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Abstract.
We analyze the discrete maximum principle for the Beltrami color flow. The Beltrami flow can

display linear as well as nonlinear behavior according to the values of a parameter β, which represents
the ratio between spatial and color distances. In general, the standard schemes fail to satisfy the
discrete maximum principle. In this work we show that a nonnegative second order difference scheme
can be built for this flow only for small β, i.e. linear-like diffusion. Since this limitation is too severe,
we construct a novel finite difference scheme, which is not nonnegative and satisfies the discrete
maximum principle for all values of β. Numerical results support the analysis.

1. Introduction. The extremum principle is an important axiom needed in the
construction of scale spaces, as shown in the work of Alvarez et al. [1]. The simplifi-
cation process of a one-dimensional signal should be preformed such that no new local
maxima (minima) is created. For higher dimensional signals the non-creation of new
local maxima (minima) cannot be achieved. It is usually replaced by a new demand:
the non-creation of new level sets. This new principle, termed “causality”, was stud-
ied in the context of scale space and denoising by Koenderinck [9]. The extremum
principle is taken then as the natural generalization of the causality principle in the
vectorial case.

The discrete extremum principle is important as it ensures that intensity values in
the evolving image are constrained by the initial image values and do not grow with-
out bounds. This principle is a very restrictive stability condition and guarantees that
over- and under-shoots cannot appear. We also note its relevance in image analysis
via the study of the deep structure, e.g. the singular points of scale-space [10]. The
discrete extremum principle was studied in several works. For their nonlinear diffusion
model, Perona and Malik [12] proposed a numerical scheme which satisfies the discrete
extremum principle. Catte et al. [3] have proven the ill-posedness of this continuous
diffusion process and gave a regularized version of the original Perona-Malik model.
Weickert [21] showed that the regularized version of Perona-Malik satisfies the ex-
tremum principle at the continuous and the discrete level. In [2] Alvarez-Lions-Morel
show the existence and uniqueness of the viscosity solution for their model, as well as
the discrete extremum principle for their difference scheme. Weickert [19] analyzed
extensively the numerical schemes of the non-homogeneous and anisotropic flows.

In this paper we treat the discrete maximum principle for the Beltrami color flow
[15]. The maximum principle in the continuous setting for the parabolic nonlinear
system of PDEs characterizing this flow was proven in [4]. A natural question that
raises at a discrete level is whether there exist discretizations to these equations which
satisfy this principle. All standard second order explicit schemes usually violate this
property (see [4]).

The goal of this paper is to find the discrete approximations which reveal the
same quality as their continuous counterparts. One of the possibilities of ensuring
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the discrete maximum principle is building a non-negative scheme. For anisotropic
diffusion models, Weickert [19] stated in terms of the condition number of the diffusion
matrix, a sufficient condition for building non-negative schemes. We further show here
that a similar condition is not only sufficient but is also necessary. This rules out the
possibility of finding a non-negative scheme for this type of strong non-linear diffusion
equations.

The Beltrami flow can display linear as well as nonlinear behavior according to
the values of the parameter β, which represents the ratio between spatial and color
distances [16]. In this work we show that for this flow, a nonnegative scheme can be
built only for small values of the parameter β, i.e. linear-like diffusion. Furthermore,
we propose a novel finite difference scheme, which is not non-negative and is valid for
all values of the parameter β. The new scheme is based on adding a correction term
to the standard finite difference equations. This term has the role of correcting the
standard scheme at the grid points where the extremum principle fails. By choosing
the step time properly, we show that the modification is needed only for points of
local extremum. We prove that the modified scheme is consistent and satisfies a local
and a global discrete maximum principle.

This paper is organized as follows: Section 2 gives a brief summary of the Bel-
trami framework. In Section 3 we review the approximations based on standard finite
difference scheme. For this flow, standard difference schemes usually do not obey the
maximum principle. We analyze the drawbacks of these schemes in establishing the
discrete maximum principle. We also show that, necessarily, a non-negative scheme
for the Beltrami color flow can be build only for a limited domain of values of the
parameter β. In Section 4 we introduce our new second order finite difference scheme,
and prove its consistency while preserving the discrete maximum principle. In Section
5 we present numerical results, and then we conclude in Section 6.

2. The Beltrami Framework. Let us briefly review the Beltrami framework
for non-linear diffusion in computer vision [6, 15, 16].

We represent an image and other local features as an embedding maps of a
Riemannian manifold in a higher dimensional space. The simplest example is a
gray-level image which is represented as a 2D surface embedded in R3. We de-
note the map by U : Σ → R3, where Σ is a two-dimensional surface, and we
denote the local coordinates on it by (σ1, σ2). The map U is given in general by
(U1(σ1, σ2), U2(σ1, σ2), U3(σ1, σ2)). In our example we represent map U as follows:
(U1 = σ1, U2 = σ2, U3 = I(σ1, σ2)). We choose on this surface a Riemannian struc-
ture, namely, a metric. The metric is a positive definite and a symmetric 2-tensor
that may be defined through the local distance measurements:

ds2 = g11(dσ1)2 + 2g12dσ1dσ2 + g22(dσ2)2.

