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This paper considers a family of spatially semi-discrete approximations, includ-
ing boundary treatments, to hyperbolic and parabolic equations. We derive the
dependence of the error-bounds on time as well as on mesh size.
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1. INTRODUCTION

The question of the role of numerically imposed boundary conditions in
the solution of parabolic and hyperbolic PDE's has been with us for many
years. Many investigators have studied the effect of boundary conditions
on the stability of the overall scheme, (i.e., the ``inner algorithm''+boun-
dary conditions), see for example [8, 11, 12, 17, 6, 20, 7, 13�16, 18, 19].
In this context stability implies convergence of the scheme, at a fixed time t,
as the mesh is refined. The question of the temporal behavior of the error
was usually not considered.

When constructing higher order schemes, 3rd-order accuracy and
above, it turns out that it is difficult to state boundary conditions such that
the overall scheme remains stable. The question then arises what happens
to the overall accuracy of the numerical solution if the order of accuracy
of the inner stencil, (m), is is higher then the order of the boundary condi-
tions, (m&s). This problem has been tackled by Gustafsson, see [9, 10].
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His main result, for both parabolic and hyperbolic PDE's, is that if the
accuracy of the extra boundary conditions, required for ``numerical
closure'' of the problem, are one less than that of the inner scheme, then
the overall accuracy is not affected. The physical boundary conditions,
however, must be approximated to the same order as the inner scheme.

In the present paper we consider a form of differentiation matrices,
both hyperbolic and parabolic, which represent a fairly wide family of
boundary condition formulation plus central inner schemes. We investigate
the dependence of the error on time as well as on mesh size. The main
results are as follows:

v In the hyperbolic case, the overall convergence rate is of order min
(m, m&s+1) for all s, in agreement with the results given by Gustafsson
[9, 10]. For s=0, 1, the temporal bound of the error behaves as - t for
t<<1, and bends over smoothly to a linear bound as t increases. For s�2,
the temporal behavior is t- t for all t, t�0.

v In the parabolic case, the overall convergence rate is of order m if
s=0, 1, and m&s+3�2 if s�2. The error is uniformly bounded independent
of t for all t, t�0.

The parabolic results are derived in Sec. 2. The hyperbolic results are
derived in Secs. 3, 4, and Appendices A and B. Numerical experiments,
given in Sec. 5, demonstrate the validity of these bounds. In fact, in the
parabolic case, the numerical convergence rate is (m&s+2), s�2, exceed-
ing the prediction which is only an upper bound on the error.

2. THE DIFFUSION EQUATION

We consider the following problem

�u
�t

=
�2u
�x2+ f (x, t); 1L�x�1R , t�0 (2.1a)

u(x, 0)=u0(x) (2.1b)

u(1L , t)=gL(t) (2.1c)

u(1R , t)=gR(t) (2.1d)

and f (x, t) # C1.
Let us spatially discretize (2.1a) on the uniform grid presented in Fig. 1.
Note that the boundary points do not necessarily coincide with x1 and xN .

Set xj+1&xj=h, 1� j�N&1; x1&1L=#L h, 0�#L<1; 1R&xN=#R h,
0�#R<1.

80 Abarbanel, Ditkowski, and Gustafsson



File: 854J 065203 . By:XX . Date:09:01:01 . Time:07:53 LOP8M. V8.B. Page 01:01
Codes: 2447 Signs: 1354 . Length: 44 pic 2 pts, 186 mm

Fig. 1. One dimensional grid.

The projection onto the above grid of the exact solution u(x, t) to
(2.1), is uj (t)=u(xj , t) ] u(t); 1� j�N. Let M be a matrix representing
the second partial derivative at internal points without specifying yet how
it is being constructed. Then we may write

d
dt

u(t)=[Mu(t)+B+T]+f(t) (2.2)

where T is the truncation error due to the numerical differentiation and
f(t)= f (xj , t), 1� j�N. The boundary vector B has entries whose values
depend on gL , gR , #L , #R in such a way that Mu+B represents uxx

everywhere to the desired accuracy. The standard way of finding a numerical
approximate solution to (2.1) is to omit T from (2.2) and solve

d
dt

v(t)=[Mv(t)+B]+f(t) (2.3)

where v(t) is the numerical approximation to the projection u(t). An equation
for the solution error vector, =(t)=u(t)&v(t), can be found by subtracting
(2.3) from (2.2):

d
dt

==M=(t)+T(t)4 (2.4)

with an homogeneous initial and boundary conditions.
We now form the scalar product of (2.4) with H= where H is a sym-

metric positive definite matrix of dimensions N_N. We denote ( } , H } ) by
( } , } )H . Equation (2.4) then becomes:

(=, =t)H=(=, M=)H+(=, T)H=\=,
HM+MTH

2
=++(=, HT)

=(=, Ms=)+(=, HT) (2.5)

81On Error Bounds of Finite Difference Approximations

4 If one uses penalty methods to represent the boundary values (``SAT,'' see [1�3]) then (2.2)
and (2.3) are modified but (2.4) remains the same.
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If one uses a symmetric stencil, &(1�h2)(:k uj&k+ } } } +:0uj+ } } } +
:k uj+k) to represent �2uj ��x2, k+1� j�N&k and uses a non-symmetric
stencil near the boundaries, k+1> j, and j>N&k then the structure of
Ms=

1
2 (HM+MTH ) is:5

Ms=&
1
h2

0

MBL +k
. . .

b +k

0 +k } } } +0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . +0 } } } +k 0

+k b
. . . +k MBR

0
(2.6)

which is an N_N matrix with a (2k+1)-diagonal ``core.'' The blocks MBL

and MBR are each a matrix block of dimensions nL and nR respectively. nL

and nR are determined by the stencil used near the boundaries and are
independent of the matrix dimension N. At this point we would like to find
a matrix, M� , such that the scalar product (=, Ms=) is majorized by (=, M� =).
The structure of M� is:

M� =&

*�h2

(2.7)

. . .
*�h2

c0

c0
. . .

c0

c0

*�h2

. . .
*�h2
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5 In the variable coefficient case Ms has a structure similar to (2.6). However in that case the
+k 's change along the diagonals.
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i.e., M� is a diagonal matrix, with the first nL and the last nR entries being
*�h2. *>0 is a constant and all the other terms, c0 , are positive. It can be
shown that for many time-stable schemes (ones that do not admit exponen-
tial temporal growth of the error when they are GKS stable) such an M�
can be found. One way to show this is to decompose Ms in the following
way:

Ms=
1
h2 [:M1+M2+M3+M4]

where :>0 is a constant,

&2 1
1 &2 1

1 &2 1
M1=_ . . .

