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This paper presents extensive Monte Carlo simulations of the random-field Ising model
in various dimensions for long times in moderately large systems, and specifically ad-
dresses the question of whether the lower critical dimension is 2 or 3. The authors find
long-range order for d=3 and no long-range order for d=2. The marginality of the d=2
case is further checked by studying a system in d=1In8/In3 ~ 1.89 dimensions simulated
by a fractal; the authors thus conclude that the lower critical dimension is 2, ’

PACS numbers: 75.40.Dy, 05.50.+q, 75.10.Hk

Since the paper of Imry and Ma,' the question of
the lower critical dimension d; (below which long-
range order cannot occur) of the random-field
Ising model (RFIM) has been a matter of contro-
versy. Theoretical works can be classified in
one of two categories:

(i) The simple domain argument of Imry and
Ma, later on refined by including roughening ef-
fects,? concludes that d; =2, This is also sup-
ported by numerical calculations® which specifi-
cally simulate the dynamics of interfaces in d=2,

(ii) A different approach* emphasizing the im-
portance of roughening yields d, =3. Similarly,
the € expansion® (which is an expansion around
the upper critical dimension, d_ = 6) indicates that
order by order, the critical behavior of a d di-
mensional RFIM, in the presence of a Gaussian
random field, is identical to that of a nonrandom
Ising model in d — 2 dimensions, thus implying
d, =3 (since for the pure case d; =1). This argu-
ment has been generalized to a nonperturbative
treatment® by the use of supersymmetries., How-
ever, none of these works can convincingly
enough resolve the controversy. Indeed all the
roughening arguments rely heavily on simplified
geometries (e.g., solid-on-solid® interfaces) and
scaling forms of the surface free energy. Even
though the supersymmetry arguments are aesthet-
ically attractive, and certainly correct close to
d, =6, it is not clear whether they can predict
correctly the lower critical dimension of the
RFIM. In fact, the possibility of multiple solu-
tions of the mean-field equation, as well as the
possible change of sign of the Jacobian, is ig-
nored. Also, the validity of a Landau-Ginzburg-
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Wilson theory is questionable around d;.

On the experimental side, a similar controversy
exists. So far, all experimental works have used
a modified version of the Fishman-Aharony pre-
scription” where the RFIM is realized by a diluted
antiferromagnet in a uniform magnetic field. One
series of experiments® yields d; > 3, whereas
others® yield d, =2. It is to be stressed that these
experimental realizations are only approxima-
tions to the RFIM. Let us also emphasize that
in order to really see long-range ordering, ex-
periments ought to be done in presence of a small
symmetry-breaking field; otherwise, if the sys-
tem is cooled down, domains, induced by the ran-
dom field, can appear. This is analogous to drop-
let formation in the liquid-gas transition along
the coexistence isotherms. For the diluted anti-
ferromagnetic case, the symmetry-breaking field
is a staggered magnetic field which cannot be
produced experimentally.

Numerical simulations performed on the RFIM
are free of all these difficulties. However, pre-
vious Monte Carlo (MC) calculations'® done on the :
RFIM with + # field distribution cannot, in our
opinion, settle this dispute. Indeed, the sample
sizes and running times are too small, and most
important, the absence of a small symmetry-
breaking field may lead to ambiguous conclusions,
It thus seems important to perform a detailed
computer experiment on the RFIM with Gaussian
random field, the advantage being that it is done
directly on the system which is studied in most
theoretical works and all adjustable parameters
can be varied. Thus, we have carried out a com-
plete and thorough study of the RFIM in a Gaus-
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sian random field, in various dimensions. We
find long-range order in three dimensions; the
two-dimensional case is marginal and compatible
with no long~range order. The marginality of the
d =2 case is further checked by making calcula-
tions on a fractal lattice which simulates d =1n8/
1In3 =1.89. For the fractal, we find no long-range
order.

