
T
he

 J
ou

rn
al

 o
f 

E
xp

er
im

en
ta

l B
io

lo
gy

 –
 A

C
C

E
PT

E
D

 A
U

T
H

O
R

 M
A

N
U

SC
R

IP
T

 1

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

The hydrodynamics of contact of a marine larva, 

Bugula neritina, with a cylinder 

Gregory Zilman1, Julia Novak1, Alex Liberzon1, Shimrit Perkol-Finkel1, 

Yehuda Benayahu2 

1School of Mechanical Engineering, 2 School of Life Sciences 

Tel-Aviv University, Tel Aviv 69978, Israel. 

*Author for correspondence (zilman@eng.tau.ac.il) 

SUMMARY 

Marine larvae are often considered as drifters that collide with larval collectors as passive 

particles. The trajectories of Bugula neritina larvae and of polystyrene beads were 

recorded in the velocity field of a vertical cylinder. The experiments illustrated that the 

trajectories of larvae and of beads may differ markedly. By considering a larva as a self-

propelled mechanical microswimmer, a mathematical model of its motion in the two- 

dimensional velocity field of a long cylinder was formulated. Simulated larval trajectories 

were compared with experimental observations. We calculated the ratio   of the 

probability of contact of a microswimmer with a cylinder to the probability of contact of 

a passive particle with the cylinder. We found that depending on the ratio S of the 

swimming velocity of the microswimmer to the velocity of the ambient current, the 

probability of contact of a microswimmer with a collector may be orders of magnitude 

larger than the probability of contact of a passive particle with the cylinder:  for S~0.01, 
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  ~1; for S~0.1,  ~10; and for  S~1, ~ 100 .  21 
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Abbreviations: BL - boundary layer 

Bold letters - vectors 

hd - diameter of a helix 

pd - equivalent diameter of a larva or particle 

cD - diameter of a cylinder 

0E - probability of contact of a particle with a collector  

SE - probability of contact of a larva with a collector  

r - radius vector of the centre of the particle 

R - radius of a cylinder 

Re /c f cU D  - the Reynolds number of a cylinder 11 

2 /18p p pl d U   - the stopping distance a particle 12 

c13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

St= /pl D - the Stokes number 

t - time 

T - time period of a helix 

U - flow velocity 

U  - flow velocity far from the collector 

V - velocity of motion of a larva or particle 

hV - velocity of helical motion 

SV - swimming velocity of a larva 

tV - sinking velocity of a larva 

  - helix-fixed Cartesian frame of reference oxyz

OXYZ - earth-fixed Cartesian frame of reference   

0 0,X Y  - initial coordinates of a larva or  particle  24 

γ  - intrinsic angular velocity of a larva’s helical motion 25 

  - normalised probability of contact of a larva,  0/SE E26 

  - water viscosity 27 

f  
- water density 28 

p  
- mean density of a larva or particle 29 
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1  - course (track) angle of a larva  
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33 

0 - initial course angle of a larva  

ω - shear-induced angular velocity of a larva or particle 

 

INTRODUCTION 

 

Contact of a marine invertebrate larva with an underwater surface necessarily 

precedes its attachment to the surface. However, not all larvae that contact a substrate 

attach to it. Therefore, the probability of contact represents the upper bound of the 

probability of settlement. The probability of contact is a quantitative characteristic of 

settlement, which is of great interest in marine biology, particularly if attachment follows 

the first contact event (Abelson and Denny, 1997; Mullineaux and Butman, 1991; 

Mullineaux and Garland, 1993).   

It is common to distinguish between the settlement of larvae on substrates of 

infinite extent and settlement on bodies of finite size. Because of the wide variety of 

larval forms and collector types, it is also common to observe settlement of specific 

larvae (e.g., bryozoan Bugula Neritina) on relatively simple geometric forms, such as 

plates (Mullineaux and Butman, 1991; Mullineaux and Garland, 1993; Perkol-Finkel et 

al., 2008), cylinders (Harvey and Bourget, 1997; Rittschof et al., 2007) or inner sides of 

tubes (Crisp 1955; Qian et al., 1999, 2000). Here, we study the contact of B. Neritina 

larvae with a long vertical cylindrical collector.  

Most natural larval collectors are covered by microbial films (e.g., Dexter 1979) 

or biofilms (e.g., Maki et al. 1989). The effect of microbial films and biofilms on 

bryozoan larval settlement has been observed both in the laboratory and under natural 

conditions (Brancato and Woollacott, 1982; Woollacott 1984; Woollacott et al. 1989; 

Maki et al., 1989; Callow and Fletcher, 1995). Generally, bryozoans are relatively 

indiscriminate settlers that may also settle on clean surfaces (Ryland, 1976; Dahms et al. 