. . .
. . . &1 &2 1

1 &2 1
1 &2

M2=_ML

0
0
0& , M3=_0

0
0

MR&
where ML and MR are each a matrix-block of dimensions nL and nR

respectively, having only negative eigenvalues and entries of order unity.
M4 is a non-positive definite matrix. When such a decomposition is
possible then it is shown in [1�3] that c0=:?2 and * is the minimal eigen-
value of &M2 and &M3 .

Using the form (2.7) of M� , one gets from (2.5):

(=, =t)H�(=, M� =)+(=, HT) (2.8)

It is reasonable to assume that HT has the following structure:

HT=[TBL1
, TBL2

,..., TBLnL
; TMN&(N&nL&1)

,..., TMN&nR
;

TBRN&nR+1
,..., TBRN&1

, TBRN
]T

where

|TBLj
|<:jhm&s 1� j�nL

|TMk
|<:k hm nL+1�k�N&nR

|TBRl
|<:lhm&s N&nR+1�l�N

83On Error Bounds of Finite Difference Approximations



File: 854J 065206 . By:GC . Date:17:01:01 . Time:14:57 LOP8M. V8.B. Page 01:01
Codes: 2878 Signs: 1066 . Length: 44 pic 2 pts, 186 mm

with the natural numbers s, m satisfying m�2, m�s�0;6 i.e., the basic
finite differencing is at least second order accurate. Note that the entries in
the positive definite matrix H are absorbed into the :'s.

We now majorize HT entry by entry, by T� ,

T� =[:Bhm&s,..., :Bhm&s; :Mhm,..., :M hm; :Bhm&s,..., :Bhm&s]T

=[TB ,..., TB ; TM ,..., TM ; TB ,..., TB]T (2.9)

where :B=max1� j�nL , N&nR+1�l�N[:j , :l] and :M=maxnL+1�k�N&nR
[:k].

Using (2.9), (=, =t)H is further majorized and (2.8) becomes:

(=, =t)H�(=, M� =)+(=, HT)�(=, M� =)+( |=|, T� ) (2.10)

where

|=|=[|=1|,..., |=j |,..., |=N |]T (2.11)

The component-wise version of (2.10) is:

(=, =t)H�
1
N _ :

nL

j=1

=j \&
*
h2 =j++ :

N&nR

k=nL+1

=k(&c0=k)+ :
N

l=N&nR+1

=l \&
*
h2 =l+&

+
1
N _ :

nL

j=1

|=j | TB+ :
N&nR

k=nL+1

|=k | TM+ :
N

l=N&nR+1

|=l | TB& (2.12)

Next we use the Schwartz inequality of the form

| fg|�af 2+
1

4a
g2, a>0 (2.13)

Then (2.12) becomes:

(=, =t)H�h :
nL

j=1
_&

*
h2 =2

j+\aB |= j |
2+

1
4aB

T 2
B+&

+h :
N&nR

k=nL+1
_&c0=2

k+(aM |=k | 2+
1

4aM
T 2

M+&
+h :

N

l=N&nR+1
_&

*
h2 =2

l +\aB |=l |
2+

1
4aB

T 2
B+& (2.14)
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6 The case s=0 is trivial. One can see from the definition of HT that the convergence rate
is hm.
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Let us choose aM=;c0 (0<;<1), and aB=;(*�h2), to get

(=, =t)H�h :
nL

j=1

&(1&;)
*
h2 =2

j +h :
N&nR

k=nL+1

&(1&;) c0 =2
k

+h :
N

l=N&nR+1

&(1&;)
*
h2 =2

l

+h :
nL

j=1

1
4

h2

*;
:2

Bh2m&2s+h :
N&nR

k=nL+1

1
4;c0

:2
Mh2m

+h :
N

l=N&nR+1

1
4

h2

*;
:2

Bh2m&2s (2.15)

Next we note that because *=O(1), *�h2>>c0 . We use this fact to
simplify (2.15)

(=, =t)H� &c0 h(1&;) :
N

j=1

=2
j +

:2
B

4*;
:

nL+nR

j=1

h2m+3&2s+
:2

M

4;c0

:
N&nL&nR

j=1

h2m+1

� &c0(1&;)(=, =)+
:2

B

4*;
(nL+nR) h2m+3&2s

+
:2

M

4;c0

N&(nL+nR)
N

h2m

� &c1(1&;)(=, =)H+
:2

B

4*;
(nL+nR) h2m+3&2s

+
:2

M

4;c0 \1&
nL+nR

N + h2m (2.16)

where we introduced c1>0, taking into account the equivalence of the L2

and H norms.
We now distinguish between two cases:

(i) s=0, 1

(ii) s�2

In the first case (s=0, 1) the middle term in (2.16) is negligible compared
to the last term and we have:

1
2

�
�t

(=, =)H=(=, =t)H�&
c2

2
(=, =)H+

:2
M

4;c0

h2m+O(h2m+1); (s=0, 1)

(2.17)

85On Error Bounds of Finite Difference Approximations
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where c2=2c1(1&;). From (2.17) it is easily shown that

(=, =)H�
:2

M(1+O(h))
2;c0 c2

(1&e&c2 t) h2m (2.18)

Note that for all t, the estimate (2.18) has the same dependence on the
mesh size, h, as predicted of by Gustafsson [10], namely hm. In addition,
(2.18) describes how the bound on the error evolves in time.

Next we consider the second case, s�2. Now the middle term in
(2.16) dominates the last one and we can write,

(=, =t)H� &c2(=, =)H+
:2

B

2*;
(nL+nR) h2m+3&2s+O(h2m) (2.19)

This leads to

(=, =)H�
:2

B(nL+nR)
2*;c2

(1+O(h2s&3)) h2m+3&2s(1&e&c2 t) (2.20)

The rate of convergence is hm&s+3�2. The temporal behavior is analogous
to the cases of s=0, 1, see (2.18). For all s and fixed h, the error is
uniformly bounded independent of t.

In practice, however, a better rate of convergence of hm&s+2 is often
obtained; see [10] and the numerical example in Sec. 5. This only reaffirms
the status of the result (2.20) as an upper bound on the error.