The canonical choice of coordinates in image processing is Cartesian. For such a
choice, which we follow in the rest of the paper, we identify σ1 = x1 and σ2 = x2.
We use below the Einstein summation convention in which a pair of upper and lower
identical indices is summed over. So with this convention, the above equation is
written as ds2 = gijdxidxj . We denote the elements of the inverse of the metric by
superscripts gij = (g−1)ij , and the determinant by g = det(gij).

Once the image is defined as an embedding mapping of Riemannian manifolds it
is natural to look for a measure on this space of embedding maps.

2.1. Polyakov Action: A Measure on the Space of Embedding Maps.
Denote by (Σ, g) the image manifold and its metric, and by (M, h) the space-feature
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manifold and its metric. Then the functional S[U ] attaches a real number to a map
U : Σ → M :

S[Ua, gij , hab] =
∫

dV ||d~U ||2g,h,

where dV is a volume element that is expressed in a local coordinate system as dV =√
gdxdy. This functional, for m = 2 and hab = δab, was first proposed by Polyakov

[13] in the context of high energy physics, and the theory is known as the string theory.
Let us formulate the Polyakov action in matrix form: (Σ, G) is the image manifold

and its metric as before. Similarly, (M, H) is the spatial-feature manifold and its
metric. Define Aab = (~∇Ua)tG−1~∇U b.

The map U : Σ → M has a weight S[U,G,H] =
∫

dmσ
√

g Tr(AH), where m is
the dimension of Σ and g = det(G).

Using standard methods in the calculus of variations, the Euler-Lagrange equa-
tions with respect to the embedding (assuming Euclidean embedding space) are (see
[15] for explicit derivation):

0 = − 1
2
√

g
hab δS

δU b
=

1√
g
div (D∇Ua)

︸ ︷︷ ︸
∆gUa

.(2.1)

(where the matrix D = (dij)i,j=1,2 =
√

gG−1 ).
The operator that acts on Ua is the natural generalization of the Laplacian from

flat spaces to manifolds and is called the Laplace-Beltrami operator, denoted by ∆g.
The extension for non-Euclidean embedding space is treated in [7, 16, 17]. The

elements of the induced metric for color images with Cartesian color coordinates are

gij = δij + β2
3∑

a=1

Ua
xi

Ua
xj

,(2.2)

where β > 0 is the ratio between the spatial and color distances. The value of the
parameter β, present in the elements of the metric gij , is very important and deter-
mines the nature of the flow. In the limit β → 0, for example, the flow degenerates
to the decoupled channel by channel linear diffusion flow. In the other limit β → ∞
we get a different nonlinear flow. The gray-value analogue of this limit is the Total
Variation flow of [14] (see details in [16]).

The gradient descent method yield a non-linear diffusion equation for each com-
ponent of the color vector:

Ua
t = ∆gU

a.(2.3)

3. Standard finite difference schemes and the discrete maximum prin-
ciple. Much of the research was concentrating in non-negative schemes since this
property guaranties the discrete maximum principle. In this section we analyze the
standard numerical schemes and point out the inherent difficulty encountered in the
anisotropic flows in general and the Beltrami flow in particular.

We rewrite the equation (2.3) for the component R of the color vector (for the
other components we obtain similar equations) as follows:

Rt =
1√
g

div(D∇R).(3.1)
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The induced metric g is given in (2.2) and the diffusion matrix D contains the
coupling between the channels:

D =
(

a b
b c

)
.

Here the coefficients are given in terms of the image metric: a = g22/
√

g ; c =
g11/

√
g ; b = −g12/

√
g.

We work on the rectangle Ω = (0, b1) × (0, b2), with max(b1, b2) = 1, which we
discretize by a uniform grid of N = n1 × n2 pixels such that xi = ih, yj = jh, tn =
n∆t, where 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, and n = 0, 1, . . . , bT/∆tc}}. The grid size is

h =
b1

n1
=

b2

n2
. For each channel Ua, a = 1, 2, 3 we define the discrete approximation

(Ua)n
ij by

(Ua)(ih, jh, n∆t) = (Ua)n
ij ≈ Ua(ih, jh, n∆t).

We impose the Neumann boundary condition.
Each channel in equation (3.1) is then discretized by an explicit finite difference

scheme:

(Ua)n+1
ij = (Ua)n

ij + ∆tLn
ij(U

a),(3.2)

where Ln
ij(U

a) denotes a discretization of the Laplace-Beltrami operator ∆gU
a, to be

specified below.
Definition 3.1. The scheme (3.2 ) is said to satisfy the (local) discrete maximum

principle if for each of the color channels and for all i, j and n

(Ua)n+1
ij ≤ max

k,l=0,±1
(Ua)n

i+k,j+l.(3.3)

The term Ln
ij(U

a), is written in the central difference framework as

Ln
ij(U

a) = An
ij(U

a) + Cn
ij(U

a) + Bn
ij(U

a),(3.4)

where

An
ij(U

a) =
β

h2√gn
i,j

[
an

i+ 1
2 ,j

(
(Ua)n

i+1,j − (Ua)n
i,j

)
− an

i− 1
2 ,j

(
(Ua)n

i,j − (Ua)n
i−1,j)

)]

Cn
ij(U

a) =
β

h2√gn
i,j

[
cn
i,j+ 1

2

(
(Ua)n

i,j+1 − (Ua)n
i,j

)
− cn

i,j− 1
2

(
(Ua)n

i,j − (Ua)n
i,j−1)

)]

Bn
ij(U

a) =
β

4h2√gn
i,j

[
bn
i,j+1((U

a)n
i+1,j+1 − (Ua)n

i−1,j+1)− bn
i,j−1((U

a)n
i+1,j−1 − (Ua)n

i−1,j−1)

+bn
i+1,j((U

a)n
i+1,j+1 − (Ua)n

i+1,j−1)− bn
i−1,j((U

a)n
i−1,j+1 − (Ua)n

i−1,j−1)
]
.