2004; Qian et al., 1999, 2000). We therefore used in our experiments a clean cylindrical 

collector that does not induce specific cues.  

  Chemical or physical cues play a central role in the behavioural biotic approach to 

larval settlement. In this approach a larva is attracted to a collector by cues and 

deliberately moves toward the collector. In an alternative mechanistic approach to larval 

settlement, a larva moves in the sea current as a drifter and collides with the collector as a 
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passive particle. The issue of passive vs. active contact has been intensively discussed in 

previous studies (Abelson et al., 1994; Butman, 1987; Butman et al., 1988; Harvey and 

Bourget, 1997; Harvey et al., 1995; Mullineaux and Butman, 1991; Mullineaux and 

Garland, 1993; Palmer et al., 2004).  

 However, the rich variety of models of larval contact with collectors can not be 

described solely in terms of the antonyms “active-passive”. Consider, for instance, a 

realistic scenario of a swimming larva that is not aware of a collector. A swimming larva 

is active by definition, but in the absence of biotic factors influencing its contact with a 

collector, the larva moves as a mechanical object, i.e., as a microswimmer (see, e.g., 

Kirbøe, 2008). Nonetheless, the hydrodynamics and dynamics of such a microswimmer 

can be rather complex and difficult to describe in detail. Therefore, mathematical 

modelling of the motion of a larva as a mechanical object is inevitably associated with 

considerable simplifications, which should however retain the most relevant problem 

parameters, such as the Reynolds number of the cylinder ( ) and the Stokes number 

(St) of the particle-cylinder hydrodynamic system (Fuchs 1964; Friedlander 1977).  

Rec

The Reynolds number Re /c f cU D 
 
represents the ratio of the inertial and 

viscous forces acting on a cylinder. It depends on the fluid density

16 

f , its viscosity  , 

the flow velocity far from the cylinder U

17 

  and the diameter of the cylinder . The 

Stokes number represents the ratio of inertial and viscous forces acting on a particle that 

moves in the velocity field of the cylinder. The Stokes number depends on the parameters 

that determine  and additionally on the parameters that determine  a particle’s inertia, 

its characteristic size  and its mean density 

cD18 

19 

20 

21 Rec

pd p . A measure of the ratio of inertial and 

viscous forces acting on a particle is its stopping distance, l d

22 

82= /1p p pU 



 , the distance 

at which a particle that starts its motion in a stagnant fluid with speed U  will be stopped 

by the drag force exerted on the particle by the fluid (Fuchs 1964). The dimensionless 

Stokes number is the ratio of the stopping distance of a particle to the characteristic size 

of the collector, S  (Fuchs 1964). Whereas the shape of a collector and its 

Reynolds number determine the collector’s streamlines, the Stokes number characterises 

the degree of deviation of an inertial particle from the streamlines. The lower the Stokes 

number, the more a particle is “embedded” in the fluid. Low-inertia particles (St<~0.1) 

23 

24 

25 

26 

c27 

28 

29 

30 

t D= /pl
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follow streamlines rather closely and can be considered as inertialess particles, which 

follow streamlines exactly (Fuchs 1964; Friedlander 1977).  
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In contrast with passive particles, even an inertialess self-propelled 

microswimmer does not follow streamlines exactly. Zilman et al. (2008) theoretically 

studied the motion of a three-dimensional spherical microswimmer moving in a linear 

shear flow, in a channel flow, and in a Poiseuille tube flow and calculated the probability 

of contact of the microswimmer with the walls bounding the flows. Crowdy and Samson 

(2011) and Zöttl and Stark (2012) studied trajectories of a two-dimensional and three-

dimensional microswimmer moving in linear and Poiseuille shear flows, and took into 

account not only the re-orientation effect reported in Zilman et al. (2008) but also the 

direct hydrodynamic interaction of the microswimmer with a plane substrate.   

In this work, we consider a previously unstudied problem, the motion of a low-

inertia microswimmer (St ) in the velocity field of a large cylinder 

( ). The aim of our study is to clarify how self-propulsion may influence 

the probability of contact of a microswimmer with a cylinder that does not induce biotic 

cues.  

1
2Re 10 10c  

 We observed the motion of B. neritina larvae in the velocity field of a cylinder 

and formulated a mathematical model of motion of a larva-microswimmer near the 

cylinder. We parameterised this mathematical model using experimental data, and 

calculated the probability of contact of larvae with a cylinder for a wide range of realistic 

problem parameters.   

 

MATERIALS AND METHODS 

 

We collected sexually mature colonies of B. neritina from floating docks at the 

Tel-Aviv Marina in spring 2011-2012. Larvae of B. neritina were maintained in 

laboratory conditions following Qian et al. (1999) and Wendt (2000). The shape of B. 

neritina larva is close to a prolate spheroid, with a length-to-maximal-width ratio of 

approximately 1. . Such a spheroid can be approximated by a sphere of volume equal to 

the volume of the larva of interest. The diameter of the equivalent sphere approximating 

B. neritina larva varies as 

1

200 350 mpd    (Kosman and Pernet, 2009; Wendt, 2000). 