Our results were obtained with use of the MC ,
heat-bath method™ and in addition their consis-
tency was confirmed by the MC Metropolis meth-
od.' Several sample sizes were used in each
dimension with periodic boundary conditions
(typically of the order of 2000 spins). The pro-
cedure we use in order to achieve thermodynamic
equilibrium is a modified field-cooling method.
We start at high temperature (where the system
is clearly paramagnetic), in the presence of a
quenched Gaussian random field H; of standard
deviation #H, and of a small constant external
field, H.,, which we take to be 2% of H. Also,
we keep only random-field configurations for
which N2 ¥ H; < H.,,. More specifically, the
Hamiltonian for the RFIM is

-B¥=d 27 S;S;+2,(H;+Hey)S;.
(i,d) i

We then cool down the system slowly enough to
achieve thermal equilibrium and good statistics,
typically 15000 Monte Carlo steps per spin (MCS)
out of which the first 5000 MCS are discarded be-
fore taking averages (this has been checked with
much longer runs of up to 100000 MCS). When-
ever the system builds up a magnetization (M
>0.2), the constant external field is reduced by
half at the next temperature in the cooling process
in order to check that the magnetization is not
forced upon by the external field. This turns out
to be particularly important in two dimensions
where it is observed that a transient magnetiza-
tion can build up and flip after the constant field
is reduced. Finally, quenched averages of ob-
servables have been performed over ten different
configurations of the Gaussian random field. We
present the curves for the magnetization M, the
susceptibility y, and the specific heat C,, as a
function of temperature., We stress that although
in each case we present results for one specific
sample size, the sample size has been varied in
order to check the consistency of our results.
Similarly, we have checked our calculations for
various values of H/J. Numerical simulations of
disordered systems are subject to two types of
errors: (i) For each configuration of the random
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field, there is the usual stochastic error, due to
the finite number of MCS. Except for d=2, where
thermal fluctuations are particularly important,
the number of MCS has been chosen so that this
error remains smaller than 2% (close to 7, it can
reach 10%). (ii) The average over disorder in-
troduces an additional type of error. Indeed, the
small variations of the critical temperature with
the random-field configuration induce large er-
rors close to T, because of the fact that all
measured observables are singular at 7,. We
display these error bars in Fig. 1, except for y
very close to the transition. Average observables
clearly indicate a sharp transition in d =3,

(i) d=3 (Fig. 1).—In three dimensions, the situ-
ation is fairly clear, The results are reported
for H/J =1 and lattices of 13X 13X 13 spins (lat-
tice sizes of 10X 10X 10 and 15X 15X 15 were
also used with no noticeable difference). In all
our samples we find that there is a sharp transi-
tion with weaker singularities than in the pure
case, at a critical temperature which varies by
less than 5% as the random-field configuration is
varied (with fixed &/J). This is clearly seen on
the magnetization, susceptibility, and specific-
heat curves. As the system is cooled down, it
always builds up a magnetization in the direction
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FIG. 1. RFIM in d=3: magnetization M (squares),
susceptibility x (triangles), and specific heat C, (cir-
cles) as a function of 7=J ~!, Each data point repre-
sents the quenched average over ten Gaussian random-
field configurations. Lattices of 13 x 13 x 13 spins and
running time of,15 000 MCS (of which the first 5000
MCS are discarded) are used to compute thermal av-
erages. The contribution of the constant external field
is subtracted from the magnetization, M =M ;.

— XHeyy, Where M, is the MC result. 7, ~4.15 for
the RFIM should be compared with T, =4.51 for the
pure system,



VOLUME 52, NUMBER 2

PHYSICAL REVIEW LETTERS

9 JANUARY 1984

of H.,, and this magnetization persists when
H.,, goes to zero. The ground state of the sys-
tem is completely magnetized with only one do-
main (this was also observed in a much shorter
MC run done by Landau et al.*°). If domains of
size larger than our lattice size were caused by
the random field, one should expect, for the pro-
cedure described above, an equal number of con-
figurations with up and down magnetizations.
Since the probability of getting ten consecutive up
configurations, just by chance, is 27'° and we
never see a magnetization opposite to the exter-
nal field when the random-field configuration is
varied, we conclude that even for much larger
systems, formation of domains is highly improb-
able in the low-temperature phase. We also did
five scans of H/J, keeping T constant within each
scan (T=1-5). We find a critical H,/J~2.75 (to
be compared with mean-field value'? of 4,79)
above which there is no magnetization for finite
T. For all values of H/J<H_/J, we find a mag-
netization and a transition with T,—~0 as H/J
—~H,/J. Further numerical work (using finite-
size scaling) is currently in progress in order to
calculate the corresponding critical exponents.

