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This paper considers the application of the method of boundary penalty terms
(SAT) to the numerical solution of the wave equation on complex shapes with
Dirichlet boundary conditions. A theory is developed, in a semi-discrete setting,
that allows the use of a Cartesian grid on complex geometries, yet maintains
the order of accuracy with only a linear temporal error-bound. A numerical
example, involving the solution of Maxwell’s equations inside a 2-D circular
wave-guide demonstrates the efficacy of this method in comparison to others
(e.g., the staggered Yee scheme)—we achieve a decrease of two orders of mag-
nitude in the level of the L2-error.
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1. INTRODUCTION

Hyperbolic systems of PDEs describing physical situations such as electro-
magnetism, acoustics, elastic waves, etc, may under many circumstances be
cast as wave equations for the various field components.

One class of problems is that of solving numerically the Dirichlet
problem on complex shapes, e.g., inside wave guides. For sufficiently non-
simple geometries, the option of transforming the problem to body-fitted
coordinates is not always a viable option, especially in three space dimen-
sions. There are other options, such as using Cartesian grids and approx-
imating the body shape via “staircasing”, “diagonal split cell model”, etc.
(see for example Chapter 10 in [4]). It is well known that these devices
are not very efficacious, particularly in the high frequency regime. We shall
demonstrate that “staircasing” can fail even for low frequencies.
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In this paper, we consider the application of the method of boundary
penalty terms (SAT, see [1–3]) to the numerical solution of the wave equa-
tion in a finite domain with Dirichlet boundary conditions.

In Sec. 2, we develop the theory that allows us to use a Cartesian grid
on complex geometries and yet maintain the order accuracy with a linear
temporal error-bound.

In Sec. 3, we construct a second-order accurate scheme that fulfills
the conditions imposed by the theory presented in Sec. 2.

Section 4 is devoted to a numerical example—the solution of the
transverse magnetic (TM) Maxwell’s equations [4] between two concentric
circles (This configuration might be considered as a cross-section of a very
long wave-guide.) This problem is solved using four different numerical
algorithms. Two of them solve the first order system with “staircasing”—
the Yee staggered scheme [7] and a fourth-order spatially staggered scheme
due to Turkel and Yefet [5,6]. The other two solve the wave equation
directly on a non-staggered Cartesian grid, one with the SAT formulation
and one without. All three “standard” (non-SAT) algorithms have very
large errors; the SAT algorithm has errors that are at least two order of
magnitude smaller. Summary and conclusions, and ideas for future work
are presented in Sec. 5.

2. THEORETICAL FRAMEWORK OF THE METHOD

In [1–3], it was shown how the case of a one-dimensional PDE can
be used as a building block for the multidimensional case for constructing
error-bounded algorithms over complex geometries with Dirichlet bound-
ary condition. We therefore start with the following one-dimensional prob-
lem:

∂2u

∂t2
= ∂2u

∂x2
+f (x, t), ΓL �x �ΓR, t >0, (2.1)

u(x,0)=u0(x), (2.1a)

∂

∂t
u(x,0)=ut0(x), (2.1b)

u(ΓL, t)=gL(t), (2.1c)

u(ΓR, t)=gR(t) (2.1d)

and f (x, t)∈C2.
Let us discretize (2.1) spatially on the uniform grid presented in

Fig. 1. Note that the boundary points do not necessarily coincide with
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Fig. 1. One-dimensional grid.

x1 and xN . Set xj+1 − xj = h, 1 � j � N − 1; x1 − ΓL = γLh, 0 � γL < 1;
ΓR −xN =γRh, 0�γR <1.

