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Abstract.
Ecological and biological systems provide us with many striking examples of synchronization

phenomena. Here we discuss a number of intriguing cases and attempt to explain them taking
advantage of a modelling framework. One main focus will concern synchronized ecological end
epidemiological cycles which have Uniform Phase growth associated with their regular recurrence,
and Chaotic Amplitudes - a feature we term UPCA. Examples come from different areas and
include decadal cycles of small mammals, recurrent viral epidemics such as childhood infections
(eg., measles), and seasonally driven phytoplankton blooms observed in lakes and the oceans. A
more detailed theoretical analysis of seasonally synchronized chaotic population cycles is presented.

INTRODUCTION

Synchronization is a phenomenon that is as important as it is widespread in ecological
systems. Consider Australia's Great Barrier Reef. Here many coral species have the re-
markable ability to tune their reproductive cycle with astonishing precision. On a single
day each year, just after the November full moon, corals synchronize by collectively
releasing millions of gametes in a remarkable large-scale mass-spawning event, whose
purpose is to enhance the survival of the next generation. Similar large-scale synchro-
nization phenomena may be found in the insect world. Certain Asian firefly species are
famous for their ability to gather in dense swarms where they rhythmically flash on
and off in perfect unison, in a synchronized display of courtship. Equally curious is the
manner in which many animal populations oscillate in a chaotic fashion but are nev-
ertheless able to collectively synchronize over enormous spatial scales, sometimes over
continents. For the classic ten-year Canadian hare-lynx cycle, populations from different
regions have been tightly synchronized for hundreds of years now, creating one of Ecol-
ogy's greatest enigmas. Major human epidemics are also synchronized both spatially
and temporally, as the disease spreads in waves through a network of interconnected
suburbs. Here we review various aspects of ecological synchronization and methods
that have been adopted to model the many aspects of this phenomenon.
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THE EVOLUTION OF SYNCHRONIZATION STRATEGIES

A perplexing question that did not escape the notice of some of the greatest thinkers
working in evolutionary theory can be stated very simply: "Why do synchronized be-
havioral strategies evolve over evolutionary time?" Unfortunately there is no straightfor-
ward answer to this innocent looking question. Many bird species, for example, prefer
to breed together in a synchronized mating season at much the same time each year (for
reasons not necessarily connected to climatic conditions), while other related species
breed continuously throughout the year and show no such signs of synchronized be-
havior. Why does one species synchronize and not the other? Many similar questions
are still a great puzzle for biologists. Nevertheless, evolutionary arguments have made
some important successes, and we briefly summarize an interesting model attributed to
May nard Smith [1].

In the last few decades, reproductive synchrony has often been considered a sexual
strategy adopted by the female sex and forced on the entire population to decrease the
likelihood of the male deserting his partner. Should a male attempt to cheat, he will
probably find the mating season too short to allow him time to find and mate with a new
partner. He will inevitably lose by running from, rather than investing in, his offspring.
Thus it is to the females advantage to keep the mating season synchronized and short.
In other words, synchronization has evolved to prevent males cheating on their partners.
Maynard Smith's evolutionary model is simple and elegant, and begins by assuming that
if both parents are involved in raising their young, the number of surviving offspring is
V2. However, if the male deserts on his partner, only v\ young will survive (with v\ < V2).
Now suppose that there is a probability p that a male will desert his partner after she has
laid eggs, and then succeeds to mate with another female. The fitness of such a deserting
male is determined by the number of offspring he produces, which is on the average
vj +J0V2. Thus desertion will be favored (or is an evolutionary stable strategy) only if

> V2 i.e., if

/»^. CD
Hence desertion is favored only if there is a good chance (p) of the male finding and

mating with a second partner. Note that should the female force a short synchronized
breeding season on the male, this acts to reduce p, and increase her chances that the
male will stay and help raise their young. So it is a worthwhile strategy for females to
synchronize their breeding season. In recent years behavioural ecologists have far more
sophisticated arguments for understanding parental care and reproductive synchrony -
our aim here was to provide a glimpse into the sometimes unusual approaches used in
evolutionary models.