3. THE HYPERBOLIC CASE, A CLASSICAL APPROACH

We consider the following problem

�u
�t

=a
�u
�x

+ f (x, t); 1L�x�1R , t�0, a>0 (3.1a)

u(x, 0)=u0(x) (3.1b)

u(1R , t)=gR(t) (3.1c)

and f (x, t) # C1.
Let us discretize (3.1) spatially on the same grid as in Sec. 2, and use

the same notation for the numerical approximation and for the error vector.
The equation for the solution error vector, =(t)=u(t)&v(t), is formally
the same as (2.4). After taking the scalar product with H= we get an equa-
tion for (=, =t)H which is is formally the same as (2.5). The only difference
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is that in this case, if one uses a centered-difference scheme, the structure
of Ms=

1
2 (HM+MTH ) will be:

MBL

&
1
h \ 0 + (3.2)

MBR

The difference operator is an N_N matrix. The blocks MBL and MBR are
each matrix blocks of dimensions nL and nR respectively, possessing only
negative eigenvalues and having entries of order unity. As N increases
(h=1�N decreases), nL and nR remain constants. We require that
(nL+nR)�N<<1. With this in mind, the scalar product (=, Ms=) is
majorized by (=, M� =) where

M� = &
1
h

*

(3.3)

. . .
*

0

0
. . .

0

0

*
. . .

*

and *>0 is the smallest eigenvalue of MBL and MBR . The dimensions of
the corner blocks are the same as those of MBL and MBR . Therefore

(=, =t)H�(=, M� =)+(=, HT)�(=, M� =)+( |=|, T� ) (3.4)

where the definitions for T� and for |=| are the same as the ones in Sec. 2,
see (2.9) and (2.11).

At this point we remark that one may obtain different estimates on the
error-bound using three different approaches to analyze (3.4):

1. The first approach takes advantage of the fact that (=, M� =)�0,
i.e.:

(=, =t)H�(=, M� =)+( |=|, T� )�&=& &T� & (3.5)

87On Error Bounds of Finite Difference Approximations
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Then using (2.9) it follows that

&=&H�{Ahmt
:B - nl+nr hm&s+1�2t

A=max[:B , :M]=O(1) s=0
s�1

(3.6)

Note that for s=0 we get what might be considered an optimal temporal
bound, i.e., linear in t, and convergence rate, hm. For s�1, however, the
convergence rate can be improved on.

2. In the second approach we analyze (3.4) in the same manner as
(2.10), taking into account that the c0 that existed in (2.7) vanishes here.

We find that for s=1, see Appendix A,

(=, =)H�
1

KcM _ :2
B

4*;
(nL+nR)+

:2
M

cM & h2m(e2KcMt&1) (3.7)

where, 0<;<1, K=O(1), 0<cM<�.
For s�2 we get

(=, =)H�
1

KcM _ :2
B

4*;
(nL+nR)& h2(m&s+1)(e2KcMt&1) (3.8)

The temporal bound (3.7) is effectively exponential, unlike the (much
better) linear bound given in (3.6). The convergence rate here is hm, as
found by Gustafsson [9, 10] and is an improvement over (3.6) with s=1.

In the case of s�2, Eq. (3.8), it can be shown that the best temporal
bound is for cM<<1 (note from the Schwartz's inequality, Eq. (A.2), that
cM can be chosen arbitrary to lie on (0, �)), and this yields &=&Ht

O(1) hm&s+1
- t . This estimate is valid for all 0<t<<2�KcM . Thus by

choosing very small cM we get a very good bound, i.e., t- t for very large t,
with a convergence rate of hm&s+1.

Note that in the case of s=1, Eq. (3.7), choosing cM<<1 will not
really improve the exponential growth, since the coefficient of (e2KcMt&1)
contains a (1�c2

M) term.
To summarize, the second approach gives, for s�2, the better tem-

poral bound, (t- t ), and convergence rate, hm&s+1. For s=1 the first
approach gives a better temporal bound (tt), while the second approach
predicts a better convergence rate (hm). For s=0 the first approach gives
a better prediction.

We have developed a third, and completely different, approach that
predicts ``optimal'' convergence rates and temporal bounds for all s�1.
This theory is delineated in the next section.

88 Abarbanel, Ditkowski, and Gustafsson



File: 854J 065211 . By:GC . Date:17:01:01 . Time:14:57 LOP8M. V8.B. Page 01:01
Codes: 2070 Signs: 964 . Length: 44 pic 2 pts, 186 mm

4. THE HYPERBOLIC CASE, AN OPTIMIZATION APPROACH

In this section we would like to derive a temporal bound on the error,
more benign than the one found in Sec. 3, for the problem (3.1). The
approach we take here is to define a new problem, which is somewhat
similar to the original one. We shall show that the solution of this auxiliary
problem bounds, in some sense (to be described shortly), the error of the
original problem.

In this section we use the same notations and assumptions as in Sec. 3,
Eqs. (3.2)�(3.4).

Let �(t), =(t) # C1 and

d
dt

q(=(t))�g(=(t)) (4.1)

d
dt

p(�(t))= f (�(t)) (4.2)

where f, g, p, q: RN � R, f, g # C and 0�p, q # C 1. Suppose that

\,; g(,)� f (,) (4.3)

and that there are constants c2�c1�0 such that

\,; c1q(,)�p(,)�c2 q(, ) (4.4)

Let

8(q)
\ =[, | q(,)=\] (4.5)

and

8( p)
\ =[, | c1\�p(,)�c2 \] (4.6)

Note that 8 (q)
\ /8 ( p)

\ . Suppose that there exist a vector, ,max such that

f (,max)= max
, # 8\

( p)
f (,) (4.7)

We shall denote:

fmax(\)#f (,max) (4.8)

89On Error Bounds of Finite Difference Approximations
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Now we would like to present the following lemma:

Lemma 1. Let the function \(t) be defined by the following differen-
tial equation:

d
dt

(\)= f� (\)# fmax(\)+$(t); $(t)>0 (4.9)

with the initial condition

\(t=t0)=\0 (4.10)

Then, if at t=t0 , \0�q(=(t0)), then

\(t)�q(=(t)) \t�t0 (4.11)

Proof. Note that for each time t1 where \(t1)=q(=(t1)), by the defini-
tions of 8 ( p)

\ and 8 (q)
\ , we have =(t1) # 8 (q)

\ /8 ( p)
\ . Therefore f (=(t1))�

f (,max(t1))= fmax(\(t1)). Using this observation we can write the following
chain of inequalities:

d
dt

q(=(t1))�g(=(t1))� f (=(t1))� fmax(\(t1))< f� (\(t1))=
d
dt

\(t1) (4.12)

Therefore there is a 2t s.t. \t1<t<t1+2t

\(t)>q(=(t))

In particular this is true if at t=t0 , \0=q(=(t0)). Since \(t) # C1, then if at
t=t0 , \(t0)>q(=(t0)), there is a 2t s.t. \t0<t<t0+2t, \(t)>q(=(t)).
There might be a 2t*, s.t. at t1=t0+2t*, \(t1)=q(=(t1)); then by (4.12)
the process repeats itself. This completes the proof of the Lemma.