The sinking velocity of an immobilised B. neritina larva is approximately  

31 

32 1 mm/stV 
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(Koeugh and Black, 1996). Correspondingly, the ratio of the mean larva density  p  to 

the water density

1 

f  is / 1.02 1.0p f 4   

hV

.   2 
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The motion of B. neritina larvae was observed in a transparent experimental flow 

tank (Figure 1). Larvae were gently pipetted into the tank, and their trajectories were 

recorded, both from above and from the side of the tank, using an Optronis GmbH 

(Germany) video system with two synchronised digital video cameras (500 fps and 

1280x1024-pixel sensors) equipped with Nikkor (Japan) 60-mm/f2.8 or 100-mm/f2.8 

macro lenses. The trajectories were digitised using the Matlab Image Processing Toolbox 

and an open source software package (http: //physics.georgetown.edu/matlab).  

The flow velocity in the experimental flow tank was measured using the particle 

image velocimetry system from TSI Inc., which comprises a 120 mJ NewWave Solo 

dual-head Nd:YAG laser, a 4096 x 2048 pixel CCD camera with dynamic range 12 bits 

and a Nikkor 60-mm/f2.8 macro lens. Images were analysed using standard FFT-based 

cross-correlation algorithms and open-source software (http://www.openpiv.net) for 

verification purposes.  

 

EXPERIMENTAL RESULTS 

 

Tank without a cylinder 

 

Typical trajectories of B. neritina larvae in still and moving water are shown in 

Figure 2. In still water, a B. neritina larva moves for distances of order of a few 

centimetres along a helix-like trajectory with an approximately straight axis but may also 

randomly change its direction of motion (Figure 2A). The helical portions of a larva’s 

trajectory can be approximated by a regular helix with a straight axis ox  that points in the 

direction of the vector of the larva’s swimming velocity . A larva moves along a 

helical trajectory with linear velocity  and rotates with angular velocity 

SV

γ .  27 

In a Cartesian coordinate system, , the coordinates oxyz , ,h h hx y z  of the centroid 

of a larva moving along a helical path vary with time t as 

28 

h Sx V t , 0.5 sin(h hy d )t29 

0.5 cos(h hz d

  and 

)t , where  is the diameter of the helix. The projections of the total 

velocity of a point of a helix  on the axes of the coordinate system oxyz can be 

hd

( )h tV

30 

31 
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found as the time derivatives of the coordinates of the point of a helix, , , 

and , thereby yielding the relation 

/hdx dt /hdy dt1 

/hdz dt 2 2 2 / 4S h hV V d   .  2 

3 

4 

5 

6 

7 

8 

9 

The diameter of the helix  and its temporary period  can be estimated 

experimentally, as illustrated in 

hd

hV

T

Figure 2B. When a larva moves approximately 

horizontally, as in  Figure 4B, which is discussed later, its swimming velocity V  can be 

calculated directly. When the trajectory of a larva does not belong to the plane of a lens, 

Wendt (2000) suggested estimating  by filming the motion of the larva in a shallow 

depth of the field of the lens such that only a small portion of the trajectory is in focus. 

By calculating the velocity of a larva along this portion, one can estimate .  

S

hV

According to our measurements, 3 6 mm/sSV   , which is consistent with Wendt 

(2000). Once ,  and 

10 

SV hd 2 /T 

/ dt /hdy dt

are known, the projections of the velocity  on the 

axes of the coordinate system oxyz can be found as time derivatives of the coordinates of 

the point of the helix , , and . 

hV

mm

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

hdx /hdz dt

When a larva moves in a unidirectional flow for which the velocity is much 

greater than the larva’s swimming velocity, the helical trajectory of the larva stretches, 

straightens and becomes rather close to rectilinear streamlines (Figure 2C). Seemingly in 

such a case, a larva moves as a passive particle. However, the contact problem relates to 

larval motion in non-uniform velocity fields of a collector, where streamlines are 

curvilinear and the fluid velocity may be of the same order of magnitude as the 

swimming velocity of a larva. In the next sections, we compare the motion of a larva and 

of a passive particle in the velocity field of a cylinder. 

 

Tank with a cylinder 

 

We studied trajectories of larvae, not the process of their attachment, because as stated in 

the introduction, attachment depends on the physiochemical properties of the surface of a 

collector.  Figure 3A illustrates that the fluid velocity field in front of the cylinder is 

laminar and does not vary significantly between the horizontal planes  and 

, where h is measured from the bottom of the channel. Spherical polystyrene 

beads of 

15h 

27 mm

pd

h 

430 m  diameter and of  density were pipetted into the 

flow and allowed to circulate in the tank before settling on the bottom.  

