ACUTE RENAL FAILURE IN CHILDREN

PREVIOUS DEFINITION: Sudden (hours, days) reduction in renal function of at least 50%, characterized by rising serum levels of waste products (creatinine, urea), disturbances in water/electrolyte balance and urine amount and composition.

Irit Krause, M.D. Schneider’s Children Medical Center

ACUTE KIDNEY INJURY NEW DEFINITION

Modified RIFLE criteria in critically ill children with acute kidney injury

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Estimated CCI</th>
<th>Urine Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISK</td>
<td>eCCI decrease by 25%</td>
<td><0.5 ml/kg/h for 8 h</td>
</tr>
<tr>
<td>INJURY</td>
<td>eCCI decrease by 50%</td>
<td><0.5 ml/kg/h for 16 h</td>
</tr>
<tr>
<td>FAILURE</td>
<td>eCCI decrease by 75% or eCcr <35 ml/min/1.73 m²</td>
<td><0.3 ml/kg/h for 24 h or anuric for 12 h</td>
</tr>
<tr>
<td>LOSS</td>
<td>Persistent failure >4 weeks</td>
<td></td>
</tr>
<tr>
<td>END STAGE</td>
<td>End-stage renal disease (persistent failure >3 months)</td>
<td></td>
</tr>
</tbody>
</table>

Causes of acute kidney injury in children

- **Prerenal causes** (decreased effective blood volume)
 - Altered systemic hemodynamics
 - dehydration
 - blood loss
 - third space losses (burns)
 - vasodilatation (septic shock, anaphylaxis, drugs)
 - hypoalbuminemia (liver disease, nephrotic syndrome, protein loosing enteropathy)
 - heart failure

Causes of AKI - cont

- **Altered local hemodinamics**
 - renal vein thrombosis
 - renal artery stenosis/thrombosis
Intrinsic Renal Diseases (1)

- **Glomerular** (acute glomerulonephritis)
 - Vasculitis (Wegener’s, microscopic polyangiitis)
 - HUS
 - Immune mediated
 - Post infectious
 - Henoch-Schönlein purpura, IgA nephropathy
 - SLE
 - Membranoproliferative GN
 - anti-GBM associated GN (including Goodpasture)

Intrinsic Renal Diseases (2)

- **Tubulointerstitial**
 - Acute tubular necrosis
 - Infectious/parainfectious
 - Drug related
 - Infiltrative (malignancies)

- **Exogenous**
 - Drugs (aminoglycosides, amphotericin, NSAIDs)
 - Contrast media
 - Rare causes: heavy metals, methoxyflurane, ethyleneglycol

- **Nephrotoxicity**
 - Endogenous
 - Myoglobin
 - Hemoglobin
 - Uric acid
 - Oxalate

Postrenal Causes

- Obstruction by tumor
- Retroperitoneal fibrosis
- Obstruction by calculi
- Functional obstruction (neurogenic bladder)
- Iatrogenic (following urological operation)

Causes of Renal Failure According to Incidence

<table>
<thead>
<tr>
<th>Cause</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATN</td>
<td>120</td>
<td>23.3</td>
</tr>
<tr>
<td>HUS</td>
<td>108</td>
<td>21.0</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
<td>65</td>
<td>12.6</td>
</tr>
<tr>
<td>“Intrinsic renal disease”</td>
<td>44</td>
<td>8.5</td>
</tr>
<tr>
<td>Urinary obstruction</td>
<td>17</td>
<td>3.3</td>
</tr>
<tr>
<td>Postoperative</td>
<td>35</td>
<td>6.8</td>
</tr>
<tr>
<td>Sepsis</td>
<td>32</td>
<td>6.2</td>
</tr>
<tr>
<td>Ischemic/Prerenal</td>
<td>23</td>
<td>4.5</td>
</tr>
<tr>
<td>Other</td>
<td>71</td>
<td>13.8</td>
</tr>
<tr>
<td>Total</td>
<td>515</td>
<td>100</td>
</tr>
</tbody>
</table>

(Pediatric Nephrology (2002) 17; 61-69)
Acute Tubular Necrosis

- The most common cause of AKI
 - Ischemic
 - Nephrotoxic
 - Secondary to glomerular disease

NSAID – kidney enemy!

Pathophysiology of Ischemic Acute Renal Failure

Ischemic Injury

- ATP↓
- Cytoskeleton
- Cell swelling
- Intracellular Ca↑
- Activation of phospholipases proteases endonucleases
- Activation of leukocytes, thymocytes
cytokines↑
Adhesion molecules

- Oxygen radicals
- mesangial contraction
- NO
- endothelin cast formation

Cell damage
Diagnosis

- Acute vs chronic renal failure
- History, previous tests
- Growth
- Kidney size
- Anemia
- Renal osteodystrophy