There are many other types of synchronized reproductive strategies, and they are often
context dependent. As we have mentioned, some corals, spawn on a single day every
year. It is believed that this is either to 'fool' predators or to minimize their impact
through 'predator satiation.' Similarly, different coral species spawn in different months
(i.e., with phase lags between events) possibly to prevent hybridization of different
species and/or as a mechanism to release larvae from interspecific competition. Cicadas
in America periodically emerge with regular synchronized cycles of prime number
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intervals of 7 or 13 years. Evolutionary theorists try to explain the vexing question:
"Why prime?"
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FIGURE 1. a) Occurence of outbreaks of Lepidoptera (Douglas-fir tussok moth) in British Columbia
(Canada) from 1916 - 1976, at 11 locations. Data from [2]. b) Simulation of a CML of 11 subpopulations
modelled by the Ricker model. The synchronized state (;c/ = Xj for all i,j) is unstable but one can observe
imperfect synchrony. Black color: severe outbreak (x > 0.70 max (*,)); grey color: moderate outbreak
(x > 0.40 max(jt/)); white color: no outbreak.

SYNCHRONIZED POPULATION OSCILLATIONS AND
EXTINCTIONS

Physicists often study the dynamics and synchronization of Coupled Map Lattices
(CML's, see eg., [3]). But this also proves to be highly relevant for studying ecological
systems [4]. Fig. la shows the occurence of outbreaks of Lepidoptera (tussock moths) at
11 locations spread over lOO's of kilometers across Canada (from [2]). Note the erratic
synchronized patterns which probably originate from factors other than environmental
cues. The dataset raises several problems which CML models may help in exploring.
For example: Why are there apparent population cycles? Why are the populations syn-
chronized? And why is the synchronization erratic?

To gain insight into this 'imperfect' synchronization, imagine a spatial landscape of
interconnected patches, each with its own subpopulation subject to the usual localized
birth-death growth process (eg., the simple logistic equation is a useful model here). The
following CML model may then be set up:
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,V*WO)- (2)
7=1

Here jc/(f) represents the population of the /'th patch, and mij describes the migration
from patch-j to patch-i. The term F(XJ) models the birth death process of the popula-
tions, and might typically be the logistic model F(x) = rx(l —x) or the Ricker model
F(x)=x>er(l-x\

The criterion for the fully synchronized state (jc/ = xj) for all z, j is well known (eg.,
[3, 5]) and depends on the subdominant eigenvalue A, of the dispersal matrix M, and
the Lyapunov exponent JLI of a single (uncoupled) one-dimensional map F. Full (or
'perfect') synchronization is assured if the transverse Lyapunov exponent (JL/J_) of system
2 satisfies:

0. (3)

For parameters that violate this criterion it is possible to arrive at states of 'imperfect
synchrony.' However the above criterion is based on long-term average quantities (eg.,
OU,,UL)). In me case °f complex dynamics (chaotic or stochastic) these quantities may
fluctuate and their distributions may explain unexpected dynamics (eg., riddled basins,
on-off intermittency). Hence even when the invariant synchronous manifold is stable
jn^ &< 0, there can still be initial conditions for which the transverse instantaneous
Lyapunov exponent becomes weakly positive and trajectories can jump to another at-
tractor. This effect can produce dynamics with riddled basins: depending on initial con-
ditions one can observe both perfect and imperfect synchrony. Conversely, when the
synchronous manifold is weakly unstable (jj± >^ 0), it is still possible to observe syn-
chronized dynamics although this behaviour may be interrupted by on-off intermittency
[6].

Fig.lb displays simulations of a metapopulation of N = 11 subpopulations (CML)
connected via nearest neighbour coupling with the Ricker model taken for F. Parameters
values used are r = 6.5 and the dispersal coefficient is m = 0.35. In this particular case,
the synchronized state (xi = Xj for all /, j) is unstable but one can observe 'imperfect
synchrony' due to the development of synchronized chaotic population clusters. Very
similar erratic synchronization can emerge for other reasons. For example, with globally
coupled populations, when r = 4, m = 0.35 the synchronized state (jt/ = Xj for all /, j)
is weakly unstable and the On-Off intermittency produces synchronized patterns very
similar to the observed data.