31.05 / cmp g 30 

31 
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 Figure 3B shows typical trajectories of beads. A typical trajectory is characterised by 

smooth variation of its slope and smooth variation of its curvature; the latter changes the 

sign at a single inflection point of the trajectory. Using these criteria alone, one can infer 

that on many occasions, larvae also move along typical trajectories (
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24 
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26 

27 

28 

29 

30 

31 

32 

Figure 3C).  This 

similarity does not mean that a larva moves as a passive particle but only that the 

trajectory of a larva and that of a passive particle resemble one another as long as their 

slopes and curvatures vary in a similar manner.  

 However, in addition to the typical trajectories of larvae, we also observed a 

significant number of trajectories that we signify as atypical (n=23 in 560 tests) ( Figure 

4). The atypical trajectories are characterised by an abrupt change in their slope at the 

points at which the distance between a larva and a cylinder’s surface is minimal. No 

passive particle moves along such a trajectory. Thus, we suggest that atypical trajectories 

result from larval self-propulsion. Although the number of atypical trajectories is 

relatively small, they constitute the most salient qualitative manifestation of the influence 

of self-propulsion on larval trajectories in a non-uniform flow. Therefore, the atypical 

trajectories represent a considerable interest for our study. One of the aims of this work is 

to formulate a mathematical model of larval motion that is able to describe not only 

typical but also atypical trajectories.   

 

A MATHEMATICAL MODEL OF LARVAL CONTACT WITH A 

COLLECTOR 

 

Larva-microswimmer 

 

A long vertical cylinder of diameter  is placed in an unbounded two-dimensional 

rectilinear current. The vector of current velocity  is normal to the cylinder's axis and 

lies in the horizontal plane. The Reynolds number of the cylinder varies between  and 

, which implies that the flow at the front part of the cylinder is laminar (Schlichting, 

1979). For the further analysis we use the following assumptions:  

cD

U

210
510

1) There is no hydrodynamic interaction between individual larvae;  

2) A larva is small compared to a collector and to the characteristic linear scale of the 

spatial flow variations that are induced by the collector in a uniform current;  
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3) A small larva does not change the velocity field of the cylinder; 

4) The sinking velocity of a larva is small compared to the fluid velocity and can be 

disregarded in the problem of larval contact with the vertical surface of a cylinder; 

5) A larva’s relative velocity with respect to shear flow is equal to the larva’s relative 

velocity with respect to stagnant fluid; 

6) The velocity field of the cylinder is two-dimensional; the vector of the fluid velocity U 

lies in the horizontal plane (Figure 5); 

7) The vector of a larva’s swimming velocity ( ) is perpendicular to the axis of the 

cylinder and lies in the plane of flow (Figure 5); the direction of does not vary with 

respect to the rotating larva’s body neither in stagnant nor in moving water;  

SV

SV

 8) In addition to an intrinsic self-induced rotation, a larva rotates as a small rigid sphere 

because of the shear-induced viscous torque;   

Three primary mechanisms determine the collision of a passive particle: Brownian 

diffusion, inertial impaction, and direct interception (Fuchs, 1964; Kirbøe, 2008). If the 

diameter of the particle 1 mpd   (which is always true for B. neritina larvae), Brownian 

diffusion does not influence the contact phenomenon under consideration (e.g., Kirbøe, 

2008). The inertial impact is determined by the Stokes number of the problem. For the 

problem parameters adopted here, the Stokes number is much less than the threshold value 

1/8, below which inertial impact of a spherical passive particle with a cylinder does not 

occur (Fuchs, 1964). Correspondingly, in our work, we consider only the mechanism of the 

direct interception. Within the framework of this mechanism a larva follows the streamlines 

of a collector exactly and collides with the collector because of the larva’s finite size.   

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

For the subsequent analysis, we adopt a mathematic model of larval helical motion 

suggested by Brokaw and generalised by Crenshaw (1989), in which the vectors of a larva’s 

swimming velocity  and of its angular velocity SV γ are collinear and are directed along the 

same axis ox (Figure 5). Because the vector  lies in the horizontal plane, the vector 

25 

SV γ  is 

parallel to the horizontal plane. The vector of the angular velocity of the shear-induced 

rotation,  (Lamb 1945), is perpendicular to vector of fluid velocity U. For a 

two-dimensional horizontal flow  is perpendicular to the horizontal plane and, thus, is 

perpendicular to

26 

27 

28 

29 

12 rω ot U

ω

γ . The orthogonality of γ and  implies that shear-induced rotation of a 

larva does not change its intrinsic rotation about the axis ox.   