Prerenal vs. Intrinsic Renal Damage

<table>
<thead>
<tr>
<th></th>
<th>Response to fluid therapy</th>
<th>Fe of Na</th>
<th>Urinary Osmolality</th>
<th>Urinary output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreRenal</td>
<td>Improvement</td>
<td>< 1%</td>
<td>> 400 mOsmol/l</td>
<td>Low</td>
</tr>
<tr>
<td>ATN</td>
<td>No improvement</td>
<td>> 1%</td>
<td>< 400 mOsmol/l</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Fractional excretion of sodium = urinary sodium x serum creatinine/serum sodium x urinary creatinine x 100% (normal <1%)

Treatment (1) - General Principles

- Treating the cause
 - Fluid balance including regular weighing
 - Evaluation of intravascular volume and effective blood volume (clinical, CVP)
- Avoidance of further renal damage
 - hypoxia
 - hypovolemia
 - nephrotoxic drugs
 - contrast material
- Adjustment of drug dosage according to the degree of renal dysfunction
- Nutrition

- Urine sediment – important!
- Urine electrolytes, including creatinine – important!
- Keep some urine for further tests!
- Ultrasound
- Plain abdomen X-ray
- Specific tests according to the suspected cause (serological investigations)
Treatment (2) – Drug Therapy

Hyperkalemia
- Glucose 0.5 gm/kg
- Insulin 0.3 units/gm glucose over 2h
- Sodium bicarbonate 1-3mEq/kg and by titration
- Calcium globionate/gluconate (10%) 0.2-0.5mL/kg over 2-5 minutes
- Salbutamol nabalised intravenous 4-5mcg/kg over 15 min
- Kayexalate (sodium polystyrene sulfonate) 1-2 gr/kg in solution of sorbitol 20% PO or in solution of glucose 10% PR every 4 hours

Hyperphosphatemia
- Phosphor binders (calcium carbonate) with meals

Hypocalcemia
- Ca supplements PO or IV

Acidosis
- sodium bicarbonate (IV continuous- preferable)

Treatments pointed to improve outcome

Dopamine (“renal dose” 2-5µg/kg/min)
- D1-dopaminergic receptors → vasodilatation, natriuresis
- No definitive studies showing improved outcome in ARF
- Placebo controlled randomized study of low-dose dopamine in adult critically ill patients with early renal dysfunction did not confer clinically significant protection from renal failure.
- No studies in children
- **Adverse effects**
 - suppression of respiratory drive
 - increased cardiac output and myocardial oxygen consumption
 - triggering of arrhythmias
 - hypokalemia
- High dose dopamine is indicated in cardiac dysfunction

Diuretics- Furoseamade
- No studies in children.
- In adults with ARF there is no hard data regarding the benefit of furoseamide.
- Larger doses in children are not more effective. Dosage should not exceed 10mg/kg/day
- Preference to slow infusion
- **Adverse effects**
 - hypokalemia
 - hypomagnesemia
 - hypercalciuria
 - hearing loss
 - intravascular volume depletition
Diuretics- Mannitol

- Acts as osmotic diuretic in proximal tubule, increases plasma osmolality and intravascular volume.
- Dose: 0.5-1 gr/kg over 30-60 min.
- Data regarding the effectiveness of mannitol is contradictory.
- In a controlled study of pediatric kidney transplant patients- benefit was shown for mannitol given just prior to clamp removal during the surgery.

Natriuretic peptides

- One study showed beneficial effect in ANF.
- Very large multicentral study showed no beneficial effect in patients with oliguric ARF.

Albumin
- No survival benefit in critically ill patients with ARF.

Calcium channel antagonists
- Have been shown to reduce the incidence of ATN following renal transplantation
- Clinical use in post-ischemic ARF is not established.

Future

- Fenoldopam mesylate– selective D1-dopaminergic receptor agonist.
- Melanocyte stimulating factor- anti-inflammatory activity, direct effect on tubules.
- Free radical scavengers.
- IGF-1?
Renal Replacement Therapy

- **Absolute indications for dialysis**
 - Fluid overload with pulmonary congestion/heart failure/uncontrollable hypertension.
 - Hyperkalemia
 - Acidosis
 - Hypocalcemia
 - Uremia (encephalopathy, bleeding, pericarditis)
 - Intoxications
- **Relative indications**
 - Nutritional support impossible due to fluid restriction
 - Very high urea (>300mg%).
- **Timing**

Choice of Dialysis

- Assessment of patient's clinical status and specific problems
- Access
- Experience

Peritoneal Dialysis

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy access</td>
<td>slow clearance</td>
</tr>
<tr>
<td>little equipment, easy to operate</td>
<td>distention of abdomen</td>
</tr>
<tr>
<td>safe in hemodynamically unstable patients</td>
<td>hyperglycemia</td>
</tr>
<tr>
<td>continuous, gradual ultrafiltration and solute clearance</td>
<td>leak around the catheter</td>
</tr>
<tr>
<td>may provide calories and protein (nutraneal)</td>
<td>infection</td>
</tr>
<tr>
<td>not expensive</td>
<td>hypothermia</td>
</tr>
</tbody>
</table>