Since, unlike the cases discussed in [1, 2], Eq. (2.1) has a second time
derivative, attempts to apply naively the methods presented there fail. The
reason is that if we follow the procedure used there and write the follow-
ing discrete approximation to (2.1),

d2

dt2
u =Du + f(t)+Te, (2.2)

where u is the projection of the exact solution u(x, t) onto the grid, i.e.

u(xj , t)=uj (t)
�=u(t); and write the numerical scheme

d2v
dt2

= [
Dv − τL(ALv −gL)− τR(ARv −gR)

]+ f(t), (2.3)

then the equation for the error vector ε =u − v becomes

d2 ε

dt2
=M ε +T. (2.4)

In the above, v is the numerical approximation to u, and

M =D − τLAL − τRAR. (2.5)

D is a differentiation matrix of the proper order of accuracy that does not
use boundary values. The matrices AL and AR are defined by the relations

ALu =gL −TL, ARu =gR −TR, (2.6)

i.e., each row in AL(AR) is composed of the coefficients extrapolating u to
its boundary value gL(gR) at ΓL(ΓR) to within the order of accuracy (The
error is then TL(TR).) The diagonal matrices τL and τR are given by

τL =diag(τL1 , τL2 , . . . , τLN
), τR =diag(τR1 , τR2 , . . . , τRN

).
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The constrain on the construction of the As, τ s and D is that M in (2.4)
be negative definite. The negative definiteness of M is a necessary condi-
tion for extending the 1-D theory to the multidimensional case (see [1, 3]).
Also in (2.4)

T=Te − τLTL − τRTR = (T1, T2, . . . , Tm, . . . , TN)T . (2.7)

If the matrix M can be diagonalized�, then

M =Q−1ΛQ (2.8)

with the diagonal matrix, Λ, having the eigenvalues of M. Defining µ=
Q ε, Eq. (2.4) becomes

d2 µ

dt2
= Λ µ+QT

= Λ µ+ T̂ . (2.9)

This is an un-coupled system of ODEs. The general solution for the mth
equation is:

µm(t)= cm1e
√

λmt + cm2e
−√

λmt + 1√
λm

∫ t

0
sinh

(√
λm(t − s)

)
T̂m(s)ds.

Recalling that at t = 0, ε = εt = 0 (i.e. µ= µt = 0 at t = 0), the solution
of (2.9) becomes:

µm(t)= 1√
λm

∫ t

0
T̂m(s) sinh

[√
λm(t − s)

]
ds. (2.10)

Note that unless all the eigenvalues of M are real and non-positive
some of the

√
λm’s will have a positive real part, in which that case at least

one of the µm’s may grow exponentially in time. In order to prevent this,
we have to demand that M, in addition to being negative definite, also
possess only real eigenvalues. Furthermore, in order to use the 1-D scheme
as a building block for multidimensional schemes, M should be built in
a way that verifies that the property of real negative eigenvalues carries
over to the multi-dimensional differentiating matrix. One way to achieve
this goal is to construct M as a negative-definite symmetric matrix. Then

�Extensive numerical evidence has shown that the M in [1, 2] (i.e. representing the second
derivative to Fourth- and Second-order accuracy, respectively) has distinct eigenvalues and
hence is diagonalizable.
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an estimate on the error bound can be derived directly from the solution
(2.10),

|µm(t)|� 1√|λm| T̂mM
t,

where T̂mM
=max0�s�t |T̂m(s)|. Then, for a normalized Q,

‖ ε‖=‖ µ‖� 1
c0

‖T̂M‖t, (2.11)

where c0 = minm=1,... ,N

√|λm|. Therefore ‖ ε‖ grows at most linearly
with t .

This result, of a linear temporal bound on the error-norm, can also
be derived by resorting to energy method (see [3]), instead of directly from
the solution.

Also, as mentioned before, the construction of multi-dimensional case

∂2u

∂t2
=∇2u+f (x, t),

on complex shapes is completely analogous to the method indicated in
[1, 3].

3. CONSTRUCTION OF THE SCHEME

This section is devoted to the task of constructing a symmetric nega-
tive definite matrix M for the case of a second order accurate finite differ-
ence algorithm.

Let

D = 1
h2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎢
⎣

1 −2 1 0
1 −2 1 0
0 1 −2 1
0 0 1 −2 1

. . .
. . .

. . .

1 −2 1 0 0
1 −2 1 0

1 −2 1
1 −2 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎥
⎦
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+

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

0
c2

c3
. . .

cN−2
cN−1

0

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

0 0 0 0
1 −3 3 −1

−1 4 −6 4 −1
. . .

. . .
. . .

. . .
. . .

−1 4 −6 4 −1
−1 3 −3 1

0 0 0 0

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

−c̃

⎡

⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

0 0 0
0 1 −2 1

−1 2 0 −2 1
. . .