ω30 

31 
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In the earth-fixed frame of references, the direction of the larva’s swimming 

velocity vector re-orients because of the larva’s shear-induced rotation. The re-orientation 

effect of a larva’s motion in the shear flow of a cylinder is illustrated in Figure 6.  In the 

velocity field of a cylinder a larva moves along a curvilinear trajectory that can not be 

described as a helix with a straight axis, i.e., as a regular helix. In this respect, the shear 

flow influences the helical pattern of motion.  

To calculate the fluid velocity field near the front part of a cylinder, we use the 

boundary layer (BL) theory and von-Karman-Pohlhausen’s method, which is explained in 

detail in Schlichting (1979).  In Figure 5, we provide a brief description of this method.  

In the cylinder-fixed Cartesian coordinate system OXY (Figure 5), the linear 

velocity  of a massless swimmer can be represented as the time derivative of the 

radius vector of the centre of the swimmer

h V U V

[ ( ) ( )]X t Y tr :  12 

 ( )
d

dt


r
V r . (1) 13 

The angular velocity of a larva   about a vertical is equal to the time derivative of the 

track angle

14 

( )t , the angle between the directions of the vectors  and  (Figure 5):  U SV15 

 ( )
d

dt

  r . (2) 16 

17 

18 

Equations (1)-(2) determine the trajectory of a self-propelled larva microswimmer in the 

two-dimensional velocity field of a collector. For prescribed initial conditions of a swimmer 

0 0(0) , (0)X X Y Y   and 0(0)  , we solve the differential equations (1)-(2) numerically 

using the 4th-order Runge-Kutta method with an adaptive time step.  

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

)29 

 

THEORETICAL RESULTS VS. EXPERIMENTAL OBSERVATIONS 

 

The degree of deviation of a microswimmer from the trajectory of a corresponding 

passive particle depends on the swimmer’s velocity and on its initial conditions. 

Systematic numerical simulations show that depending on initial conditions, swimmers 

may move along typical or atypical trajectories. To calculate the trajectory of a 

microswimmer and compare it with an experimental trajectory of a larva, we must know 

the initial conditions of the larva’s motion. Whereas the coordinates  can be 

measured with high accuracy, measurements of the course angle 

0 0( ,X Y

0  are difficult. 30 
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Therefore, we compare the computed trajectories of a microswimmer with the 

experimental trajectories of a larva for the same measurable coordinates  but for 

the track angle 

1 

)2 0 0( ,X Y

0  estimated iteratively as a problem parameter (Eykhoff, 1974).  3 

4 

5 

6 

7 

Similarities between the calculated trajectories of a microswimmer and the observed 

trajectories of larvae (Figure 7) suggest that the main features of larval motion in the 

velocity field of a cylinder are faithfully captured by the mathematical model presented 

here. Although for each atypical trajectory, the match between theoretical and 

experimental data was obtained for a particular initial angle 0  and a particular 

coordinate , the general character of atypical trajectories is determined by the local 

fluid mechanics in the closest vicinity of a collector, i.e., in its BL.   
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 A trajectory of a larva defines a contact event. Thus using the same mathematical 

model, we can calculate the trajectory of a larva and the probability of its contact with a 

cylinder.  

 

THE PROBABILITY OF CONTACT OF A MICROSWIMMER 

WITH A COLLECTOR  

 

In the theory of aerosols (Fuchs, 1964), one of the methods of evaluating the 

probability of contact (collision) of passive particles with a collector ( ), is based on the 

analysis of their trajectories. The trajectory analysis is applied here to calculate the 

probability of contact of a microswimmer with a collector ( ).  The mathematical 

details of the trajectory analysis are provided in 

0E

SE

Figure 8. Satisfactory agreement between 

the theoretical and available experimental data of contact probability for passive particles, 

illustrated in Figure 9, suggests that the mathematical model we used to calculate the 

contact probability of passive particles can also be used to calculate the contact 

probability of microswimmers.  

Now, we return to the central question of our work: "How does a larva’s self-

propulsion influence the probability of its contact with a collector if the larva is not aware 

of the collector?" We characterise this influence as the ratio 0/SE E  , which is plotted 

in Figure 10 for a wide range of realistic problem parameters adopted here.  

29 

30 

31  
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We observed trajectories of larvae B. neritina and of passive particles that mimic 

larvae in the velocity field of a vertical cylinder (Figure 3 -  Figure 4). We revealed a 

considerable number of larval trajectories that differed markedly from the trajectories of 

passive particles ( Figure 4). We attributed such trajectories to larval self-propulsions. To 

explain our experimental observations, we formulated a mathematical model of a larva’s 

motion in the two-dimensional laminar velocity field of a long cylinder ( ). 