Remarks. 1. If f # C1 then the technique of Lagrange multipliers
can be used to find ,max and fmax .

2. If f # C1 and {f (, ){0, \, # Int 8 ( p)
\ , then fmax(\)=

max, # �8 \
( p) f (, ), where �8 ( p)

\ is the boundary of 8 ( p)
\ and Int 8 ( p)

\ is its
interior.

3. Since p and q are non-negative quantities, c1 can be taken as 0.

In the rest of this section we shall use Lemma 1 in order to derive the
convergence rate and a temporal bound for the problem (3.1).

90 Abarbanel, Ditkowski, and Gustafsson
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Let us introduce a family of vector functions, �, as follows:

�
�t

�B
j = &

*
h

�B
j +T� B

j 1� j�nL , N&nR+1� j�N (4.13)

�
�t

�M
j =T� M

j nL+1� j�N&nR (4.14)

Note that these equations can be written as:

�
�t

�=M� �+T� (4.15)

where M� is defined in (3.3), and � | t=0=0.
We now identify the different terms in (4.1) and (4.2) by:

q=(=, =)H=&=&2
H

g=(=, M� =)+(|=| , T� )
(4.16)

p=(�, �)=&�&2

f =(�, M� �)+(�, T� )

where the definition of |=| is given in (2.11). The functions f, g, p and q
satisfy the conditions in the Lemma. Since p and q are square of norms we
take c1=0, following Remark 3. Also since f (0)=0, f (,max)>0 \ &,max &
>0 and {f� {0, then ,max # [, | p(,)=c2\]. In the rest of the section we
shall use c2\=R2. We now propose to find ,max , and thus R2(t), by resort-
ing to the technique of Lagrange multipliers. In particular, we write:

{f� =L {p (4.17)

where L is the Lagrange multiplier. Component-wise we have, see (4.16)

({f� (,max)) j=
1
N {&

2*
h

(,max)B
j +T� B

j 1� j�nL , N&nR+1� j�N

T� M
j nL+1� j�N&nR

(4.18)

({p(,max)) j =
2
N {(,max)B

j

(,max)M
j

1� j�nL , N&nR+1� j�N
nL+1� j�N&nR

(4.19)
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Using (4.18) and (4.19) in (4.17) we can write L as one of the following
two ratios:

L=
&(2*�h)(,max)B

j +T� B
j

2(,max)B
j

(4.20)

and

L=
T� M

j

2(,max)M
j

(4.21)

Recall that all the T� B
j 's are equal to each other, (TB ] T� B

j ), and the same
is true for the T� M

j 's (TM ] T� M
j ). Therefore it follows from (4.20) that all

the (,max)B
j 's are equal to each other; and from (4.21) we have that all

the (,max)M
j 's are the same. Thus, using (4.18) and (4.19), problem (4.17)

instead of having (N+1) unknowns, has only 3, namely ,B , ,M , and L,
where

,B=(,max)B
j (4.22)

,M=(,max)M
j (4.23)

In terms of ,B , ,M and L, the expressions for f� , p(,max) and
Eqs. (4.20) and (4.21) become:

p(,max)=nh,2
B+(1&nh) ,2

M ; (n=nl+nr) (4.24)

f� =&2nh
*
h

,2
B+2nhTB,B+2(1&nh) TM,M+$ (4.25)

L=
&(2*�h) ,B+TB

2,B
(4.26)

L=
TM

2,M
(4.27)

Eliminating L between (4.26) and (4.27) we have a relation between ,B

and ,M :

,M=
TM,B

TB&(2*�h) ,B
(4.28)
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We can now write p(,max) and f� as a function of ,B only:

p(,max)=,2
B _nh+(1&nh) \ TM

TB&(2*�h) ,B+
2

& (4.29)

f� =2,B _&n*,B+nhTB+(1&nh)
T 2

M

TB&(2*�h) ,B &+$ (4.30)

Remark. The classical approach is to solve (4.29) for ,B=,B(\)
where, see paragraph after (4.16), c2\ ] p(,max). Then substitute this
,B(\) into (4.30) to find f� (\). One then goes to (4.9), and solves for \(t).
From Lemma 1, - \ is the bound on the error-norm. However, this method
involves solving a quartic equation, and therefore we use a different
approach.

In order to simplify the calculations we introduce a new function, _,
see (4.32) below and then we solve (4.9). Finally we will show that the
solution we get is indeed ,max . Using R2=c2\ we rewrite Eq. (4.9) as
follows:

c2 f� =
d
dt

(R2)=_ d
d_

(R2)
d_
dt & (4.31)

where

_=
(TB&(2*�h) ,B)

TM
(4.32)

Then from (4.31)

1
c2

d
dt

_=
f� (_)

(d�d_) R2(_)
(4.33)

Note that c2 is a ``norm-equivalence'' constant of order unity, and in order
to simplify the notation we absorb it into the time t. After some manipula-
tion (4.33) becomes,

d_
dt

=&n*_2 _2+(TB�TM) _+(2(1&nh)�nh)+$0

nh_3+(1&nh)(TB �TM)
(4.34)

where we choose

$(t)=$0

(TB&TM_) nh2TM

2*_
(4.35)
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Note that at t=0, ,=0 and from (4.32) _=TB�TM , see initial condi-
tions for (4.15), and that d_�dt<0 \_>0. Before solving (4.34) for _(t), we
rewrite (4.29) ( p(,max)=c2\=R2) in terms of _, using (4.32):

R2=
nh3T 2

M

4*2 \TB

TM
&_+

2

_1+
1&nh

nh
1
_2& (4.36)

We now use (4.34) to write an expression for dt�d_:

dt
d_

=&
1

n*_2

nh_3+(1&nh)(TB�TM)
_2+(TB �TM) _+(2(1&nh)�nh)+$0

=
k1

(_&_1)
+

k2

(_&_2)
+

k3_+k4

_2 (4.37)

where:

_1=
1
2 \

TB

TM+ _&1+�1&4
1

(TB �TM)2 _1&nh
nh

+$0&&
_2=

1
2 \

TB

TM+ _&1&�1&4
1

(TB �TM)2 _1&nh
nh

+$0&&
k1=

h
*

_3
1+((1&nh)�nh)(TB �TM)