Remark 3.1. We call the explicit scheme (3.2) a standard scheme if the terms
Ln

ij are obtained by using the central difference approximation (3.4).
The standard scheme, in general does not satisfy the discrete maximum principle

(3.3). Regardless of the sign of bij , originating from the mixed derivatives, there will
be necessarily a negative weight in this scheme. Nonnegative schemes are known to
lead to the discrete maximum principle. Therefore, we look next for the most general
second order non-negative scheme for our problem.
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4. Nonnegative schemes and the discrete maximum principle. We are
interested in building nonnegative consistent schemes for the equations (2.3).

The analysis is similar for each channel, so it is enough to show it for one of the
channels. For the component R eq. (2.3) can be written as

Rt =
1√
g

[
aRxx + 2bRxy + cRyy + (ax + by)Rx + (cy + bx)Ry

]
.(4.1)

We discretize it by

Rn+1
ij = Rn

ij +
∆t

h2
√

gn
ij

∑
r,s=±1,0

Ars
ij Rn

i+r,j+s,(4.2)

where the weights Ars
ij will be mentioned below.

Definition 4.1. The scheme (4.2) is called non-negative if all the weights Ars
ij ,

r, s = ±1, 0 are nonnegative.
Therefore, we look for nonnegative coefficients Ars

ij , r, s = 0,±1 so that the scheme
(4.2) is a nonnegative consistent second order approximation of the equation (4.1).

Assuming that for each of the channels Ua ∈ C4(Ω), a = 1, 2, 3 we can use Taylor’s
expansion and get

Ri±1,j±1=

Rij ± h(Rx)ij ± h(Ry)ij +
h2

2
(Rxx)ij ± h2(Rxy)ij +

h2

2
(Ryy)ij

±h3

3!
(Rxxx)ij ± 2

h3

3!
(Rxyy)ij ± 2

h3

3!
(Rxxy)ij ± h3

3!
(Ryyy)ij + O(h4).

Ri±1,j∓1=

Rij ± h(Rx)ij ∓ h(Ry)ij +
h2

2
(Rxx)ij − h2(Rxy)ij +

h2

2
(Ryy)ij

±h3

3!
(Rxxx)ij ± 2

h3

3!
(Rxyy)ij ∓ 2

h3

3!
(Rxxy)ij ∓ h3

3!
(Ryyy)ij + O(h4).

Ri±1,j=

Rij ± h(Rx)ij +
h2

2
(Rxx)ij ± h3

3!
(Rxxx)ij + O(h4).

Ri,j±1=

Rij ± h(Ry)ij +
h2

2
(Ryy)ij ± h3

3!
(Ryyy)ij + O(h4).(4.3)

Demanding that approximation (4.2) be consistent, we obtain the following system of
equations:

∑

|r|,|s|=1,0

Ars
ij = 0,

∑

|r|,|s|=1,0

Ars
ij r = h(ax + by)ij =

1
2
[(ai+1,j − ai−1,j) + (bi,j+1 − bi,j−1)],

∑

|r|,|s|=1,0

Ars
ij s = h(bx + cy)ij =

1
2
[(bi+1,j − bi−1,j) + (ci,j+1 − ci,j−1)],

∑

|r|,|s|=1,0

Ars
ij r2 = 2aij ,

∑

|r|,|s|=1,0

Ars
ij rs = 2bij ,
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∑

|r|,|s|=1,0

Ars
ij s2 = 2cij(4.4)

In order that the scheme (4.2) be nonnegative we need to impose the conditions:

1 +
∆t

h2
√

gn
ij

A00 ≥ 0, and Ars ≥ 0, ∀r, s = ±1, 0, |r|+ |s| > 0.

The first of these inequalities can be obtained by choosing ∆t small enough. It
only remains to keep the other eight weights nonnegative. From these conditions we
get the following theorem:

Theorem 4.1. A necessary and sufficient condition for building a nonnegative
second order approximation for the Beltrami color flow is

|bij | ≤ min{aij , cij}(4.5)

Proof.
Necessity.
As we saw above, if the scheme is consistent and nonnegative, the system (4.4) is

satisfied for all nonnegative Ars, ∀r, s = ±1, 0. Then

2|bij |≤
∑

|r|,|s|=1,0

∣∣Ars
ij rs

∣∣ ≤
∑

|r|,|s|=1,0

Ars
ij min{r2, s2}

≤ min(
∑

|r|,|s|=1,0

Ars
ij r2,

∑

|r|,|s|=1,0

Ars
ij s2) = 2min{aij , cij}.

Sufficiency.
If the condition (4.5) holds, then suitable nonnegative coefficients exists. For ex-

ample, the following coefficients are nonnegative and do satisfy the needed properties
given by the system (4.4).

