent with Egs.
(2) and (3), provided that the critical amplitude 4 =0 at
q =1. Decreasing q still further, 4 increases and as
g—q3 =0.3820% it diverges to + o, while at g—gq;,
A— — . The qualitative dependence of 4 on d/y and ¢
is shown in Fig. 1.

T T T 7 T
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2 4q 6 8
d/y

FIG. 1. (a) Qualitative dependence of the amplitude on
d/y <8, d =2. The special values g,, §,, and §, are marked.
(b) g dependence on d /y from den Nijs’s conjecture.
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Figure 1 is in agreement with results obtained for bond
percolation which is related® to the g-state Potts model
with ¢ —1. The mean number of clusters G is equal to the
derivative of f with respect to g evaluated at g =1,

G=§i . (18)

99 | 1
Then,
0

Ging~ 7 (4 |t ld/y)
JagF et
_ %‘i|t|d/y+Aai|z|d/y] (19)

q q g=1

Since 4 (¢ =1)=0, it follows that the percolation ampli-
tude is dA /dq | ;. According to our analysis, this is a
negative quantity (Fig. 1) in agreement with series expan-
sions?! for bond percolation.

An important consequence of the g dependence of 4, as
shown in Fig. 1, is that there is a sequence of values {g,},
with g, 1<, <4, [g, are given in Eq. (14)], starting
with §,=1, where A4 is zero, A(q =§,)=0. Hence for
these values the free energy does not exhibit the singulari-
ties prescribed by den Nijs’s conjecture.

B. Interpolation formula for 4 (q)

The solution of the eight-vertex model suggests an ex-
pression for the dependence of the Potts-model critical
amplitude on ¢. In the eight-vertex model, the critical am-
plitude!® is proportional to cot(w/y), where y is the
thermal exponent. By analogy we propose the following
form for the Potts amplitude:

A=—b(q)

T 1
COty(q) -3 ] s (20)

where y(g) is the Potts thermal exponent and b(g) is a
slowly varying positive function of g. The sign of b(q)
was chosen so that 4 >0 for g >2. Equation (20) interpo-
lates between all exact or accepted results as follows: (i) 4
diverges whenever d /y =2/y is an even integer and (ii) 4
is zero for g =1 (y =<). It is interesting to note that by
using Egs. (13) and (20) we obtain

G =4sin*(m/6m), m=1,2,3,... (21)

as the values of ¢ where 4 =0. The sequence starts with
g1=1 and continues with the following values in the in-
terval (0,1): §,=0.2679, g3 =0.1206, g, =0.0681, etc.

V. NUMERICAL COMPUTATIONS USING
THE MIGDAL-KADANOFF RENORMALIZATION
GROUP

In this section we present numerical computations of
the Potts critical amplitude and bond-percolation related
quantities. @~ We use the Migdal-Kadanoff renor-
malization-group method” with rescale factor b =2, which
is an approximation for two-dimensional lattices. At the
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same time this scheme is exact for the diamond hierarchi-
cal lattice.®® This lattice is constructed, Fig. 2, in the fol-
lowing iterative way: four bonds such as the one in Fig.
2(a) are aggregated to form a diamond and then, four dia-
monds such as in Fig. 2(b) are aggregated to form a dia-
mond of diamonds; by repeating this process ad infinitum
we generate the diamond hierarchical lattice.

A. Potts critical amplitude

The free energy per site for the Potts model, Eq. (1), on
the diamond hierarchical lattice is given by the conver-
gent’ series

f=2347g0™, (22)
n=0
where?
g ==>In[2exp(2))+q —2] . (23)
The recursion equation for the exchange coupling is
J-(,,+1)=1n exp(4J(”))—I——q —1 (24)
2exp(2 ™) 4q -2 |’

and J'©=J [the original coupling appearing in Eq. (1)].
In order to find the critical amplitude of f,,, the regu-
lar part f,, was subtracted from the free energy,
Ssing=f —freg- The free energy f is obtained from Egs.
(22)—(24) while freg=3,,,.fm(J —J*)", with coefficients
fm calculated by differentiating m times the equation
fW =g ++fD) at the fixed point JV'=J =J* We
then computed the amplitude from Ay
= fungJ) | J —J* | 797, with d =2, for several values of J
close to J* until good numerical stability was achieved.
The numerical results in Fig. 3 support the ansatz of Sec.
III, i.e., the amplitude is a piecewise monotonic function
of q. We find that when d/y =2 and 4 (even integers),
corresponding to ¢;=6.82 and ¢,=0.54, the amplitude
diverges. At g =g, =1 the amplitude is zero, which is a
consequence of the fact that for any lattice f~J. A
second zero occurs at ¢ =§,~0.26. We also find the fol-
lowing: (i) for any g, A . =A _, and (ii) for d/y =3 and 5
(odd integers), corresponding to §;=1.33 and §,=0.29,
the amplitude does not diverge. This exact result, which
is a consequence of duality, is discussed elsewhere.?* On

v &

(a) (b) (c)