_2
1(_2&_1)

k2= &
h
*

_3
2+((1&nh)�nh)(TB�TM)

_2
2(_2&_1)

k3= &
(1&nh)(_1+_2)(TB �TM)

*n_2
1_2

2

k4= &
(1&nh)(TB �TM)

*n_1 _2

(4.38)

Using the fact that

_1+_2=&\TB

TM+ (4.39)

_1_2=2
1&nh

nh
+$0 (4.40)
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and that

TB

TM
=O(h&s)=Kh&s s�1 (4.41)

we find that

_1=&
2

(TB �TM) \
1&nh

nh
+

$0

2 +&
4

(TB�TM)3 \1&nh
nh

+
$0

2 +
2

+O \ 1
h3(TB �TM)5+ (4.42)

_2=&\\TB

TM++_1+
=&\TB

TM++
2

(TB �TM) \
1&nh

nh
+

$0

2 ++
4

(TB�TM)3 \1&nh
nh

+
$0

2 +
2

+O \ 1
h3(TB �TM)5+ (4.43)

k1=&k3+
h
2*

_1

_2

+
h

2* \
_1+_2

_2
1(_1&_2)

&
_1+_2

_1_2 + $0 (4.44)

k2=&
h
* _1+

1
2

_1

_2

+
1
2

_1+_2

_2
2(_2&_1)

$0& (4.45)

k3=
h

2* _
(_1+_2)2

_1 _2

&\_1+_2

_1_2 +
2

$0 & (4.46)

k4=
h

2* _(_1+_2)&\_1+_2

_1 _2 + $0 & (4.47)

k4

|_1|
=&k3+

h
2* \1+

_1

_2+&
h

2*
_1+_2

(_1 _2)2 (_1+2_2) $0 (4.48)

Integrating (4.37) (noting, again, that the initial condition ,B(t=0)
=0 implies _(t=0)=TB �TM) we have:

t=_k1 ln(_&_1)+k2 ln(_&_2)+k3 ln(_)&
k4

_ &
&_k1 ln \TB

TM
&_1++k2 ln \TB

TM
&_2 ++k3 ln \TB

TM+&
k4

(TB �TM)&
(4.49)
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Recalling that TB �TM=O(h&s), one can show from (4.18)�(4.48) that if

$0=o(h2(s&1)) (4.50)

then

k1 ln \TB

TM
&_1++k3 ln \TB

TM +&
k4

(TB �TM)
=O(h) (4.51)

and also

k2 _ln(_&_2)&ln \TB

TM
&_2+&=O(h) \ \TB

TM+�_�0 (4.52)

The implication of (4.51) and (4.52) is that (4.49) is equivalent to

t=k1 ln(_&_1)+k3 ln(_)&
k4

_
+O(h) (4.53)

We now recall again that in order to evaluate R, we need to solve for
_=_(t; h). We assume that the following (possibly asymptotic) expansion
of _ is valid:

_(t; h)=|_1| h& :
�

j=0

h#j :j (t) (4.54)

where #0=0, #j+1># j . In Appendix B we carry out the analysis involving
the asymptotic expansion (4.54) and we obtain there the following results:

(i) For s=1 one gets &=0, and

t=
nK2

4* _ 1
:0(t)

&ln \1+
1

:0(t)+&+O(h) (4.55)

from which one deduces the following behavior of :0(t):

:0(t)$
- n K

- 8*

1

- t
;

t
h

>>1, t<<1 (4.56)

:0(t)$
nK2

4*
1
t

; 1<<t (4.57)

and \t�0,

R=_nK 2

4*
+O(h)& TM

:0(t)
(4.58)
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Thus the error-bound, R, has a temporal rise like - t for short times, and
``bends-over'' to a linear growth. We also note that the bound on the
error, R, has the same convergence rate, TM , as the inner scheme.

(ii) s�2: One gets

&=s&1 (4.59)

and

t=
nK 2

8*
1

:2
0(t)

+O(h), h<<t (4.60)

Then, using (B.12),

R=_nK 2

4*
+O(h)& h1&s

:(t)
TMr

- n K

- 2*
h1&sTM - t (4.61)

Remark. Although the temporal growth indicated in (4.61) (s�2) is
slower than the linear one (t>>1) for the case s=1, the actual R, predicted
by (4.61), is larger than the error bound in the case s=1, (4.58), because
h1&s

- t >>t for practical values of h and t. Thus it is still worthwhile to
use boundary stencils of higher accuracy, namely s=1.

Finally we prove that the R2 which we got is indeed the maximal one.
Note that Eqs. (4.24) and (4.25) can be rewritten, for a given R2, as:

R2=nh,2
B+(1&nh) ,2

M (4.62)

,M=
1

2(1&nh) TM _2nh
*
h

,2
B&2nhTB,B+ f� & (4.63)

i.e., the contour of (4.62) is a canonical ellipse with axes 2(R�- nh) and
2(R�- (1&nh)) in ,B and ,M respectively. The contours of (4.63), for a
fixed f� , are paraboli with a minimum at ,B=hTB �*>0. As f� increases the
paraboli ``climb up'' the ,M axis. The geometrical interpretation of
Lagrange multipliers is to find the f� for which the corresponding paraboli
are tangential to the ellipse. The maximal f� is the desired solution; see
Fig. 2. Clearly, this maximal f� corresponds to the top parabola and in this
case ,B , ,M>0. Thus all we have to show is that ,B and ,M are positive.

As can be seen from (4.28) and (4.32),

,B=
h

2*
(TB&TM_) (4.64)

,M=
,B

_
(4.65)
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Figure 2

Since _=TB�TM at t=0 and is a monotonically decreasing positive function
of t, \t>0, then ,B and ,M are indeed positive.

5. NUMERICAL EXAMPLES

In this section two examples are given: a variable coefficient diffusion
equation and a simple hyperbolic problem.

5.1. Diffusion Equation

We solve the following problem:

�u
�t

=
�

�x \(1+x)2 �u
�x++100(1+x) cos(10x); 0�x�1 (5.1a)

u(x, 0)=
sin(log(1+x)� log 2) ?

- 1+x
+

cos(10x)
1+x

(5.1b)

u(0, t)=1 (5.1c)

u(1, t)=
cos(10)

2
r &0.419536 (5.1d)
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The exact solution to this problem is:

u(x, t)=exp _&\\ ?
log 2+

2

+
1
4+ t& sin((log(1+x)� log 2) ?)