The validity of our mathematical model is confirmed by satisfactory qualitative 

agreement between the experimental trajectories of larvae and the simulated trajectories 

of a microswimmer (Figure 7) and by satisfactory quantitative agreement between 

simulated and measured probabilities of contact with a cylinder of passive particles 

(

2 510 Re 10c 

Figure 9).  

Using trajectory analysis and Monte Carlo simulations, we calculated the 

probability of contact of a microswimmer with the front part of a cylinder. Mathematical 

modelling revealed a considerable increase in the probability of contact of the 

microswimmer with a cylinder compared to the probability of contact with the same 

cylinder of the same microswimmer but with zero swimming velocity, 0/SE E   

(Figure 11). Regarding orders of magnitude, this increase can be estimated as follows: for 

, 

18 

19 

/ ~ 0.01SV U ~ 1;  for , / ~ 0.1SV U ~ 10;   and for  , / ~ 1SV U  ~102. For 

instance, because of self-propulsion, larvae of B. Neritina with the swimming velocity ~5 

mm/s may increase their probability of contact with a cylinder 10-fold in a sea current of 

~5 cm/s and 100-fold in a sea current ~2.5 cm/s. Although sea currents of 2.5-5 cm/s are 

rare, our theoretical prediction is consistent with the observations of Qian et al. (1999, 

2000): in tubes with laminar flow, larvae of B. Neritina preferred to settle in low-speed 

currents U~2.5 cm/s; whereas for U>~8 cm/s, the probability of settlement drastically 

decreased. It should also be noted that some biofouling marine larvae swim much faster 

than larvae of B. Neritina (Table 1). For those larvae, the ratio , which 

provides a ~10-100-fold increase in the probability of contact, may correspond to 

frequent currents of the order of tens of cm/s. (Table 1).  In contrast, within the 

framework of a mechanistic approach and according to the results of our mathematical 

20 

21 

22 
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24 

25 

26 

27 

28 

29 

30 

31 

/SV U 0.1
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modelling, larvae with  that move in sea current  make 

contact with a collector as passive particles.  

~ 2 mm/sSV 

Re 1c 

~ 5 cm/sU 1 
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 We formulated the problem of larval contact with a collector for a spherical 

microswimmer. However, a small sphere and a small spheroid of moderate slenderness 

~1.5-2.0 (such as the larvae listed in Table 1) move in a linear shear flow along similar 

trajectories (Zöttl and Stark, 2012). Given that a BL without separation can be 

approximated by a linear shear flow for qualitative estimates (Schlichting, 1979),  it is not 

unlikely that a spheroidal swimmer may move in the two-dimensional BL approximately 

as a spherical swimmer.  

We formulated the problem of contact of a microswimmer with a cylinder for 

laminar flows . Experimental data regarding settlement (not contact specifically) 

of marine larvae on a cylinder in a natural turbulent environment were reported by 

Rittschof et al. (2007). We did not find experimental or theoretical works in which the 

probability of contact of swimmers with a cylinder in turbulent flows was measured or 

calculated for  and . For such flow parameters the available and rather 

limited experimental data pertain only to contact of passive particles with a cylinder. 

Asset et al. (1970) and Stuempfle (1973) reported that for Stokes and Reynolds numbers 

such as those studied here, incoming upstream turbulence with an intensity of less than 7-

8% practically does not affect the probability of contact of passive particles with a 

cylinder. In strong turbulence, the swimming speed of a larva may be small compared 

with the turbulent fluctuations of the fluid velocity. In such cases, a larva’s self-

propulsion may have little effect on its trajectory except in the vicinity of the collector, 

where the fluid velocity and its turbulent fluctuations are low (Schlichting 1979). 

Re 1c 

St 1

The hydrodynamic model of contact of a microswimmer with a cylinder proposed 

here may be relevant for self-propelled larvae and aquatic larval collectors, such as kelp 

stems, sea grasses, small artificial reefs, pillars, columns, and other engineering 

structures, that are located in a relatively slow sea current of low-to-moderate turbulent 

intensity (Abelson et al., 1994). Mathematical modelling of the motion of a larva in the 

velocity field of a collector located in a fully turbulent environment is beyond the scope 

of our present work.  

In conclusion, the results of our investigation, which are presented in Figure 10, 

suggest that for the problem parameters presented here, self-propulsion may greatly 
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increase a larva’s odds of making contact with the collector even if the larva does not 

detect the collector remotely.  
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Table 1. Fast larvae of marine invertebrates settling on protruding collectors.  