A1,0
ij =

1
h2

(a− |b|)i+ 1
2 ,j , A−1,0

ij =
1
h2

(a− |b|)i− 1
2 ,j ,

A0,1
ij =

1
h2

(c− |b|)i,j+ 1
2
, A0,−1

ij =
1
h2

(c− |b|)i,j− 1
2
.(4.6)

(half indices are obtained by linear interpolation)

A1,1
ij =

1
4h2

(|bi+1,j+1|+ bi+1,j+1 + |bij |+ bij),

A−1,−1
ij =

1
4h2

(|bi−1,j−1|+ bi−1,j−1 + |bij |+ bij),

A−1,1
ij =

1
4h2

(|bi−1,j+1| − bi−1,j+1 + |bij | − bij),

A1,−1
ij =

1
4h2

(|bi+1,j−1| − bi+1,j−1 + |bij | − bij) .(4.7)

This concludes the proof.
These coefficients have been used by Weickert [19], who showed that a nonnegative

scheme for a nonlinear anisotropic diffusion can be guaranteed if the spectral condition
number of the matrix diffusion D is bounded by the number 5.8284. Weickert’s
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criterion does give, though, only sufficient condition. Theorem 4.1 is more general
in the sense that it formulates both the sufficient and the necessary conditions for
the existence of nonnegative consistent second order schemes for anisotropic diffusion
flows. Breaking the condition (4.5), therefore makes the task of building a nonnegative
scheme impossible.

Fig. 4.1. Top: Noisy image. Left: Denoising based on the standard scheme (β =
√

0.0001
middle and β =

√
0.002 bottom). Right: Edge detection through the nonnegativity condition (β =√

0.0001 middle and β =
√

0.002 bottom). Parameters: 25 iterations, h = 1/305, ∆t = 0.00006.
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It is instructive to see the points where the non-negativity condition is broken.
In (Fig. 4.1) we demonstrate denoising of an image corrupted by noise artifacts
introduced by the JPEG lossy compression algorithm. We use the Beltrami flow
implemented with the standard scheme. We mark the grid points of the image, where
condition |bij | ≤ min(aij , cij) holds by white, and the grid points where |g12| >
min(g11, g22) by black. The regions where this condition fails are positioned near
the edges of the image. Fig. 4.1 bottom can be interpreted as a segmentation/edge
detection process. Notice that the larger the parameter β, the better the detection.
In the middle picture, with β =

√
0.0001, the segmented image contains a lot of

unclosed segments, while in the bottom picture with larger β, β =
√

0.002 most of
the contours are completed. Moreover, to understand the role of parameter β within
the nonnegative scheme, we consider the following example:

Given a color image where the values of the gradients are Rx = 1 = Ry, Bx =
1, By = 10, Gx = 0, Gy = 0. The nonnegativity condition |g12| ≤ min(g22, g11)
becomes

1 + β2(R2
x + G2

x + B2
x) ≥ β2(RxRy + GxGy + BxBy),

which means 1 + 2β2 ≥ 11β2. In order for the nonnegative condition to be satisfied,
we need to limit the parameter β, i.e. β ≤ 1/3. The example illustrates the fact that
a nonnegative scheme is possible only under the restriction of the parameter β. This
restriction limits the amount of possible anisotropic diffusion, which is undesired.

Since the elements of the diffusion matrix depend on parameter β, and given
the significance of this parameter in establishing the nature of the Beltrami flow,
it is interesting to find, in terms of β, an equivalent condition to the nonnegativity
condition (4.5). This relation can be found in the next theorem.

Theorem 4.2. The condition |g12| ≤ min(g11, g22) is satisfied if and only if

β ≤ 2√
max(R2

x + G2
x + B2

x, R2
y + G2

y + B2
y)

.(4.8)

Proof.
Without loss of generality g11 ≤ g22. Then min(g11, g22) = g11. We then have the

following equivalencies

|g12| ≤ min(g11, g22)⇔
⇔ β2|RxRy + GxGy + BxBy| ≤ 1 + β2(R2

x + G2
x + B2

x)
⇔ β2

(|RxRy + GxGy + BxBy| − (R2
x + G2

x + B2
x)

) ≤ 1

⇔ |RxRy + GxGy + BxBy| − (R2
x + G2

x + B2
x)

) ≤ 1
β2

⇔ max{(|RxRy + GxGy + BxBy| − (R2
x + G2

x + B2
x)

)} ≤ 1
β2

.(4.9)

Let us now determine the maximum of the function S(x, y) = |RxRy+GxGy+BxBy|−
(R2

x + G2
x + B2

x). We distinguish two cases:
1. If RxRy + GxGy + BxBy ≥ 0, then S = Rx(Ry − Rx) + Gx(Gy − Gx) +

Bx(By −Bx) ≤ (R2
y + G2

y + B2
y)/4. The maximum of S is (R2

y + G2
y + B2

y)/4
and is attained when Rx = Ry/2, Gx = Gy/2, Bx = By/2.