Spatial synchronization is a phenomenon that was studied by ecologists in the late
1970's well before CML's became popular in the physics literature. Den Boer, for exam-
ple, from the Netherlands realized from his field work that migration between patches
tends to enhance synchronization of the larger metapopulation. As such, synchroniza-
tion could create conditions that were sometimes uniformly bad for all local populations.
Synchronized patch populations that periodically attained dangerously low levels, could
more easily become globally extinct. On the other hand, asynchrony between patches
acts to prevent global extinction. At any point in time some local populations increase
and act as source populations that (through migration) prevent the disappearance of de-
clining sink populations. The conditions for synchrony, asynchrony and chaotic dynam-
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ics in CML's are thus of interest for ecologists who use these models in an attempt to
understand the dynamics of population extinctions and its relation to asynchrony.

PHASE SYNCHRONIZATION OF CHAOTIC POPULATION
CYCLES
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FIGURE 2. a) 10 year cycle in the Candian lynx record 1820-1930, plotted for seven separated dis-
tricts in Canada; b) phytoplankton bloom in Lake Kinneret, Israel (with kind permission of Prof. Utza
Pollingher); c) Number of cases of measles in New York City 1920-1960 and d) Copenhagen 1920-1970;
e) simulated UPCA dynamics from (4) and f) x — y phase plane with parameters: a — b— \ ^ c — 10,fc =
0.1, e = 0.6,jc0 = 1.5,jo = 0,z0 = 0.01.

We are also studying synchronized population oscillations, such as those observed in
Canada's unusual 10-year hare-lynx cycle (Fig.2a). These populations have the intrigu-
ing feature of highly erratic or chaotic abundances but remarkably constant period length
- a behaviour we refer to as UPCA (Uniform Phase evolution with Chaotic Amplitudes).
As yet, conventional ecological models have failed to reproduce this behaviour, despite
the fact that UPCA is an important and commonly observed ecological and biological
dynamic. It has been noted in many systems, ranging from small mammal populations
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to neural network oscillations. Recently, we designed a simple deterministic foodweb
model that generates chaotic UPCA oscillations [7, 8] (Fig.2e,f & Legend):

x — ax — xo—kxy
y = -b(y-yo)+kxy — eyz
z = -c(z-zo)+eyz. (4)

The UPCA dynamics of this model may be explained in simple terms as follows.
Firstly, note that the model has three unstable equilibrium points. The relevant equilib-
rium in the positive orthant may be approximated for yo,zo <C 1 as

x* = b/k, y* = a/k - axo/b, z* = CZQ/(C - ey*). (5)

For the given parameters, (jt*,y*,z*) « (10,8.5,0.1) and this forms the centre of an
unstable oscillation which spirals with increasing radius about the point (x*,y*) in the
x — y plane (z « 0.1, see Fig.2f). When y increases beyond the critical threshold level,
y — c/e, the z-variable 'triggers' and the trajectory shoots rapidly out of the plane z ~ 0
only to be reinjected back, soon after, to return close to the fixed point (jc*,y,z*). These
dynamical features have similarities to the Rossler equations, the main difference being
that now all populations are always positive - a realistic feature that is nontrivial to
implement [8].

Linearizing the equations about the equilibrium and taking eigenvalues of the result-
ing Jacobian makes it possible to approximate the frequency of the system as

£1 = ^ab-akxo-(akxo/2b)2. (6)

Q quantifies the 'frequency' of the trajectory as it spirals about the unstable equilibrium
in the x — y plane, and the estimate is of good accuracy according to numerical simu-
lations. The result is useful for synchronization studies where fine control of oscillator
frequency is often required. Note that for x$ = 0, the result simplifies to Q = Vab as it
should for the classical Lotka-Volterra equation.