As another elaborate check on the existence of
order in d=3, we took one of the RFIM configura-
tions at T=4.0 (just below the observed T_) and
H ey /J=0.01, and performed a MC run of 10°
MCS. Observing the time evolution of the M by
averaging over every 5000 consecutive MCS, we
found no downward shift in the magnetization as
a function of time. The magnetization stabilized
around M =0,610, with fluctuations of the same
order of magnitude, 0,005, throughout the MC
run. When H.,, =0, we checked that overturns
due to finite-size effects occur every 2 x10° MCS,
both in the pure and random 133 systems just be-
low their respective T,’s.

(ii) d=2.—The results for two dimensions are
quite different. As the samples are cooled, we
observe three types of behavior: In some cases,
a magnetization parallel to H ., builds up, simi-
larly to the nonrandom case; however, in half of
our samples, either the system builds up a mag-
netization opposite to H.,,, or domains appear,
which persist to low temperatures. This should
be constrasted with the 45% pure system, where
overturns due to finite-size effects, just below
T,, occur approximately every 10° MCS. In the
samples where the system does have a magnet-
ization, the susceptibility and the specific heat
exhibit a peak; in the samples with domains, the
susceptibility shows a broad plateau (probably

due to the trapping in metastable states). In all
cases, the system exhibits large fluctuations,

and the statistical errors we get with typical sam-
ples of 45 %45 spins averaged over 15000 MCS
are too large to allow meaningful results. Appar-
ently, the sizes necessary in order to achieve
good statistics are prohibitive (we have performed
some runs on 60 X60 lattices and up to 100 000
MCS with no noticeable improvement on the sta-
tistics). However, the fact that H.,, cannot al-
ways force the magnetization in its direction and
the existence of large fluctuations (compared to
d=3) are evidence that d =2 is the lower critical
dimension,

(iii) Fractal d=In8/In3 ~ 1.89.—The marginality
d=2 is even more apparent when the two-dimen-
sional behavior is compared with that of a spin
system in d <2, We have constructed noninteger
dimensional lattices by using fractals.’® The
fractal lattice we used is constructed in a self-
similar way as is shown in Fig, 2. Although we
cannot prove that a fractal of Hausdorff dimen-
sion d y represents an analytic continuation of a
Euclidian space of dimension d, it is tempting to
draw an analogy between the two. For instance,
with the fractal we chose, the average connectiv-
ity of the lattice is reduced compared to the two-
dimensional lattice, and the effective coordina-
tion number is 2d=3.78. We thus claim that this
fractal lattice provides some information on the
physics in d <2, The size of our sample is 81
X81, and in the absence of a random field, the
system exhibits a ferromagnetic transition at 7,
=2.1 (compared to T, =2.27 for the square lat-
tice). However, using the cooling procedure
described above, we observe that the introduc-
tion of very small disorder (H/J=0.5) eliminates
the transition. In fact, on all samples we tried,

FIG. 2. Fractal lattice with Hausdorff dimension
dy =1n8/In3~1.89. The lattice size is 81 x 81 and
spins occupy the blank area only. The sizes of the

various black areas are 3x 3, 9x 9, and 27 x 27,
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the magnetization remains zero down to very low
temperatures (7=0.1), and the system is made
up of many domains of up and down spins. Re-
laxation times are short enough so that 15000
MCS is sufficient to provide reasonable statistics.

In conclusion, we summarize our results. (i)
In d=3, for all samples we checked, the system
undergoes a sharp transition to a ferromagnetic
state with a magnetization parallel to the (van-
ishingly) small external field. (ii) In d=2, some
samples have a magnetization parallel to the ex-
ternal field, and some are opposite. We thus
conclude that the system will break up into do-
mains so that there is no ferromagnetic transi-
tion (of course, our results do not exclude other
types of ordering such as a spin-glass). Also,
fluctuations and relaxation times are unusually
long (compared to higher- or lower-dimensional
systems). (iii) Finally, in d<2 (d~1.89), weak
disorder destroys long-range order. In view of
these results, we think that we have presented
Monte Carlo evidence that the lower critical di-
mension of the RFIM is 2.
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