2. If RxRy + GxGy + BxBy ≤ 0, then S = Rx(−Ry − Rx) + Gx(−Gy −Gx) +
Bx(−By−Bx) ≤ (R2

y +G2
y +B2

y)/4. The maximum of S is (R2
y +G2

y +B2
y)/4

and is attained when Rx = −Ry/2, Gx = −Gy/2, Bx = −By/2.
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We therefore conclude that max S = (R2
y + G2

y + B2
y)/4. The last inequality in (4.9)

becomes (R2
y + G2

y + B2
y)/4 ≤ 1

β2
, i.e. β ≤ 2√

R2
y + G2

y + B2
y

.

In case g22 ≤ g11 the argument is the same with x ↔ y. Taking both possibilities

into account, we find β ≤ 2√
max(R2

x + G2
x + B2

x, R2
y + G2

y + B2
y)

. This concludes the

proof.
In the region of the edges, the values of the gradients are large. For a given

parameter β, the bound (4.8) is broken at points of high gradients. The higher the
beta, the more points fail to satisfy the bound (4.8). Inversely, given the gradients,
the value of β is bounded. In natural images it can easily be seen that a β that
satisfies the bound is small and the resulting flow resembles a linear diffusion. The
conclusion from this state of affairs is that the nonnegative scheme (4.2) is unpractical
if a strong anisotropic flow, such as the Beltrami color flow, is needed.

5. Modified finite difference scheme. In this section we present our new
scheme, which is not non-negative. For the construction of the modified scheme it
is necessary to make the following assumptions:

1. The vector color is C4 (the scheme we propose is a finite difference scheme,
second order in space and first order in time).

2. The grid is fine enough in order to get a small numerical error and to resolve
the extremum points in the manner explained below.

For simplicity, everywhere in this section a local maximum point will be denoted
for brevity as a maximum point. We also mention that the analysis is given for
maximum points only. The analysis of the minimum points is similar.

We start with some definitions: Let u be a smooth function defined on the domain
Ω ⊂ R2 and let uij be its discrete approximation on the grid Dh = {(ih, jh)}. Let x0

be a maximum point of the function u on Ω.
Definition 5.1. A point (i, j) on the grid is called a maximum point for ui,j if

dkl
ij = ui+k,j+l − uij ≤ 0 and

∑

kl

dkl
ij < 0,(5.1)

for all k, l so that |k|+ |l| > 0, k, l = ±1, 0.
Definition 5.2. A point (i, j) on the grid is called a smooth maximum point for

ui,j if the following holds:
1. It is a maximum point, and
2. It is “close” to the point x0, i.e. (i, j) = x0 + γh, where γ = (α, µ), 0 ≤ |α| <

1, 0 ≤ |µ| < 1.
The new approximation scheme is explicit, is based on a modification of the

standard scheme and, for each channel gives

(Ua)n+1
ij = (Ua)n

ij + ∆tL̃n
ij(U

a)(5.2)

where L̃n
ij is a discretization of the Laplace-Beltrami operator, which will be explained

below.
Before describing the new scheme, let us make the following remark:
Remark 5.1. In order to ensure the discrete maximum principle it is not neces-

sary to apply condition (3.3) at all points. It is enough to guarantee that all maximum
9



points (i, j) of Ua satisfy the condition:

(Ua)n+1
ij ≤ (Ua)n

ij ,(5.3)

and to take ∆t small enough to ensure that no non-maximum point violates condition
(3.3).

Based on Remark 5.1, it follows that we need to modify the standard scheme only
at maximum points (i, j) of Ua

ij , where Ln
ij(U

a) > 0.
We mention that the analysis of the new scheme will be given only for one of

the components of the color vector (say U1 = R), and for the other channels the
analysis is similar. For convenience, we abbreviate the standard scheme’s operator by
Ln

ij(R) = Ln
ij , and our modified scheme’s operator by L̃n

ij(R) = L̃n
ij .

Next we describe the modified scheme:
• For points (i, j) which are non-maximum points for Rn

ij or for those that are
maximum points and Ln

ij ≤ 0 holds, apply the standard scheme

Rn+1
ij = Rn

ij + ∆tLn
ij .(5.4)

• For maximum points (i, j) of Rn
ij , where Ln

ij > 0 apply the modified scheme

Rn+1
ij = Rn

ij + ∆tL̃n
ij ,(5.5)

where

L̃n
ij = Ln

ij + kn
ijh

2Mn
ij .(5.6)

Here Mn
ij = min(∆Rn

ij , ∆̃Rn
ij) and by ∆Rij , ∆̃Rij we denote the two second

order discretizations of the Laplacian (the “cross” and the “diagonal”):

∆Ri,j =
Ri+1,j + Ri−1,j − 4Ri,j + Ri,j+1 + Ri,j−1

h2
,

∆̃Ri,j =
Ri+1,j+1 + Ri−1,j−1 − 4Ri,j + Ri−1,j+1 + Ri+1,j−1

2h2
.(5.7)

The parameters kn
ij are arbitrary. They must be carefully chosen so that

scheme (5.5) satisfies consistency and the discrete maximum principle. Our
choice is specified below.

The following lemma gives the information on the sign of the term Mn
ij .

Lemma 5.1. If (i, j) is a maximum point of Rij we have

Mij < 0.

Proof. Suppose on the contrary, that at a maximum point (i, j) of the function
Rij , we have:

∆Rij , ˜∆Rij ≥ 0.(5.8)

Denote dkl
ij = Ri+k,j+l−Ri,j , for all k, l ∈ Is where Is = {k, l|k, l = ±1, 0, |k|+|l| > 0}.