- 1+x
+

cos(10x)
1+x

For solving the problem (5.1) we used a 4th order scheme for the
middle points and 3rd, 2nd and first order stencils near the boundaries.
The details of the schemes are given in Appendix C. Though variable-coef-
ficients problems were not considered explicitly in Sec. 2, it can be shown
(see footnote regarding to Eq. (2.6)) that the schemes used satisfy all the
required conditions, (2.7)�(2.9), given in Sec. 2, see [4].

The result are presented in Fig. 3 and Table I. As one can see, the time
behavior of the solution is bounded, as predicted by the theory. The com-
puted convergence rate agrees with the theory when the difference between
the order of the scheme in the middle and at the boundary is 1, i.e., s=1,
and is better then the theoretical prediction by half (m&s+2 rather then
m&s+3�2) for all other cases, s>1. This state of affairs is not unusual
when one derives an upper bound on the error, as we have done here.

Fig. 3. Diffusion equation: (a) Plots of log(=) vs. log(1�h) at t=2 for the different schemes.
(b), (c) and (d), plots of log(=) vs. log(t) for the 4:3, 4:2 and 4:1 schemes respectively.
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5.2. Hyperbolic Equation

We solved the following problem:

�u
�t

=
�u
�x

(5.3a)

u(x, 0)=cos(10x) (5.3b)

u(1, t)=cos(10(1+t)) (5.3c)

The exact solution to this problem is:

u(x, t)=cos(10(x+t))

For solving this problem, we used a 4th order scheme for the middle
points and 3rd, 2nd and first order stencils near the boundaries that were
derived by Strand, [19]. Note that it is not clear whether or not these
schemes satisfy the conditions on the differentiate matrix given is Secs. 3
and 4.

The result are presented in Fig. 4 and Table II. As can be seen, here,
the actual convergence rate agrees with the theory for all cases. The
theoretical time behavior, which predicts a linear growth in time, is too

Fig. 4. Hyperbolic equation: (a) Plots of log(=) vs. log(1�h) at t=10 for the different
schemes. (b), (c) and (d), plots of log(=) vs. log(t) for the 4:3, 4 :2 and 4:1 schemes
respectively.
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conservative, as can be seen in Fig. 4. It is often observed that the error is
bounded in time for hyperbolic problems in which the wave ``stays in the
computational domain for a limited time.'' Some examples for this case are
scalar advection equation, such as the one given here, and wave scattering
problems. In the cases when the wave is ``restricted'' to the domain, as in
the case of periodic boundary conditions or perfectly conducting cavities,
the numerical solution often propagates with a slightly different velocity
than the exact solution. This phenomenon manifests itself as a ``linear''
growth in time, for very large times. For examples see [5].

6. CONCLUSIONS

1. The dependence of the error bounds on mesh size and time has
been determined for a family of spatially semi-discrete approximations,
including boundary treatments, to hyperbolic and parabolic partial dif-
ferential equations.

2. The form of the theory presented herein is extendible to multi-
dimensional problems. For instance, the case of m=4 for the 2-D diffusion
equation was investigated in [1], and fits into the present framework. For
the hyperbolic case, with m=2, see [1, 2].

3. The present framework can also accommodate systems of PDE's.
The case of parabolic systems, with m=2, has been analyzed, see [3].

4. An analysis similar to the one presented in Sec. 4 can also be
carried out for the case of the diffusion equation. However, since the
bounds are similar to the ones derived in Sec. 2, this analysis is not
included in this paper.

5. The present results point to the importance of understanding the
dependence of the error on both time and mesh size. Thus, for a given grid,
the temporal behavior will tell us when the numerical results exceeds a
given error threshold. Conversely for a given time, say when the error
grows linearly with t, we can decide what is the necessary mesh size that
is needed on order to stay below that threshold.

APPENDIX A

In this Appendix an analysis, similar to the one done for the parabolic
case in Sec. 2, will be carried out for the hyperbolic case.
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The component-wise version of (3.4) is:

(=, =t)H�
1
N _ :

nL

j=1

=j \&
*
h

=j++ :
N

l=N&nR+1

=l \&
*
h

=l+&
+

1
N _ :

nL

j=1

|=j | TB+ :
N&nR

k=nL+1

|=k | TM+ :
N

l=N&nR+1

|=l | TB& (A.1)

Next we use the Schwartz inequality of the form

| fg|�cf 2+
1
4c

g2, c>0 (A.2)

Then (A.1) becomes:

(=, =t)H�h :
nL

j=1
_&

*
h

=2
j +\cB |=j |

2+
1

4cB
T 2

B+&
+h :

N&nR

k=nL+1
_cM |=k | 2+

1
4cM

T 2
M&

+h :
N

l=N&nR+1 _&
*
h

=2
l +\cB |=l |

2+
1

4cB
T 2

B+& (A.3)

Let us choose cB=;(*�h) (0<;<1), to get

(=, =t)H�h :
nL

j=1

&(1&;)
*
h

=2
j +h :

N&nR

k=nL+1

cM=2
k+h :

N

l=N&nR+1

&(1&;)
*
h

=2
l

+h :
nL

j=1

1
4

h
*;

:2
Bh2m&2s+h :

N&nR

k=nL+1

1
4cM

:2
Mh2m

+h :
N

l=N&nR+1

1
4

h
*;

:2
Bh2m&2s (A.4)

Next we note that &(1&;) *�h<0 while cM>0. We use this fact to simplify
(A.4)

(=, =t)H�cMh :
N

j=1

=2
j +

:2
B

4*;
:

nL+nR

j=1

h2m+2&2s+
:2

M

4cM
:

N&nL&nR

j=1

h2m+1

�cM(=, =)+
:2

B

4*;
(nL+nR) h2m+2&2s+

:2
M

cM

N&(nL+nR)
N

h2m

�KcM(=, =)H+
:2

B

4*;
(nL+nR) h2m+2&2s+

:2
M

cM
h2m (A.5)
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where we introduced K, taking account of the equivalence of the L2 and H
norms.