  

Taxon Swimming

speed  

 

cm/s 

 

Source Current velocity 

corresponding to 

10   

cm/s 

Current velocity 

corresponding to 

10  0  

cm/s 

Semibalanus 

balanoides 

4.8.-5.4 Crisp 

(1955), 

Walker 

(2004)

68.5-77.1 24-27 

Balanus 

crenatus 

3.9 Crisp 

(1955) 

55.7 19.5 

Heterosaccus 

lunatus 

1.8-2.8 Walker & 

Lester 

(2004)

25.7-40.0 9.0-14.0 

Sacculina 

carcini 

1.3-1.8 Walker & 

Lester 

(2004)

18.6-25.7 6.5-8.0 

Hydroides 

elegans 

1.5 Qian et al. 

(1999) 

21.4 7.5 

6  
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Figure 1. The experimental setup (not to scale). 1 - top-view video camera; 2 - cylinder; 3 
- flow tank; 4 - water pump. Transparent Plexiglas plates form a channel of length 

m, width = 20 mm and height = 40 mm. A Plexiglas cylinder of 
diameter  and height = 30 mm can be mounted in the middle of the channel. A 

solution of artificial seawater was circulated in the channel using a pump driven by an 
electric motor. The flow velocities were controlled in the range 1-6 cm/s.  

1.7
10 mmcD 
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Figure 2. Trajectories of larvae in a flume without a cylinder.  
(A) Still water.   denotes the beginning of the trajectory. Phototactile larvae biased their 
movements (from left to right in the figure) towards the illuminated side of the tank.  
(B) Enlarged part of trajectory . Open circles denote the consequent position of a 

larva at a resolution of 1/24 s. Full red circles depict the estimated transverse 
displacement of larvae in the direction perpendicular to the  direction of swimming 
measured in larval diameters. The radius of the diameter of a helix can be estimated as 
approximately six larval diameters, the temporal period of the helix 

05820369

T  can be estimated 
as approximately 1 s. The angular frequency of helical motion can be estimated as 
approximately 6.3 rad/ .  

10 
11 
12 
13 
14 
15 

-1s
(C) Motion of larvae in running water. The root mean square deviation of the larva from a 
straight path is of the same order of magnitude as the deviation of a larva from the axis of 
a helix.  
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Figure 3. Fluid velocity in a tank with a cylinder and trajectories of beads and larvae 
( , 0.01 m, 0.03 m/scD U  Re 300c  ).  5 

(A) Velocity field at the distance 1 27 mmh  measured from the bottom of the flume. The 

velocity fields in the planes and 

6 

2h  22 mm h3 15 mm are similar to those presented 

here.  

7 

8 
9 

10 
11 
12 

13 

14 

15 

16 

(B) Trajectories of spherical beads approaching the cylinder. 
(C) Trajectories of B. Neritina in the velocity field of a cylinder, which are similar to the 
trajectories of beads.  
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 Figure 4. Motion of a passive particle and a larva near a cylinder for the problem 
parameters given in Figure 3. The lines with circular symbols indicate larvae. The lines 
without symbols indicate simulated trajectories of passive particles.  
(A-B) Trajectory of a larva with contact and attachment. A - view from above; B - side 
view. After contact, the larva remains on the cylinder.  
 (C) A larva approaches the cylinder closely but without attachment; the view is from 
above.  
A passive particle and a larva that start their motion at the same point move along 
different trajectories.  
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Figure 5. Velocity field induced by the cylinder. The origin O  of the cylinder-fixed coordinate 
system  coincides with the centre of the cylinder. The axis OXYZ OX is collinear with the 
velocity vector . The coordinates of the centre of a microswimmer are defined by the radius-

vector . The orthogonal coordinate system oxyz translates with the velocity of the centre of the 
microswimmer V and rotates with the shear-induced angular velocity 

9 
10 
11 

U
r

 . The vector of the 
swimming velocity  of the microswimmer is directed along the axis ox  and constitutes with 

the axis OX the course angle 

12 
13 SV

 . The vector angular velocity of the microswimmer γ is collinear 

with . Rotation of a spherical microswimmer about the axis  does not influence the 

trajectory of the microswimmer in the plane . The auxiliary polar angle 

14 

15 SV ox

OXY arctan( / )Y X 

( ) ( ) ( )]F G

 
is used here for calculating the velocity field around the cylinder. Outside the boundary, the fluid 
can be considered as inviscid and its motion as irrotational. Thus, the velocity field of a cylinder 
can be calculated as for a potential flow (Lamb, 1945). In the boundary layer, the fluid velocity 
component parallel to the contour of the cylinder is defined as u U

16 
17 
18 
19 

( )[       , 

where 

20 

( )U   is the fluid velocity at the contour of the boundary layer of thickness ( )  , ( )F   

and 

21 

( )G   are given polynomials of a non-dimensional coordinate ( / 2) /cr D   , and the 

tabulated values of 

22 

( )   and ( )  are provided in (Schlichting, 1979). Once  is known, the 

fluid velocity component  in the direction normal to the contour of the cylinder can then be 

obtained using the equation of mass conservation. Projecting ( , ) onto the axes of the 

coordinate system OXY, we obtain U and ω , which are involved in (1)-(2). 