According to (5.1), at a maximum point (i, j) the following relations hold

dkl
ij ≤ 0 ∀k, l ∈ Is and

∑

k,l∈Is

dkl
ij < 0 .

10



Under assumption (5.8) ∆R̃ij = d1,1
ij + d1,−1

ij + d−1,1
ij + d−1,−1

ij ≥ 0 and ∆Rij = d1,0
ij +

d0,1
ij + d0,−1

ij + d−1,0
ij ≥ 0. Summing up the last two inequalities gives

∑
k,l∈Is

dk,l
ij ≥ 0

and contradicts the fact that (i, j) is a maximum point.
Let us discuss the constraints of the consistency and the maximum principle.
• In order for this modified scheme to be consistent, we must have

|kn
ij | ≤ O

( 1
h

)
.

• Maximum principle implies that the parameters kij should be chosen such
that (5.3) holds, i.e. at maximum points (i, j), L̃n

ij ≤ 0.
Lemma 5.2. Let D = (dαβ) be a two-dimensional symmetric and positive definite

matrix with smooth elements. Let R be a smooth function (R ∈ C4(Ω)) where Ω is
a bounded domain in R2. Then in a neighborhood W of a maximum point of the
function R, the following holds

2∑

α,β=1

(dαβRxαxβ
)(x̄) ≤ 0, ∀x̄ ∈ W.(5.9)

Proof. Let x0 be a maximum point of the function R. We show that

2∑

α,β=1

(dαβRxαxβ
)(x0) ≤ 0.(5.10)

The matrix D is symmetric positive definite. Then there exists an orthogonal matrix
O s.t. OtDO = diag(c1, c2), where ck > 0 for k = 1, 2. Let z denote the transformed
coordinate system z = Ox. At the point x0 we then get

2∑

α,β=1

dαβRxαxβ
=

2∑

k,l=1

2∑

α,β=1

dαβRzkzl
OkiOlj =

2∑

k=1

ckRzkzk
.

Since ck > 0 and at a maximum point Rzkzk
(x0) ≤ 0, the desired inequality∑2

α,β=1(dαβRxαxβ
)(x0) ≤ 0 is established. Based on continuity, inequality (5.10)

holds as well in the neighborhood W of a maximum point
We divide the operator Ln

ij into a sum of two operators Ln
ij = L1,n

ij + L2,n
ij , where

L1,n
ij is the discrete approximation of L1 =

[
(ax + by)Rx + (cy + bx)Ry

]
/
√

g and L2,n
ij

is the discrete approximation of L2 = (aRxx + 2bRxy + cRyy)/
√

g.
Based on the assumption that the grid is fine enough, and from the definition of

a smooth maximum point, Lemma 5.2 has the following consequence:
Consequence 5.1. If (i, j) is a smooth maximum point of Rn

ij, then

L2,n
ij =

1√
g

2∑

α,β=1

(
dαβRxαxβ

)n

ij
≤ 0(5.11)

where

(dαβ) =
(

a b
b c

)
.

The algorithm we use is
11



• If (i, j) is not a maximum point or it is a maximum point s.t. Ln
ij ≤ 0 then

Rn+1
ij = Rn

ij + ∆tLn
ij .

(here L̃n
ij = Ln

ij)
• If (i, j) is a maximum point s.t. L1,n

ij > 0 and L2,n
ij ≤ 0, then

kn
ij =

−2L1,n
ij

h2Mn
ij

,

Rn+1
ij = Rn

ij + ∆t(Ln
ij + kn

ijh
2Mn

ij)(5.12)

(here L̃n
ij = L2,n

ij − L1,n
ij )

• If (i, j) is a maximum point s.t. L1,n
ij > 0 and L2,n

ij > 0, then

kn
ij =

−2L1,n
ij − L2,n

ij

h2Mn
ij

,

Rn+1
ij = Rn

ij + ∆t(Ln
ij + kn

ijh
2Mn

ij)(5.13)

(here L̃n
ij = −L1,n

ij )
• If (i, j) is a maximum point s.t. L1,n

ij ≤ 0 and L2,n
ij > 0, then

kn
ij =

−2L2,n
ij − L1,n

ij

h2Mn
ij

,

Rn+1
ij = Rn

ij + ∆t(Ln
ij + kn

ijh
2Mn

ij)(5.14)

(here L̃n
ij = −L2,n

ij )
• end

Note 5.1. The parameters kij in our algorithm are chosen in the following way:
• In the case of non-smooth maximum points (see eq. (5.13), (5.14)), the para-

meters are built such that the discrete maximum principle holds, i.e. L̃n
ij ≤ 0.

• In the case of smooth maximum points (see eq. (5.12)), the parameters are
chosen such that the scheme would satisfy the discrete maximum principle
and also be consistent.