We now distinguish between the two cases:

(i) s=1

(ii) s�2

In the first case (s=1) the last two terms term in (A.5) are of the same
order, and we have

�
�t

(=, =)H�2KcM(=, =)H+2 _ :2
B

4*;
(nL+nR)+

:2
M

cM & h2m (A.6)

then, it can be shown that

(=, =)H�
1

KcM _ :2
B

4*;
(nL+nR)+

:2
M

cM & h2m(e2KcMt&1) (A.7)

Next we consider the second case, s�2. Now the middle term in (A.5)
dominates the last one and we can write,

�
�t

(=, =)H�2KcM(=, =)H+2 _ :2
B

4*;
(nL+nR)& h2(m&s+1) (A.8)

and

(=, =)H�
1

KcM _ :2
B

4*;
(nL+nR)& h2(m&s+1)(e2KcMt&1) (A.9)

APPENDIX B

In this Appendix the asymptotic analysis for _(t; h) (and thus R(t; h))
is carried out.

The asymptotic expansion of _(t; h), see Eq. (4.54) is:

_(t; h)=|_1| h& :
�

j=0

h#j :j (t) (B.1)

One can show from (4.42), with $0=o(h2(s&1)), that

|_1|=
2

nK
hs&1 _1&

nK
2

Qsh+o(h)& (B.2)
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where

Qs={
2
K \1+

2
n2K2+

2
K

s=1

s�2
(B.3)

Using (B.2) and (B.3), Eq. (B.1) can be written as:

_(t; h)=
2

nK
hs&1+&:0(t) _1&

nK
2

Qsh+o(h)&_1+
:1(t)
:0(t)

h#1+ } } } +o(h)&
=

2
nK

hs&1+&:0(t) _1&
nK
2

Qsh+
:1(t)
:0(t)

h#1+
:2(t)
:0(t)

h#2+ } } } +o(h)&
(B.4)

(As long as #2 has not been determined we really don't know how many
terms to carry.)

Next we consider, see (4.53),

t=k1 ln(_&_1)+k3 ln(_)&
k4

_
+O(h) (B.5)

Using (4.44) and (4.48), Eq. (B.5) becomes

t=k3 ln
_

_&_1

+k3

|_1|
_

+O(h)

=k3 _&ln
_&_1

_
+

|_1|
_ &+O(h)

=k3 _&ln \1+
|_1|
_ ++

|_1|
_ &+O(h)

=k3 {&ln _1+
1

h&:0(t)[1+(:1(t)�:0(t)) h#1+ } } } ]&
+

1
h&:0(t)[1+(:1(t)�:0(t)) h#1+ } } } ]=+O(h) (B.6)

or

t=
nK 2

4*
(1+O(h))[&ln(1+B)+B]+O(h) (B.7)

106 Abarbanel, Ditkowski, and Gustafsson



File: 854J 065229 . By:GC . Date:17:01:01 . Time:14:57 LOP8M. V8.B. Page 01:01
Codes: 2037 Signs: 808 . Length: 44 pic 2 pts, 186 mm

where

B=
1

h&:0(t)[1+(:1(t)�:0(t)) h#1+ } } } ]
(B.8)

The Case of s=1

Since the LHS of (B.7) is t, the RHS must also be a function of t only
(up to O(h)), and it follows immediately, see (B.8), that &=0. To the
lowest order of approximation we then have

t=
nK2

4*
(1+O(h)) _&ln \1+

1
:0(t)++

1
:0(t)&+O(h)

=
nK2

4* _&ln \1+
1

:0(t)++
1

:0(t)&+O(h) (B.9)

It is not easy to describe analytically the behavior of :0(t) \t, therefore
we limit the discussion to the following two cases,

(i) :0(t)>>1

(ii) :0(t)<<1

and we ask what are the ranges of t for which each case, (i) or (ii), is valid.

(i) :0(t)>>1, i.e.,

ln \1+
1

:0 +=
1

:0

&
1
2

1
:2

0

+ } } }

Then Eq. (B.9) becomes

t=
nK2

4* _ 1
:0

&\ 1
:0

&
1

2:2
0

+ } } } +&=
nK 2

8*
1

:2
0

+O(h)+O \ 1
:3

0+
and

:0=
- n k

- 8*

1

- t _1+O(h)+O \ 1
:0+&

and since :0(t)>>1 this expression is valid for

t
h

>>1 and t<<1
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(ii) :0(t)<<1 then Eq. (B.9) may be written as

t=
nK2

4* _ 1
:0

&ln \1+
1

:0(t)+&=
nK 2

4* _ 1
:0

&ln \ 1
:0(t)+&+O(h)

so, asymptotically

:0$
nK2

4*t

and this is valid for

1<<t

The Case of s�2

From (B.7), using the formula of expanding ln(1+x), x<<1

t=
nK 2

8*
h2(1&s) (1+O(h))

h2&:2
0

1
(1+(:1(t)�:0(t)) h#1+(:2(t)�:0(t)) h#2)2

__1&
(2�3) hs&1

:0(1+(:1(t)�:0(t)) h#1+(:2(t)�:0(t)) h#2)&+O(h) (B.10)

It is clear that &=1&s for the RHS to be function of t only, to order h,
and so

t=
nK2

8*:2
0(t) _1&2

:1(t)
:0(t)

h#1+O(h#2)&+O(h) (B.11)

Using the lowest order term of the approximation we get

:0=
- n k

- 8* - t
(B.12)

To find #1 we substitute (B.11) and (B.10) and we find

0=&2
:1(t)
:0(t)

h#1+O(h#2)+O(h) (B.13)

Since by assumption #1<#2 , we must have

#1=1 (B.14)

It is clear from (B.13) that

:1t:0t
1

- t
(B.15)

108 Abarbanel, Ditkowski, and Gustafsson



File: 854J 065231 . By:XX . Date:09:01:01 . Time:07:54 LOP8M. V8.B. Page 01:01
Codes: 1804 Signs: 925 . Length: 44 pic 2 pts, 186 mm

Fig. 5. 1�:0(t) vs. t.

Next we obtain the expression for R, using (4.46). R depends on _ and
_ is expressed by (4.54). Again, to the lowest order approximation

_=|_1| h&:0(t)=
2

nK
hs&1h1&s:0(t)=

2
nK

:0(t) (B.16)

To summarize, when s=1 we have, from (4.36), again to the lowest
order approximation,

R=
nK 2

4*
TM

:0(t)
(B.17)

Thus R has a temporal rise like - t for short times, and ``bends-over'' to
a linear growth. A graph of 1�:0(t) vs. t, using formula (B.9) with h � 0,
illustrates the temporal behavior of R(t), see Fig. 5.

For the case, s�2, we get,

R=
nK2

4*
TM h1&s

:0(t)
=

- n K

- 2*
TMh1&s

- t (B.18)

APPENDIX C

In this Appendix the scheme used in the diffusion equation example is
given. We used the grid presented in Fig. 1 with #L=#R=1.