. . .
. . .

. . .
. . .

−1 2 0 −2 1
−1 2 −1 0

0 0 0 0

⎤

⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.1)

where

ck = c2 + cN−1 − c2

N −3
(k −2) (3.2)

and

c̃= cN−1 − c2

N −3
. (3.3)

Note, that as in [2] and [3], we had to resort to using connectivity terms,
the last two matrices in (3.1).

AL =

⎡

⎢
⎣

1
2 (2+γL)(1+γL) −γL(2+γL) 1

2 (γL +γ 2
L) 0 . . . 0

...
...

...
...

...
1
2 (2+γL)(1+γL) −γL(2+γL) 1

2 (γL +γ 2
L) 0 . . . 0

⎤

⎥
⎦ , (3.4)

AR =

⎡

⎢
⎣

0 . . . 0 1
2 (γR +γ 2

R) −γR(2+γR) 1
2 (2+γR)(1+γR)

...
...

...
...

...

0 . . . 0 1
2 (γR +γ 2

R) −γR(2+γR) 1
2 (2+γR)(1+γR)

⎤

⎥
⎦ . (3.5)

τL = 1
h2

diag
[
τL1 , τL2 , τL3 ,0, . . . ,0,0

]
, (3.6)

τR = 1
h2

diag
[
0,0, . . . ,0, τRN−2 , τRN−1 , τRN

]
. (3.7)
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In order to make the matrix M =D − τLAL − τRAR symmetric we choose:

c2 = (1−γL) γL

2
,

cN−1 = (1−γR) γR

2
,

τL2 = 3−γL −2 γL τL1

1+γL

,

τL3 = −2+γL +γL τL1

2+γL

, (3.8)

τRN−1 = 3−γR −2 γR τRN

1+γR

,

τRN−2 = −2+γR +γR τRN

2+γR

and in order to make the matrix M negative definite we take

τL1 , τRN
� 4. (3.9)

The proof that the symmetric matrix M is indeed negative-definite is
given in the Appendix to this paper.

Note also that instead of solving (2.3) directly as a second- order
ODE system in time, one can solve

dw
dt

= [Dv − τL(ALv −gL)− τR(ARv −gR)]+ f,

dv
dt

= w . (3.10)

The number of ‘variables’ has increased from N to 2N but one gains in
the simplicity of the time integration.

4. NUMERICAL EXAMPLE

We consider the dimensionless Maxwell’s equation for TM field (see
[4, pp. 51–56]) in two space dimensions:

∂E

∂t
= ∂Hy

∂x
− ∂Hx

∂y
, (4.1)

∂Hx

∂t
=−∂E

∂y
, (4.2)

∂Hy

∂t
= ∂E

∂x
, (4.3)
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where Hx and Hy are the x and y components of the magnetic vector, H,
and E is the electric field in the z-direction. The set (4.1)–(4.3) is to be
solved in the space between two concentric circles, 1

6 <r < 1
2 . We consider

the case of perfectly conducting boundaries. Thus the boundary conditions
are given by

E( 1
2 , θ, t)=0, (4.4)

E( 1
6 , θ, t)=0. (4.5)

We choose the following initial conditions (note the polar coordinates r, θ ):

E(r, θ,0) = cos θ [J1(ωr)+a Y1(ωr)] , (4.6)

Hy(r, θ,0) =− sin 2θ
{ 1

2ωr
[J1(ωr)+a Y1(ωr)]

−1
4

[J0(ωr)−J2(ωr)+a Y0(ωr)−a Y2(ωr)]
}
, (4.7)

Hx(r, θ,0) = cos2 θ

ωr
[J1(ωr)+a Y1(ωr)]

− sin2 θ

2
[J0(ωr)−J2(ωr)+a Y0(ωr)−a Y2(ωr)] , (4.8)

where the Jn’s and the Yn’s are Bessel functions of the first and second
kind of order n, respectively. Also,

a ∼=1.76368380110927, ω∼=9.813695999428405. (4.9)

The exact solution of the IBV problem (4.1)–(4.8) is given by:

E(r, θ, t) = cos(ωt + θ) [J1(ωr)+a Y1(ωr)] , (4.10)

Hy(r, θ, t) =− 1
ωr

cos θ cos(ωt + θ) [J1(ωr)+a Y1(ωr)]

+ 1
2 cos θ sin(ωt + θ) [J0(ωr)−J2(ωr)+a Y0(ωr)−a Y2(ωr)] ,

(4.11)

Hx(r, θ, t) = 1
ωr

cos θ cos(ωt + θ) [J1(ωr)+a Y1(ωr)]

− 1
2 sin θ sin(ωt + θ) [J0(ωr)−J2(ωr)+a Y0(ωr)−a Y2(ωr)] .