Note 5.2. It is also important to remark that the choice of kij is not unique.
Below we prove the consistency of the modified scheme. We need to do this only

for smooth maximum points. We also show that at these points L̃n
ij < 0, i.e. the

discrete maximum principle is satisfied.
Lemma 5.3. Let (i, j) be a smooth maximum point of the function Rn

ij such that
the following holds

Ln
ij > 0 and L1,n

ij > 0.(5.15)

If the parameters kn
ij are chosen such that

kn
ij =

−2L1,n
ij

h2Mn
ij

,(5.16)

then
12
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Fig. 5.1. Maximum point

i) |kn
ij | ≤ O

( 1
h

)
, (i.e. the modified scheme is consistent);

ii) L̃n
ij < 0, (i.e. the discrete maximum principle holds).

Proof. We denote the maximum point of the function R by x0 (x0 ∈ R2). Then
according to the definition of a smooth maximum point:

(i, j) = x0 + (αh, µh), (0 ≤ |α| < 1, 0 ≤ |µ| < 1 (note Fig. 5.1)).
We have

L1
ij =

1√
gij

[
(ax + by)ij(Rx)ij + (bx + cy)ij(Ry)ij

]
.(5.17)

Due to the assumption on the smoothness of the functions, we have

(ax + by)ij/(
√

g)ij = O(1).(5.18)

Then we can write

|L1
ij | ≤ C1|(Rx)ij + (Ry)ij |.(5.19)

But

(Rx)ij = Rx(i, j) + O(h2), (Ry)ij = Ry(i, j) + O(h2).(5.20)

From Taylor expansion we get

Rx(x0) = (Rx)(i, j)− αhRxx(i, j)− µhRxy(i, j) + O(h2),(5.21)

Rx(x0) = (Ry)(i, j)− αhRyx(i, j)− µhRyy(i, j) + O(h2).(5.22)

Using the fact that x0 is a maximum point,

(Rx)(i, j) = αhRxx(i, j) + µhRxy(i, j) + O(h2).(5.23)
13



and

(Ry)(i, j) = αhRyx(i, j) + µhRyy(i, j) + O(h2).(5.24)

Relations (5.19), (5.20), (5.23), (5.24) imply

|L1
ij | ≤ C1h|αRxx(i, j) + µRyy(i, j) + (α + µ)Rxy(i, j)|+ O(h2).(5.25)

From the maximality of the point x0, |Rxy(x0)| ≤ |(Rxx + Ryy)(x0)| = |∆R(x0)| and
since (i, j) is a smooth maximum point, then

|Rxy(i, j)| ≤ |∆R(i, j)|+ O(h).(5.26)

Replacing (5.26) into (5.25) we then obtain

|L1
ij | ≤ C2h|∆R(i, j)|+ O(h2),(5.27)

where the constant C2 = C(C1, α, µ). We have that Mij is a second order approxi-
mation of the laplacian ∆R:

Mij = ∆R(i, j) + O(h2).(5.28)

Using (5.27) and (5.28), it follows that

|kij | =
|L1

ij |
h2|Mij | ≤

C2h|∆R(i, j)|+ O(h2)
h2(|∆R(i, j)|+ O(h2))

.

We thus obtained that |kn
ij | ≤ O

( 1
h

)
, which means consistency.

ii) Due to Consequence 5.1, at the point (i, j) we have L2,n
ij ≤ 0. From (5.12) and

(5.16), we have

L̃n
ij = L2,n

ij − L1,n
ij .

But we assumed in (5.15) that L1,n
ij > 0. Therefore L̃n

ij < 0, i.e. the discrete maximum
principle is satisfied.

Remark 5.2. Using the Mathematica computer software, we checked the accuracy
of the standard finite difference scheme and we showed that it is second order in space.

Below we show that the modified scheme is also second order accurate in space.
Lemma 5.4. The modified scheme is second order in space.
Proof. Without restricting the generality, suppose that the grid is quadratic and

contains n2 points. Let us denote by k the total number of local maximum points
and assume that k is independent of h. From Lemma 5.3 and Remark 5.2, we then
can classify the grid points in the following way: k points have first order accuracy
and n2 − k points have second order accuracy. Therefore the error

||E||2 = ||u− uij ||2 =
1
n2

n∑

ij

|Eij |2 =
1
n2

[∑

ij

(ηijh)2︸ ︷︷ ︸
k

+
∑

ij

(ζijh
2)2︸ ︷︷ ︸

n2−k

]
.

14



Then
||E||2 ≤

[
h2η2

maxkh2 + n2−k
n2 ζ2

maxh4
]
≤ kη2

maxh4 + ζ2
maxh4 = (kη2

max + ζ2
max)h4,

which implies that ||E|| = O(h2).
We thus proved that the modified scheme is second order accurate in space.

Theorem 5.1. (Local maximum principle) If ∆t satisfies ∆t = min
n,i,j

∆tnij, where

∆tnij |L̃n
ij(U

a)| ≤ [( max
(l,m),l,m=±1,0

(Ua)n
i+l,j+m)− (Ua)n

ij ],(5.29)

then the following maximum principle holds:

(Ua)n
ij ≤ max

(l,m),l,m=±1,0
(Ua)n−1

i+l,j+m, for all i, j.(5.30)

Proof.
If (i, j) is a maximum point for the component Ua

ij then from the construction of
the modified scheme, (5.30) obviously follows. If (i, j) is not a maximum point, then
choosing ∆t as in (5.29) also leads to (5.30). So the discrete maximum principle is
satisfied.