FIG. 2. Diamond hierarchical lattice construction. Iteration
levels O, 1, and 2 are shown in (a), (b), and (c), respectively.
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FIG. 3. Amplitude dependence on d/y(q) for the Potts
model on the diamond hierarchical lattice (Migdal-Kadanoff re-
normalization group, b =d =2). The special values g,, g,, and
g, are marked. Numerical results are displayed for
1.6 <d/y <5.3.

hierarchical lattices, for fixed g, the critical amplitude is
equal to a constant plus a numerically small periodic func-
tion®* of In|J—J*|. In the cases we analyzed, the
periodic part of the amplitude is very small, about 10~> of
the constant part, and does not effect the results quoted in
this paper. This is also true for the percolation amplitude
which is discussed next.

B. Bond percolation

The mean number of clusters per lattice site G for bond
percolation is obtained by differentiating the Potts-model
free energy per site with respect to g at g =1, Eq. (18). By
also using?? f(q =1)=3J we find

G=%3 4"1-p,),

n=0

(25)

where p,=1—exp(—2J) is the occupation probability
for a bond of order n. The recursion equation for p,, is

Prn41=2P7—pr , (26)

and po=p is the occupation probability for the primitive’
bonds of the lattice. This equation® is derived either by
setting ¢ =1 in Eq. (24), or alternatively by calculating the
probability p, ., to connect the boundary”® sites (open cir-
cles in Fig. 2) given that a nth-order bond is present with
a probability p,. The recursion equation (26) has three
fixed points: p =0, which governs the “nonpercolating
phase,” p =1, which governs the “percolating phase,” and
p*=(v'5—1)/2~0.618, which is the percolation thresh-
old on the diamond hierarchical lattice. The “thermal”
exponent, corresponding to a singularity Giing
~ |p —p* |7, is y =0.6115, which is compared with den
Nijs’s prediction for two-dimensional bond percolation
y =%. The dependence of G on p, computed by using
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Egs. (25) and (26), is shown in Fig. 4.2
We also computed the critical amplitude 4, defined
through

Gsing =/fi Ip _P* ' 2/y=G _Greg ’ (27)

where Greg=,,8m(p —p*)". We find 4, =4_~—6.3
to be compared with series expansions for square-lattice
bond percolation?! 4, =4 _ = —4.24+0.015.

V. BOND PERCOLATION WITH A FUGACITY
WHICH CONTROLS THE NUMBER OF CLUSTERS

In this section we consider bond-percolation processes
in the presence of a fugacity which controls the number of
clusters. Since the g-state Potts model is related to this
process, as is shown next, we will use the results of Secs.
II and III to analyze the singularities of the mean number
of clusters as a function of the bond-occupation probabili-
ty.

This study may be relevant for polymer mixtures under-
going gelation and vulcanization. Indeed, gelation and
vulcanization are percolation processes.”” Moreover, it
has been argued!® that an appropriate choice of polyfunc-
tional units in polymer mixtures amounts to controlling
the number of loops in the allowed configurations. Then,
it seems plausible that a simple model for these processes
is bond percolation in the presence of a fugacity which
controls the number of clusters or equivalently the num-
ber of loops, since for a lattice of N sites, and for any
graph with b bonds, the number of loops c is determined
by the number of clusters n, according to Euler’s formula
c=b+n—N.

For reasons which become clear later, we denote the
cluster fugacity by g and the bond occupation probability
by p. As usual, two sites connected through a chain of oc-
cupied bonds belong to the same cluster, and single-site
clusters are considered also. The mean number of clusters
per site is

05

I J
0 05 1
p

FIG. 4. Mean number of clusters per site G as a function of
the bond-occupation probability p for the diamond hierarchical
lattice (Migdal-Kadanoff renormalization group, b =d =2).
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zpb(g)(l_p)Nb"b(g)qn(g)n(y)

1 ¢
G(p,g)=— — ) (28)
N pr(g)(l—p)Nb b(g)qn(.?)
E2

where the summation is over all possible graphs & com-
patible with the lattice and N, is the total number of lat-
tice edges. The fugacity ¢ controls the number of clusters
in the sense that graphs with the same number of bonds b
but with different number of clusters get different
weights. When g < 1 the graphs with a smaller number of
clusters, or loops, are favored over graphs with greater
such numbers, while the reverse holds when ¢ > 1. When
g =1, since

g

Eq. (28) reduces to the expression for the mean number of
clusters in the regular bond-percolation problem.!

