~5 million red blood cells in a drop of blood

Blood Cell

Strand of DNA

3D lithium ion on chip micro battery for miniature electronic devices.

man is 1.62 meters tall

or 2 billion nanometers

E. Strauss D. Golodnitsky, M. Nathan, V. Yufit, T.Ripenbein, I. Shekhtman, S. Menkin, K. Freedman and E. Peled

School of Chemistry, Wolfson Applied Materials Research Center, Department of Physical Electronics Tel Aviv University, Tel Aviv, 69978, Israel

Nanotechnology Size Comparisons

Strand of DNA

~2 nm wide

The motivation for developing of 3DMBs

Applications of Microbatteries

2D vs.3D design

Interlaced on-Si 3DMBs

Concentric on-Si and glass-3DMBs

Summary

size comparisons

Classification of batteries

A Strand of DNA

is ~2 nm wide

Туре	Capacity	Applications
SLI batteries*	50 Ah	Cars, tractors, trucks, electrical vehicles
Portable batteries	2 Ah	Power tools, toy, radio, cellular phones, laptops
Miniature batteries	200 mAh	Watches, calculators, medical devices (pacemakers and hearing aids)
Micro-batteries	10µAh – 10mAh	MEMS, Sensors, CMOS memories, Smart Cards, Smart dust, Drug Delivery systems, Medical implantable devices

*Starting lighting and ignition

MEMS market forecast

The MEMS industry worldwide reached almost B\$ 6 in 2006, and grows with a compound annual growth rate of 14%.

St<mark>rand</mark> of DNA is

~2 nm

wide

A

Dize comparisons

http://media.wiley.com/product_data/excerpt/6X/35273074/352730746X.pdf

"Smart dust" - Future Watch

A Strand of DNA

~2 nm

wide

Energy management is a key component:

http://www.computerworld.com/mobiletopics/mobile/story/0,10801,79572,00.html

Dize comparisons

Multisensor microcluster – device size < 1cm³

multisensor microcluster measures: pressure, temperature, humidity, and vibration/position Includes: a microcomputer, and has a 50m RF link.

Stand-by power -10μW peak power - 5mW pulse duration 10ms Power supply life-time: months to years

Strand

of DNA

nm

de

Footprint<0.1cm² is suitable for **integrated micro system**

Power density needed to meet 5mW is 50mW/cm² Typical thin film lithium ion battery ~0.5mW/cm²

3DMB meet power density specifications

MB for self-sustained hybrid micropower supplies/ J. N. Harb, R. M, LaFollette, R. H. Selfridge, L. L, Howell, J. Power sources 104, (2002), 46

DILE LUMPANDUND

Micro robots

Strand of DNA

-2 nm

Size<1cm3 (8X3mm2) Crawling micro robot consumes tens microwatt of power

Legged and winged micro robots will consume total power<10mW provided by on board solar cells

Commercialized smart dust

MICA2DOT available Crossbow tech Ltd; Applications: Temperature and Environmental Monitoring Quarter-Sized MICA2DOT(Φ =25mm); Battery – 3V coin cell; 7 years battery life

Dust Networks Ltd; Size – matchbook; Power – 2AA batteries 5 years battery life

p://www.bauer.uh.edu/rfid/Smart%20Dust.pd

Vision: Small wireless sensors networks are placed everywhere.

Strand of DNA

~2 nm wide

Real-Time Meter

Price Signal

Preference

slider

Ĩ

Sensor nodes:self-sustaining, Average power consumption: expected to be <50µW Lifestyle assisted living, sports entertainment functions

Conditioner

Prof. Paul Wright, A. Martin Berlin Chair in Mechanical Engineering, Chief Scientist of CITRIS, University of California, Berkeley, Tokyo, Japan, April 10, (CITRIS project –center for information technology research in the interest of

DIZE COMPANISONS

Autonomous Wireless Sensors For Body Area Networks BAN (IMEC Ltd)

Strand of DNA

-2 nm

wide

Expertise in: wireless ultralow power communications, packaging, 3D integration technologies, MEMS energy scavenging techniques Lowpower design techniques.

Human++: Autonomous Wireless Sensors for Body Area Networks; Bert Gyselinckx, Chris Van Hoof, Julien Ryckaert, Refet Firat Yazicioglu, Paolo Fiorini, Vladimir Leonov, **IMEC**, Kapeldreef 75, B-3000 Leuven, Belgium

Dize comparisons

Smart band aid-sensing & communicating with a base station (IMEC Ltd)

Include: 1. radio, 2. micro processor, 3. sensor, 4. power source

1st generation

Power layer-2 small button cell battery V6HR NiMH, 2.4V 2nd generation
1cm³ (3D SIP) approach
Next generation - Thin film Li-ion

Problem:

Typical capacity $< 1 \text{mAh} \rightarrow \text{power consumption will have to be reduced}$ **TAU solution**: Improving specification without increasing footprint **complementary approach:** scavengers - can recharge the battery continuously

Scientific report, 2006

http://www.imec.be/wwwinter/mediacenter/en/SR2006/681542.htm

Strand of DNA

-2 nm vide

Wireless sensor module as miniaturized but conventionally-connectorized (left) or as integrated 1cm3 volume 3D stack (right).