Examining more closely the Canadian hare-lynx cycle (Fig.2a), one notes that al-
though the lynx populations of many different regions phase-lock to the same extraor-
dinary collective rhythm, their peak population abundances are nevertheless chaotic and
largely uncorrelated to one another. What makes this so peculiar is that there is synchro-
nization in phase or rhythm, but not in amplitude; in other words, this is a clear case
of 'phase-synchronization.' The ecological UPCA model provides us with a tangible
system for exploring this form of complex chaotic synchronization and, in fact, phase-
synchronization immediately emerges upon coupling several UPCA foodweb models of
different frequencies Qf- via diffusive migration. We have investigated spatially extended
systems by examining a spatial lattice of patches, where each patch is a single UPCA
foodweb model. Such a 'metacommunity' could, for example, represent the Canadian
hare-lynx system when viewed over a large spatial scale. Nonidentical model foodwebs
with random natural frequencies that act as spatial 'inhomogeneities' over the lattice in-
duce interesting dynamics. In the regime of phase-synchronization, synchronized patch
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populations are typically separated by a phase lag which can give rise to complex spatio-
temporal patterns [7, 8]. Often a remarkable chaotic travelling wave structures are pro-
duced, where population abundances remain chaotic, but unusual circular waves form
and spread in time across the spatial landscape. Ecological field studies of synchronized
populations (eg plant, plankton, vole, hare-lynx populations) have reported similar trav-
elling wave structures.

SEASONALLY DRIVEN UPCA POPULATION DYNAMICS

Another important aspect of synchronization is the manner in which ecological com-
munities entrain to periodic environmental or climatic driving variables [9, 10]. In Lake
Kinneret (Sea of Gallilee), Israel, for example, seasonal stratification and nutrient avail-
ability patterns ensure that almost every March a large-scale algae bloom appears (see
Fig.2b). As in many other freshwater lakes, the presence of a phytoplankton bloom sig-
nals dangerous nutrient loading (eutrophication) and water quality problems. The sea-
sonal forcing adds a complicating factor to the study of bloom dynamics since it can
induce irregular chaotic oscillations synchronized to the seasonal cycle. This is a form
of synchronization through unidirectional coupling or one-way driving. Including sea-
sonal forcing such a model in dimensionless variables would read as [1 1]:

AT = I-$(t)NP-qN
P = P(f )#/>-/> (7)

where N represents nutrients and P represents phytoplankton in the water column. The
two dimensionless parameters 7 and q are an effective influx and nutrient loss rate
respectively. The seasonal forcing is given by the yearly periodic function (3(?) and could
be represented by

(3(0 = l-acos(otf). (8)
Seasonal forcing induces UPCA dynamics that are generally phase locked to the

seasonal cycle. Although we have succeeded in obtaining the desired goal of generating
UPCA dynamics from a periodically forced model, Eqns. (6,7) lead to behaviour that is
to some degree unrealistic for describing phytoplankton dynamics. In our simulations
it is often the case that many years go by without algae blooms occurring. These
'skippings,' which we discuss further below, are not desirable but appear to be intrinsic to
the forced model (7). Nevertheless, with subtle modifications [11], we have succeeded
in constructing a seasonally forced model that generates the desired UPCA behaviour
producing simulations similar to Fig.2e,f.

EPIDEMIOLOGY

In the same spirit but in the context of epidemiology synchronization has great control
over the (often chaotic or irregular) dynamics of diseases as they spread through com-
plex networks of suburbs and cities. Here we concentrate on the dynamics of childhood
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FIGURE 3. Simulation results of the epidemic model (9) in the UPCA region, a) Chaotic time series
exhibiting years of fade-outs or 'skips' when the epidemics fail to trigger, b) Illustratory phase plane
diagram with logarithmic scale for infectives. Type I solutions (major epidemics) occur in upper portion
of phase plane above the /-nullcline (dashed horizontal line). Type II solutions appear below /-nullcline.
The vertical dashed lines represent the s-nullclines for the two different seasons. The w/ demark the points
in the phaseplane when the seasons change and the s-nullcline jumps from p~ to (3+ or vice-versa, c) The
phase plane diagram of the time series in (a).

diseases such as measles which are also entrained by an annual seasonal cycle - the
epidemics usually coincide with the beginning of the school year. The oscillations are
irregular (see measles in New York City and Copenhagen displayed in Figs.2c,d) be-
ing characterized by inherent UPCA-like dynamics. Yet conventional epidemiological
models are incapable of reproducing this behavior. The UPCA models we are devel-
oping provide a technical-fix and form the basis of a theoretical study of the spread of
epidemics.