(4.12)

We note that we can extract from (4.1) to (4.3) a wave equation for the
electric field E,

∂2E

∂t2
= ∂2E

∂x2
+ ∂2E

∂y2
. (4.13)
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The boundary conditions on E in (4.13) are given by (4.4)–(4.5). The ini-
tial condition E(r, θ,0) is given by (4.6). We need an additional initial con-
dition on Et , which we obtain by differentiating (4.10), namely

Et(r, θ,0)=−ω sin θ [J1(ωr)+a Y1(ωr)] . (4.14)

Four numerical schemes were used to solve the problem:

(i) The Yee scheme [7]. This second order accurate scheme is stag-
gered both in space and time. This entails putting initial condi-
tions of Hx and Hy at ∆t/2 rather than at t = 0. These initial
conditions are derived from the exact solution. The numerical
solution is carried out on the “staircased” domain shown in
Fig. 2.

(ii) A modification of the Yee scheme (designated Ty(2,4)) (see
[5,6]). This one has fourth-order spatial accuracy and second-
order in time. The stagger is maintained as before, with the same
“staircased” domain.

(iii) The SAT algorithm for the wave equation described in Secs. 2
and 3. The grid used for the numerical integration is shown in

Fig. 2. The “staircased” domain, h=1/40.
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Fig. 3. The embedded grid, h=1/40.

Fig. 3. The time evolution is done by a fourth-order Runge–
Kutta method.

(iv) An algorithm which formally looks like the SAT in (iii), but is
applied to the “staircased” domain of Fig. 2 (rather than Fig.
3). To order O(h2), this is equivalent to using a standard spa-
tial central differencing scheme with the nodal points at edges
of the domain given the boundary value zero. The time integra-
tion is done as in the case (iii).

We first present the L2 error in E for all four schemes at t =1 and 10
for the cases ∆x =∆y =h=1/40, h=1/80 and h=1/160 (see Table I).

It is immediately apparent from the table that the SAT-error (scheme
(iii)) is at least two orders of magnitude smaller than that of the other three
algorithms at all the various times and grid spacings.

Since the non-SAT schemes have errors which are unacceptably large
we do not show details of their temporal behavior. The SAT algorithm
(scheme (iii)) has an L2 error which grows in time as shown in Fig. 4.
We see that this temporal growth is bound by a linear curve, whose slope
depends on h. We note that for all reasonable dimensionless time the error
is quite small, especially for h�1/80.
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Table I. The L2 Error

h=1/40 h=1/80 h=1/160 Convergence rate

t =1
i Yee 0.4322 0.3635 0.1742 0.66
ii Ty(2,4) 0.4038 0.3347 0.1579 0.68
iii SAT 0.001203 0.0001705 1.5019e-05 3.16
iv Staircased 0.1022 0.05041 0.01936 1.20

t =10
i Yee 0.5101 0.4364 0.6683 Not applicable
ii Ty(2,4) 0.2642 0.7079 0.7243 Not applicable
iii SAT 0.008435 0.0008354 8.2707e-05 3.33
iv Staircased 0.7929 0.4735 0.7829 Not applicable

200 400 600 800 1000
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L2 error

h=1/40

h=1/80

h=1/160

Fig. 4. SAT, L2 error versus time.

5. CONCLUSIONS AND DISCUSSION

(i) It can be seen from Table I, that the “staircasing” approxima-
tion causes large errors. It reduces the accuracy to first order
or less. At t = 10 the errors are so large that no convergence is
obtained. Even the SAT scheme when run on the “staircased”
domain, it presents poor convergence. On the other hand,
when the SAT scheme is run on the true domain, it converge
properly.
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(ii) The numerical results validate the theoretical predictions of the
temporal behavior of the L2 norm of the error.