The matrix M, see Eq. (2.2) and (2.3), which represents the operator
(���x)(a(x)(�u��x)) with a 4th order accuracy in the middle and 3rd order
near the boundary is:
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where

M1, 1=110a(x1)&96a \x1+
h
2++11a(x1+h)+16a \x1+

3h
2 +

&6a(x1+2h)++1, 1

M1, 2=&200a(x1)+16a \x1+
h
2++200a(x1+h)&160a \x1+

3h
2 +

+40a(x1+2h)++1, 2

M1, 3=125a(x1)+200a \x1+
h
2+&426a(x1+h)+280a \x1+

3h
2 +

&65a(x1+2h)++1, 3

M1, 4=&40a(x1)&160a \x1+
h
2++280a(x1+h)&176a \x1+

3h
2 +

+40a(x1+2h)++1, 4

M1, 5=5a(x1)+40a \x1+
h
2+&65a(x1+h)+40a \x1+

3h
2 +

&9a(x1+2h)++1, 5

M1, 6=0

M2, 1=&6a(x2&h)+16a \x2&
h
2+

M2, 2=16a(x2&h)&16a \x2&
h
2++a(x2+h)&16a \x2+

h
2+

M2, 3=&20a(x2&h)+16a \x2+
h
2+

M2, 4=15a(x2&h)&a(x2+h)

M2, 5=&6a(x2&h)

M2, 6=a(x2&h)

Mk, k&2=&a(xk&h)

Mk, k&1=16a \xk&
h
2+
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Mk, k=a(xk&h)&16a \xk&
h
2+&16a \xk+

h
2++a(xk+h)

Mk, k+1=16a \xk+
h
2+

Mk, k+2=&a(xk+h)

MN&1, N&5=a(xN&1+h)

MN&1, N&4=&6a(xN&1+h)

MN&1, N&3=15a(xN&1+h)&a(xN&1&h)

MN&1, N&2=&20a(xN&1+h)+16a \xN&1&
h
2+

MN&1, N&1=16a(xN&1+h)&16a \xN&1+
h
2+

&16a \xN&1&
h
2++a(xN&1&h)

MN&1, N=&6a(xN&1+h)+16a \xN&1+
h
2+

MN, N&5=0

MN, N&4=5a(xN)+40a \xN&
h
2+&65a(xN&h)+40a \xN&

3h
2 +

&9a(xN&2h)++N, N&4

MN, N&3=&40a(xN)&160a \xN&
h
2++280a(xN&h)&176a \xN&

3h
2 +

+40a(xN&2h)++N, N&3

MN, N&2=125a(xN)+200a \xN&
h
2+&426a(xN&h)+280a \xN&

3h
2 +

&65a(xN&2h)++N, N&2

MN, N&1=&200a(xN)+16a \xN&
h
2++200a(xN&h)&160a \xN&

3h
2 +

+40a(xN&2h)++N, N&1

MN, N=110a(xN)&96a \xN&
h
2++11a(xN&h)+16a \xN&

3h
2 +

&6a(xN&2h)++N, N
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The +'s are given by

+1, 1=5a(x1) {1 , +N, N=5a(xN) {N

+1, 2=&10a(x1) {1 , +N, N&1=&10a(xN) {N

+1, 3=10a(x1) {1 , +N, N&2=10a(xN) {N

+1, 4=&5a(x1) {1 , +N, N&3=&5a(xN) {N

+1, 5=1a(x1) {1 , +N, N&4=1a(xN) {N

and

{1={N=&
890398092
87407185

The vector B, see Eqs. (2.2) and (2.3), is:

B=
1

12h2 (&{1 gL(t), 0, 0,..., 0, &{NgR(t))T

For the second-order approximation near the boundaries we use the
same matrix M but for the first and last rows we take:

M1, 1=102a(x1)&124a \x1+
h
2++58a(x1+h)&12a \x1+

3h
2 +++1, 1

M1, 2= &184a(x1)+192a \x1+
h
2+&84a(x1+h)

+16a \x1+
3h
2 +++1, 2

M1, 3=106a(x1)&84a \x1+
h
2++30a(x1+h)&4a \x1+

3h
2 +++1, 3

M1, 4= &24a(x1)+16a \x1+
h
2+&4a(x1+h)++1, 4

M1, 5=0

M1, 6=0

MN, N&5=0

MN, N&4=0
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MN, N&3= &24a(xN)+16a \xN&
h
2+&4a(xN&h)++1, 4++N, N&3

MN, N&2=106a(xN)&84a \xN&
h
2++30a(xN&h)

&4a \xN&
3h
2 +++N, N&2

MN, N&1= &184a(xN)+192a \xN&
h
2+&84a(xN&h)

+16a \xN&
3h
2 +++N, N&1

MN, N =102a(xN)&124a \xN&
h
2++58a(xN&h)

&12a \xN&
3h
2 +++N, N

where

+1, 1=4a(x1) {1 , +N, N=4a(xN) {N

+1, 2=&6a(x1) {1 , +N, N&1=&6a(xN) {N

+1, 3=4a(x1) {1 , +N, N&2=4a(xN) {N

+1, 4=&1a(x1) {1 , +N, N&3=&1a(xN) {N

{1={N=&
4214190
225719

and the vector B, as before, is:

B=
1

12h2 (&{1 gL(t), 0, 0,..., 0, &{NgR(t))T

For the first-order approximation near the boundaries we take:

M1, 1=66a(x1)&72a \x1+
h
2++18a(x1+h)++1, 1

M1, 2=&96a(x1)+96a \x1+
h
2+&24a(x1+h)++1, 2
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M1, 3=30a(x1)&24a \x1+
h
2++6a(x1+h)++1, 3

M1, 4=0

M1, 5=0

M1, 6=0

MN, N&5=0

MN, N&4=0

MN, N&3=0

MN, N&2=66a(xN)&72a \xN&
h
2++18a(xN&h)++N, N&2

MN, N&1= &96a(xN)+96a \xN&
h
2+&24a(xN&h)++N, N&1

MN, N=30a(xN)&24a \xN&
h
2++6a(xN&h)++N, N

where

+1, 1=3a(x1) {1 , +N, N=3a(xN) {N

+1, 2=&3a(x1) {1 , +N, N&1=&3a(xN) {N

+1, 3=1a(x1) {1 , +N, N&2=1a(xN) {N

{1={N=&
2622883
312498

and the vector B, is:

B=
1

12h2 (&{1 gL(t), 0, 0,..., 0, &{NgR(t))T
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