The bond-percolation process with a fugacity ¢ which
controls the number of clusters is related to the g-state
Potts model. Indeed, a high-temperature expansion! for
the partition function is
b(9)

L q

1-p

where p =1—exp(—2J) and N is the total number of lat-
tice sites. A consequence of Egs. (28) and (29) is that the
mean number of clusters per site as a function of bond-
occupation probability p and fugacity q is related to the
g-state Potts free energy per site f according to

n(9) , (29)

Z =exp(Nf)=
g

(30)

This also justifies our notation for fugacity. When g =1,
Eq. (30) is the usual relationship’? between bond percola-
tion and Potts model with g— 1.

The singularity of G as a function of ¢(q)=p —p*(q),
where p*(q) is the threshold probability, is given by
Gging=q0fsing/3q. For A(g)=d/y(q) noninteger,

sng=A+(g)|2(q)|*? and

*
Gsingz—inA%(sgnt) [t]8-1

dA A dAi A
+qA 4 dq]tl In|t|+q a2 [t]2, (31)
where sgnt equals 1 if >0 and —1 if 1 <0. Hence the
leading singularity is |¢|2~!. Moreover, in two dimen-
sions 4 =A _ so that the amplitudes for Gy, [Eq. (31)]
have opposite signs below and above the threshold proba-
bility. However, there is a sequence of g values, §, (Sec.
IID), starting with §;=1 where 44+ =0 and as a conse-

quence
dA 4+
t A
Gsingzq dq lt , .

In two dimensions d4 | /dq =dA _ /dq <0, Sec. I, so that
the amplitude of G, for these special values of g is the
same negative quantity below and above the threshold
probability.
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When A=d /y is an integer m, the singularity of f is
the result of the combined contributions A4 |¢]|2 and
fom otm° (Sec. II),

. a m A
Gsing'—‘—’q Al-:nnlzo a_q(fmot °+A:t It I )

=" |t ey 2™

+6:™n | £ P +64 |t |t | +dy 2],

(32)
where

*
&‘=—qmogfq—a ,

*
é\i——-—qmo%(sgnt)ci ,
~ dA
=g (33)
b dq a,
N i dfm (sgnt)™ dA 4
e i fogg o ey |
A . dd + dA
e_=Al_15'1!O q(A=mo) dgq +e dg "t |’

and a and c4 are given in Eq. (8). The leading singularity
is Gsing"‘tmo—lln | t]|, provided @40. For the square lat-
tice a =0 when m, is odd, Sec. II, and thus @=b=0.
Moreover, ¢, =c_, Eq. (12), which implies &, =—¢_.
Hence in these cases the leading singularity is
Gging~C 1 5gnt | 1] ™0~ je., the percolation transition is
of (mg—1)th order, my—1=2,4,6,..., in Ehrenfest’s
classification.?

The simple model for gelation and vulcanization of this
section, bond percolation with a cluster fugacity, is con-
sistent with the field-theoretical approach!® prediction
that these processes are in the Potts universality class with
q between zero and one. Our analysis, however, shows
that for (most) fugacity values the mean number of clus-
ters singularity is not G ~ |t |4/?'?, with y(q) the g-state
Potts thermal exponent, but G~ |¢|14?@=1 On the
other hand, there is a sequence of values of the fugacity g,
[4 (g, )=0], where the singularity of G is indeed given by
d /y(q), and this includes the g =1 case of the usual bond
percolation.
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VI. CONCLUSIONS

We presented a study of the two-dimensional Potts-
model critical-amplitude dependence on q. There is a se-
quence of g values, {g,}, given in Eq. (14), at which the
critical amplitude diverges and the power-law singularity
of the free energy is modified by logarithms. There is evi-
dence for the existence of another sequence of g values,
{@n}, where the critical amplitude vanishes and thus the
free energy of the corresponding Potts model does not ex-
hibit the expected singularity. An interesting question is
whether there is any singularity at all for the special
values ¢ =@, with n > 1. Estimates for §,, Eq. (21), were
obtained by using Eq. (20), which interpolates between the
known divergences of the amplitude at ¢,. We also stud-
ied the Potts critical amplitude and bond percolation on
the diamond hierarchical lattice.

Our work deals with two-dimensional and hierarchical
lattices, but it may be that the main results, such as the
generic dependence of the critical amplitude on ¢, Fig. 1,
will hold in three dimensions, with shifted values for g.
Thus there may be three-dimensional experimental reali-
zations, e.g., for polymer mixtures undergoing gelation
and vulcanization. It is also interesting to note that, in
general, 4, 4A_ for three-dimensional systems. Hence
different singularities could occur above and below the
critical temperature at certain values of ¢ where only one
amplitude (4, or 4_) is zero.?8

Irrelevant fields and nonlinearities in scaling fields gen-
erate corrections to scaling'??® which are not discussed in
this paper. Further studies of critical amplitudes, perhaps
by means of Nightingale’s phenomenological
renormalization-group!” or series expansions, are neces-
sary to verify our findings.
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