(iii) Grosso-modo the CPU time per node is of the same order for
all schemes.

(iv) The results from Table I and Fig. 4 seem to indicate that the
scheme (iii) converges as h3, although the algorithm has a trun-
cation error of order h2. We do not understand this pleasant
anomaly, although it is possible that even with h=1/160 we are
not yet in the asymptotic convergence regime.

(v) In the future, we would like to apply the SAT methodology
directly to hyperbolic systems such as (4.1)–(4.3). The theory is
not complete yet.
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APPENDIX A

We decompose the matrix M, defined in (2.5) and (3.1)–(3.8) as fol-
lows:

M = 1
h2

[αM1 + (1−α)M2 +M3 +M4 +M5] , (5.1)

where

M1 =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎢
⎣

−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2 1

1 −2

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎥
⎦

, (5.2)
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M2 =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 −1 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 1 −1 0 0

0 0 0
0 0 0

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎥
⎥
⎦

, (5.3)

M3 =−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎣

0 0 0
0 −1 1
0 1 −2 1

. . .
. . .

. . .

1 −2 1 0
1 −1 0
0 0 0

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0
c2

c3
. . .

cN−2
cN−1

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0
0 −1 1
0 1 −2 1

. . .
. . .

. . .

1 −2 1 0
1 −1 0
0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (5.4)

M4 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

m
1,1
4 m

1,2
4 m

1,3
4

m
1,2
4 m

2,2
4 m

2,3
4 0

m
1,3
4 m

2,3
4 m

3,3
4

0 0

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎦

, (5.5)

where

m
1,1
4 = 1+2α − (1+γL) (2+γL) τL1

2
,

m
1,2
4 = −2−α +γL (2+γL) τL1 ,

m
1,3
4 = 1− γL (1+γL) τL1

2
,



80 Abarbanel, Ditkowski, and Yefet

m
2,2
4 = 2α + 7γL −4

(
1+γ 2

L

)−γL
2 (2+γL)

(
1+4τL1

)

2 (1+γL)
,

m
2,3
4 = 1−α − 3γL

2
+ γL

2

2
+γL

2τL1 ,

m
3,3
4 = 2α + −4+γL

2 −γL
3 −γL

2 (1+γL) τL1

2 (2+γL)

and

M5 =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

0 0

m
N−2,N−2
5 m

N−1,N−2
5 m

N,N−2
5

0 m
N−1,N−2
5 m

N−1,N−1
5 m

N,N−1
5

m
N,N−2
5 m

N,N−1
5 m

N,N
5

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

, (5.6)

where

m
N,N
5 = 1+2α − (1+γR) (2+γR) τRN

2
,

m
N,N−1
5 = −2−α +γR (2+γR) τRN

,

m
N,N−2
5 = 1− γR (1+γR) τRN

2
,

m
N−1,N−1
5 = 2α + 7γR −4

(
1+γ 2

R

)−γR
2 (2+γR)

(
1+4τRN

)

2 (1+γR)
,

m
N−1,N−2
5 = 1−α − 3γR

2
+ γR

2

2
+γR

2τRN
,

m
N−2,N−2
5 = 2α + −4+γR

2 −γR
3 −γR

2 (1+γR) τRN

2 (2+γR)
.

The matrix M1 is negative-definite and bounded away from 0 by h2π2

by the argument leading to Eq. (2.4.31), see appendix to chapter 2 in [3].
M2 is non-positive definite, see Eqs. (2.4.34) and (2.4.35) in that appendix.
From (3.2), (3.3) and (3.8) follows that ck � 0, k = 1, . . . ,N , therefore, the
matrix M3 is non-positive. For a given value of 0�α �1, τL1 and τRN

can
be found such that the matrices M4 and M5 will be non-positive, for all γL

and γR. For example: for α=1/10, τL1 =τRN
=4; for α=1/2, τL1 =τRN

=9
and for α=8/10, τL1 =τRN

=24. This completes the proof that M is indeed
a negative-definite matrix, bounded away from 0 by απ2. Therefore the
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norm of the error vector ‖ ε ‖ can grow at most linearly in time, see Eq.
(2.11).
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