u23 

24 

25 

26 
27 
28 

rv

u rv
12 r ot U
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Figure 6. Schematic trajectories of motion of a larva. Motion of a passive particle (grey 
symbols) and a microswimmer (red symbols) in the boundary layer of a collector. The 
linear velocity of a microswimmer is the geometrical sum of the flow velocity and the 
velocity of the swimmer. Because of translation, the microswimmer does not move along 
the trajectory of a passive particle. Additionally, both the microswimmer and the passive 
particle rotate due to boundary layer vorticity. The vector of the angular velocity of the 
shear-induced rotation is normal to the plane of the paper. For a spherical particle, the 
rotation does not influence its trajectory. A rotating microswimmer re-orientates and 
further deviates from the trajectory of a passive particle. A small passive particle in the 
velocity field of a large collector moves along a streamline, which does not cross the 
cylinder. Deviation of a swimmer from the trajectory of a passive particle may result in 
its contact with the cylinder with much higher probability than the probability of contact 
with the cylinder of a passive particle. 
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2 Figure 7. Trajectories of a passive particle, microswimmer and a larva near a cylindrical 
collector ( 0.01 m,cD  250 mpd  , 0.005 m/sSV  , and Re 300c  ). The coordinates 

are normalised by the radius of the cylinder R 

3 

0( /X R 5.0)  . 4 

(A-B) Y R , ; (C-D) 0 / 0  .2 0 12.2  
0 / 0.Y R 4 , .  0 10.2   5 
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 (E- F) Enlarged parts of larval trajectories in the closest vicinity of the cylinder. 
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Figure 8. Geometrical definition of the probability of contact (not to scale). The motion of 
particles (yellow circles) is tracked in the control volume ABB'CB'BA, which is fully 
penetrable except at the contour of the cylinder. Contact is assumed to occur if the distance 
from the centre of a particle to the cylinder is equal to the radius of the particle. Red lines and 
red circles represent the limiting (grazing) trajectories that for passive particles can be 
calculated iteratively, thereby yielding an estimate of the probability of contact 0 /n nE l L . 

The method of grazing trajectories cannot be applied for swimmers because they start their 
motion with random angles of swimming. Instead, Monte Carlo simulations can be used as an 
alternative method of calculating of the probability of contact. It is possible to calculate the 
number of particles that contact the collector by tracking the trajectories of N particles that start 
their motion far from a cylinder with random uniformly distributed initial coordinates 
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2)0 ( /cR Y R R D    . The ratio of  particles that contact the cylinder to the total number 

of the particles N determines the probability of contact, 

n13 

0 /E n N . To compare the probability 

of contact of passive particles  with that of swimmers , we must account for the 

randomness not only of the initial coordinate of the swimmer  but also of the initial track 

angle 
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16 
0E SE

0Y

0 . Assume now that  microswimmers start their motion with random uniformly 

distributed coordinates 
S

0

N

R Y 
17 

R  and random uniformly distributed angles 00 2   . 

Then, the ratio of  microswimmers that collide with the collector to the total number of the 

microswimmers  yields an estimate of the probability of contact of microswimmers, 

 (
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Sn

SN

/S S SE n N Sobol 1994). To obtain robust results, we repeated Monte Carlo simulations by 

doubling the number of testing points until the error of the estimate of the probability of 
contact was less than 5%. To obtain this degree of accuracy, we used  test 

microswimmers. 
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Figure 9. Probability of contact of passive particles ( 194 mpd  ). Solid lines – our numerical 

simulations. Symbols pertain to experimental values obtained by Palmer et al. (2004), who 
observed capture of spherical particles of diameter 

2 

3 
194 mpd 

 
on a long vertical cylindrical of 

diameter of 0.63-2.54 cm in laminar flow ( d D

4 

/p c  0.083-0.31, ). The conditions 

of the Palmer et al. (2004) experiment match the assumption of our mathematical model. A 
discrepancy between the theoretical and experimental results can be observed in the range of 
Reynolds numbers less than 100, where the theory of the boundary layer is not expected to be 
accurate (Friedlander, 1977). 
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Figure 10. Simulated probability of contact of self-propelled particles normalised by the 

probability of contact of passive particles ( 0.005 m/sSV  , 250 mpd  , ). In 

this figure the numerical simulations are performed for parameters of a regular helix  

2Re 2 10 10c   

6h pd d

44 

 , 5 

6.3   rad/s. Systematic numerical simulations show that for
 

0pd   the presented here results 

remain approximately the same. That implies that for the presented here problem parameters the 

helical motion, including its irregularities, does not affect significantly the probability of contact.  

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 28