We also have the following global maximum principle:
Corollary 5.1. (Global maximum principle) If ∆t satisfies ∆t = min

n,i,j
∆tnij,

where

∆tnij |L̃n
ij | ≤ [( max

(l,m),l,m=±1,0
(Ua)n

i+l,j+m)− (Ua)n
ij ],

then the following maximum principle holds for each of the components of the color
vector:

(Ua)n
ij ≤ max

i,j
(Ua)0ij , for all i, j.(5.31)

6. Details of the Implementation and Results. In this section we present
experimental results of denoising color images by means of the two schemes (the
standard and the modified). The initial data are given in three channels r, g and b
in the range 0 to 255. We first transfer the images to the more perceptually adaptive
coordinates R = log(1+r), G = log(1+g), B = log(1+b). These adaptive coordinates
do not limit the generality of our analysis. The dynamic range of these variables is
0 to 8. For the modified scheme, the choice of the parameters kij is the one given in
the algorithm presented in Section 5. The step time ∆t can be fixed by hand or can
be computed in an adaptive way, namely at each iteration ∆tn = minij ∆tnij , and
∆tnij is computed according to (5.29). We emphasize that the criterion of comparison
between the two schemes is not necessarily the visual quality, but rather the fulfillment
of the discrete maximum principle.

In the first example we corrupt a given image with Gaussian random noise. We
then denoise it using the two methods. The discrete maximum principle is clearly
violated in the standard scheme (see Fig.6.1 bottom left). Though the visual results
of the images obtained by using the two schemes are very similar, only the modified
scheme enjoys the discrete maximum principle property.
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Fig. 6.1. Top-left: Noisy Camila image. Top-middle: Result of the Beltrami flow with the
standard scheme. Top-right: Result of the Beltrami flow with the modified scheme. Bottom: Plot
of maximum of each of the channels versus number of iterations. Left: standard scheme. Right:
modified scheme. Process parameters: 53 iterations, β =

√
0.0026, ∆t = 0.00002, h = 1/220.

In the second example we denoise an image damaged by certain artifacts of a lossy
JPEG compression algorithm. In Fig. 6.3 left graph, we see a very serious violation of
the discrete maximum principle in the standard scheme. All channels intensities got
out of the domain of initial values ([0,8] in our new coordinates). The values of the
red channel go up to 8.3, over the allowed maximum value of 8. In order to display the
color image we need either to chop it or to scale it back to the initial domain. In this
example, we observe the importance of the method used to display the color image.
Using the chopping method, the color image seems to be better restored than using
the rescaling method, which modifies the image contrast (see Fig. 6.2 bottom-right).
In both images, obtained by the standard scheme, one can notice some artifacts in
the eye region. These artifacts are positioned along a diagonal edge (see zoom in Fig.
6.4). In the proposed numerical scheme these artifacts are not present (see Fig. 6.2
bottom left).
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Fig. 6.2. Top-left: Noisy Cameron image. Top-right: Result of the denoising by use of the
standard scheme. Display of the color image in Matlab by chopping. Bottom-left: Result of the
denoising by use of the modified scheme. Bottom-right: Result of the denoising by use of the standard
scheme. Display of the color image in Matlab by rescaling. Process parameters: 32 iterations,
β =

√
0.0012, ∆t adaptive, h = 1/159.
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Fig. 6.3. Plot of maximum of each of the channels versus number of iterations. Left: standard
scheme. Right: modified scheme.
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Fig. 6.4. Zoom. Left: standard scheme. Right: modified scheme. Notice the white artifact in
the left image along the diagonal edge in the eye region, and not in right image, produced by the
modified scheme.

A more severe deviation from the satisfaction of the discrete maximum principle in
the standard scheme can be noticed in Fig. 6.6. The maximum of the red component
goes up to the value 8.5, as illustrated in the graph below (see Fig. 6.6). The diagonal
edges are better restored by the modified scheme. In Fig. 6.7 one can observe a strong
artifact on the diagonal edge of the bottom part of the leaf, which is present only in
the image processed by the standard scheme and not in the image processed by the
modified scheme.
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Fig. 6.6. Plot of maximum of each of the channels versus number of iterations. Left: standard
scheme. Right: modified scheme.
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Fig. 6.5. Top: Noisy flower image. Bottom-left: Result of the Beltrami flow with the standard
scheme. Bottom-right: Result of the Beltrami flow with the modified scheme. Process parameters:
30 iterations, β =

√
0.003, ∆t = 0.00001, h = 1/172.

Fig. 6.7. Zoom to the bottom part of the leaf left: Noisy image. Middle: standard scheme.
Right: modified scheme. Notice the white artifact of the leaf, along the diagonal edge, present in the
middle image obtained by the standard scheme and not in the right image, produced by the modified
scheme.
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7. Concluding remarks. In this paper we analyze the discrete maximum prin-
ciple for the Beltrami color flow. Even if often used in practice, the standard schemes
in general, fail to satisfy the discrete maximum principle.

In this work we show that a nonnegative second order difference for this flow
can be built for small values of the parameter β, i.e. linear-like diffusion. This
limitation on the parameter β makes the nonnegative scheme unpractical. Moreover,
we construct a novel second order finite difference scheme, which is not nonnegative
and does satisfy the maximum principle. We illustrate its properties in numerical
examples by applying this scheme to color noisy images.
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