Intermittent Hemodialysis

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>rapid fluid and solute clearance</td>
<td>access difficult to achieve in very little children</td>
</tr>
<tr>
<td>bedside insertion of access</td>
<td>need for fluid restriction</td>
</tr>
<tr>
<td></td>
<td>hyperglycemia</td>
</tr>
<tr>
<td></td>
<td>large volume changes not safe in hemodynamically unstable patients</td>
</tr>
<tr>
<td></td>
<td>disequilibrium syndrome</td>
</tr>
<tr>
<td></td>
<td>systemic anticoagulation</td>
</tr>
<tr>
<td></td>
<td>access thrombosis</td>
</tr>
<tr>
<td></td>
<td>infection</td>
</tr>
</tbody>
</table>
Malignant Hypertension

Presence of severe hypertension along with complications:

- papilledema
- neurological
- congestive heart failure

Outcome

- Mortality: 35-73% in patients requiring dialysis
- Prognostic factors
 - Cause of ARF
 - Presence of multiorgan failure
 - Age
 - Hypoalbuminemia
 - Early dialysis?
 - More aggressive dialysis?

Hypertensive Emergencies

- Measurement of blood pressure
- Classification of hypertension by age groups

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Age (yr)</th>
<th>Systolic/Diastolic (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Significant</td>
</tr>
<tr>
<td>Newborn</td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>Infant</td>
<td><2</td>
<td>112/74</td>
</tr>
<tr>
<td>Children</td>
<td>3-5</td>
<td>116/76</td>
</tr>
<tr>
<td></td>
<td>6-9</td>
<td>122/78</td>
</tr>
<tr>
<td></td>
<td>10-12</td>
<td>126/82</td>
</tr>
<tr>
<td>Adolescents</td>
<td>13-15</td>
<td>136/86</td>
</tr>
<tr>
<td></td>
<td>16-18</td>
<td>149/92</td>
</tr>
</tbody>
</table>

Etiology of Hypertensive Emergencies in Children and Adolescents (1)

- Renal
 - Acute glomerulonephritis
 - Hemolytic uremic syndrome
 - Acute renal failure due to other causes
 - Acute hydronephrosis
 - Chronic renal failure
 - Renal artery disease
 - Renal vein thrombosis
 - Trauma to the kidney
 - Post transplantation
 - Cardiac
 - Coarctation of aorta
Etiology of Hypertensive Emergencies in Children and Adolescents (2)

- CNS
 - Increased intracranial pressure
 - Endocrinological
 - Pheochromocytoma
 - Thyroid storm

- Exogenious agents
 - Amphetamins
 - Drug withdrawal from anti-hypertensive therapy
 - Corticosteroid therapy

Treatment Goals

- To treat complications and reduce BP.
- General guidelines: reduce BP by one third of the difference between the normal and the elevated values during first 6-8 hours or until resolution of symptoms.

Main Drug Groups for Treatment of Hypertension (1)

- **Calcium channel blockers**
 - **Nifedipine** (Adalat, Pressolat, Osmoadalat)
 - **Felodipine** (Penedil)
 - **Amlodipine** (Norvasc)
 - **Nicardipine**

- **Beta blockers**
 - **Propranolol** (Deralin) nonselective
 - **Atenolol** (Normiten) selective

- **Central α-adrenergic agonists**
 - **Clonidine** (Clonirit)

- **Peripheral α-blockers**
 - **Prazosin** (Hypotense, Minipress)

- **α and β blockers**
 - **Labetalol**

Main Drug Groups for Treatment of Hypertension (2)

- **ACE inhibitors**
 - **Captopril** (Capoten)
 - **Enalapril** (Convertin)

- **Angiotensin II receptor antagonists**
 - **Losartan** (Ocsaar)

- **Vasodilators**
 - **Hydralazine**
 - **Minoxidil**
 - **Sodium nitroprusside**
 - **Diazoxide**

- **Diuretics**
 - **Loop diuretics**
 - **Furosemide** (Fusid)
 - **Thiazides**
 - **Hydrochlorothiazide** (Disothiazide)
 - **Metolazone** (Zaroxolyn)
 - **Potassium sparing**
 - **Spironolactone** (Aldospirone, Aldactone)
Treatment of Hypertensive Emergencies in Children

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nifedipine</td>
<td>0.25-1mg/kg/dose PO (not sublingual)</td>
</tr>
<tr>
<td>Hydralazine</td>
<td>0.15-0.25 mg/kg/dose IV may be repeated every 15 min</td>
</tr>
<tr>
<td>Sodium nitroprusside</td>
<td>0.5-1µg/kg/min IV</td>
</tr>
<tr>
<td>Captopril</td>
<td>0.1-0.2 mg/kg PO q6h</td>
</tr>
<tr>
<td>Diazoxide</td>
<td>1-5mg/kg IV (rapid bolus or continuous infusion)</td>
</tr>
<tr>
<td>Labetalol</td>
<td>0.3-1mg/kg/dose IV (may be given by continuous infusion 0.4-1mg/kg/hr)</td>
</tr>
</tbody>
</table>