Our focus here is on the synchronization of measles to the seasonal cycle and address
the interesting problem of 'fade-out' dynamics. Namely, in some years the epidemic
fails to take off at some locations (as in Copenhagen), while at other locations fade-outs
are less frequently or never occur (as in New York).

We start with the standard SIR model for epidemics

5 = /i-jiS-poPC
7 = p0p(r)S/-Y/
R = jI-pR. (9)
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Here, S, /, R represent the density of susceptible, infected and recovered individuals,
respectively, in a constant population of size N = S + I-\-R = 1, scaled to unity without
loss of generality. The average life span of an individual and the infectious period are
given by jn~l and y"1, respectively. The infection contact rate is given by poPW which
is a periodic function of time that takes into account seasonality. Here, we use a square
wave forcing with amplitude 8, so that

p(0 = (l±8). (10)

The year is divided into two seasons, each of time T. In winter p(f) = P+ = (1 + 8)
while in summer P(f) = P~ = (1 — 8). Typical parameter values for measles are ju = 0.02,
y = 75. For the infection rate we set Po = 1700 and 8 varies from 8 = 0.15 to 8 = 0.2
[5].

After a change of variables, the equations read

s = m(l — $(t}si)—jus
i = y/(p(;>-l). (11)

where we have introduced

. Y, Poc j"Po no.i =—L s=—o, m———. (12)
V Y 7

Note the structural similarity between the epidemic model eqns. (10) and the phyto-
plankton model (6), hinting that the dynamics of epidemics and phytoplankton blooms
might not be unrelated. Fig.Sa provides a time-series of the SIR equations in which the
dynamics are chaotic. Since the numbers of infected can change many orders of mag-
nitudes during an epidemic outbreak it is useful to describe the infected numbers by
their logarithm, w = log/. Fig.3c shows the solution in (s,w) phase space. Note, that
epidemics are strongly phase locked and occur at roughly the same time every year.
For some years, however, epidemics do not appear to trigger at all. These are the above
mentioned 'skips' or fadeouts that are characteristic of the observed data.

Analytical solutions

In the following analysis we will reconstruct the phase plane by explicit expressions
in order to understand the dynamical foundations of epidemic fadeouts. In the process
we sketch a method for constructing a first return map that approximates the dynamics
of system (9). We make use of the fact that the number of infected individuals change
many orders of magnitude during a typical epidemic (see also Schartz et al. [12] who
use a similar approach to describe a forced laser systems). Note, that the scaled variable
s in (1) is of the order of 1, so that the susceptible death term —jus in the first equation of
(11) can be neglected with no major effect on the dynamics in the parameter regime of
interest.
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When / ^> 1 we approximate ( 1 1 ) as

s = —m$(t)si
i = 7i(p(r)s-l), (13)

and when / <C 1 (11) may be approximated as

s = m
l). (14)

These approximations distinguish two solution types in the phase plane. A solution
of the first system would be referred as Type I solution. This solution approximates
trajectories located above the s nullcline which lies on the horizontal i= J^ttl. Type II
solutions approximate trajectories below this nullcline and are solutions of (14).

In Type I solutions, during an epidemic the infected population / changes by many
orders of magnitude, while the susceptible population s is always decreasing. Type II
solutions are characterized by small numbers of infected individuals, while the suscep-
tibles s are always increasing. The rate of change of s is characterised by different time
scales and is slow for Type II solutions but very fast for Type I. Therefore, the system
spends most of its time in solution Type II, characterised by minimal infected numbers
and a slow build up of susceptibles.

In the following analysis we will make use of the property that the / -nullcline is a
straight line located at s = l/P^. These nullclines are marked as vertical dotted lines in
Fig.3b. The effect of seasonality can be regarded as a periodical jump in the horizontal
position of this nullcline from s = l/(3~ to s — l/(3+ (or vice-versa).

Type I

Eqns. (13) is the well known SIR epidemic model with solution

^(«(0-io)= io-^) + ̂ ln^. (15)y p ^o
Note that Type I solutions are initiated when the trajectory crosses the ^-nullcline and
enters the upper half of the phase plane (Fig.3b). This entry point is the end point of
solutions of Type II which we specify shortly. For now asume that the forcing function
(3+ remained constant over the entire epidemic period. In this scenario the maximum
number of individuals im is reached when s(t) = gqr, which gives

In the scenario where the forcing jumps during the epidemic build up it is possible to
derive a suitable formulation for im.

The epidemic ends when the infective population crosses the ^-nullcline (approxi-
mately when / = 1 or w = log/ = 0). At this point the trajectory passes to Type II solu-
tions with initial conditions that can now be determined easily from (15).
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Type II

Recall that a year is taken to have only two seasons. It starts in summer at times
tn, n — 0,2,4,.. and a low infection rate p~ — 1 — 5, followed by winter at times
fw , n = 1,3,5,.. with high infection rate P+ = 1 + 8. Each season is half a year long
(T = ^). The overall strategy for solving the system (14) is to calculate the solution in
the time intervals between tn and tn+\. Each time interval will have a constant infection
rate (i.e. either P+ or p~) and inital values sn and wn. For the case of Type II solutions
we assume that at time fa, P(0 = P~ and the inital conditions are SQ and WQ — 0.

First, observe that the susceptibles are always increasing with constant rate s(t) =
mt -f CQ where CQ — SQ — mfa. From the phase plane (Fig.Sb) we see that the point (s\, w\)
is a sharp point that results from the change of P(f) as it jumps from p~ to P+. All sharp
points (sn, Wn) are produced by this mechanism. By integrating system (14) between two
neighboring sharp points we get

-Wn Wi CT CT
V 1 Q — / ~/*\ J + TT i + Q — / __^ i _ J+ T1 , + f]H\(17)

Y JnT

which enable us to express wn in recursive form to ultimately obtain:

(18)

l)"-l)]-ci (19)
Y 6 L L

where ci = ^t$(l — 8) + fa((l — 8)co — 1) and T = 1/2 This recursive scheme stops
whenever wn > 0. At this point we return back to Type I solutions.

A point where the infected population function reaches a local maximum wm and
wm < 0 is referred as a skipping point. This is because in the case wm > 0 an epidemic
could have otherwise been triggered. The difference between a skipping point and
an epidemic peak is not just a question of magnitude. During a skipping point the
susceptible population continues to build up, while at an epidemic peak the susceptible
population declines. From the real data we know that different cities manifest different
skipping dynamics. By this analysis of the Type II solution we can deduce the maximum
number of skips from the system parameters. Let us define N to be the smallest n where
wn > 0, then the overall number of skips is given by N/2.

We have extended the argument to show that the number of skips

#~- = -£-. (20)
m £/po

In order to determine the initial condition to enter again a Type I solution for calculat-
ing the next cycle ones need to keep track of time. By defining w* = 0 to be the entrance
point for Type I solutions we can calculate the time t* it would take wn to reach w* = 0.

(21)
nT
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Rearranging (21), we find t* = —— / 1 § \ m —— — and the initial conditions are given
in the form of (5-* , 0) where s* = m(nT + 1*) + c0.

Putting all this together, we have arrived at a method that allows us in principal to
deduce a first return map of the chaotic SIR equations. In so doing we have arrived
at an explicit expression for the number of fadeouts that can be expected, and the
conditions which control this number. Thus for the first time fadeouts can be understood
and predicted in terms of explicit epidemiological parameters. Finally, we are able to
see more directly the mechanism of synchronization through unidirectional coupling
or one-way driving, and we are planning to explore this in much more detail with this
framework.

CONCLUDING REMARKS

Over the last ten years physicists have invested a great deal of effort in studying the
theory of synchronization. Most of this effort has been directed towards understanding
chaotic synchronization of model systems. Much less is known about synchronization
phenomena in natural systems [7, 13]. In this paper we investigated four different forms
of complex biological synchronization using a range of different theoretical approaches,
in an attempt to cross the bridge between the fields of physics and ecology. We believe
that with the help of tools from nonlinear dynamics, these examples should provide
inspiration and motivation for furthering our understanding of the diverse but subtle
aspects of synchronization.
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