Dize companisons

NOVEL MEMS & MBs for CLINICAL NEEDS:

- surgical tools; implantable e-devices;
- sensors and monitors for physiological parameters;
- neurostimulators; devices for pain relief;
- control over drug delivery from implantable reservoirs

http://www.smalltimes.com/articles/article_display.cfm?article_id=268501 The "Data Knife" Pittsburgh, Verimetra Inc.

Companies: ChipRx, MicroCHIPS Inc.

Neuro-modulator

http://www.batteriesdigest.com/gastro.htm

Strand of DNA

~2 nm wide

экс сотраньонь

TAU 3DMB – The Answer To Sub – mm³ battery

A Strand of DNA

~2 nm wide

	Dimensions	Energy density Wh/L	Power density W/L	Charge rate
Varta 65011	d=4.7mm h=1.4mm V=0.02ml	124	62	0.5C
Great batch Ltd (medical applic.)	V=0.7ml	185	925	5C
3DMB*	Tailored to application (foot print, design, performance)	306	2550	8C

*after improvement of current collectors

Dize comparisons

MB requirements for MEMS applications:

- ≻High integrity containment & minimum size
- Long-term Energy Supply in MEMS need High Power Level
- ➢Rechargeability
- >Minimal internal resistance, SAFETY,
- Produceability in large quantity and low cost

Strand of DNA

~2 nm wide

Fundamental problem of 2D-MBs: limited active electrode surface area

Companiou

LCC SMT Package: Smm x Smm

Thin-film batteries The most advanced of LiBat systems

future value

U.S companies have silences the Thin-film MB ORNL tech:

Bordeaux Univ.& Hydromech.(HEF)1, Eveready Battery Co.1 Front edge technology inc., LiTE Star Oakridge Lab.2, Cymbet inc., Excellatron solid state Inc. Strand of DNA

-2 nm

wide

DIZE CUMPANDUND

Cycle life of thin-film Li/MoO_xS_y cells with 3D interlaced porous Si

A Strand of DNA

~2 nm wide

Optical and SEM images of the interlaced Si formed by double-side DRIE (*deep reactive ion etching*)

Strand of DNA

2 nm

wide

bize comparisons

Si microcontainers filled by anode and LiCoO₂ cathode

Anode composition:

MCMB (Meso-Carbon Micro Beads) 6-10µm SB - Shawinigan Black Binder

Strand of DNA

~2 nm

wide

JILC LUMPANDUND

DIZE CUMPANDUD

3D-Concentric MB on perforated substrate

Substrates:

Perforated silicon prepared by ICP-Bosch process

Glass capillary arrays

Photosensitive glass (Foturan)

A Strand of DNA is

~2 nm wide

3D-MB sequential fabrication stages

- 1. Surface pretreatment of substrate sidewalls.
- 2. Electroless deposition of a current collector.
- 3. Electrodeposition of a thin-film molybdenum sulfide cathode.
- 4. Hybrid-polymer electrolyte (HPE) membrane coating.
- 5. Filling of the remain volume of holes by graphite based anode
- 6. Mounting of lithium foil at the top of the conformally coated perforated substrate.
- 7. Charging of the cell with liquid electrolyte and packing
- 8. Testing and Characterization (XPS, TOF SIMS, XRD, SEM, AIC)

Strand

of DNA

2 nm

wide

Muli-chanel plates- glass substrate

Feasibility of 3D concentric microbattery fabrication

Electroless depositon of Ni current collector

Electrodeposited Cathode

Conformal Membrane coating

Filled Graphite anode

Strand of DNA is

~2 nm wide

A

DIZE CUMPANDUND

Cycle life of planar and 3D-CMBs

Strand of DNA

Dize companisons

TAU 3D-MB present and predicted performance

Strand of DNA

~2 nm wide

	Operating Voltage	Capacity	Energy	Power
	[V]	[µAh/mm ²]	[µ Wh/mm ²]	[µ W/mm ²]
Present High-energy configuration	1.7	100	170	~20* 200**
Future TAU High-power configuration	3	40	120	~500
After improvement of current collectors	3	60	180	1500
<i>Typical performance of 2D Li thin film Battery</i>	2-4	1-3	2.5-10	4-70

Continuous operation
 polarization pulse
 AVG density of battery is 2.5gr/ml

Safety of High Power Lithium Ion Batteries

High power lithium ion batteries can supply 15C of current. However they are not safe enough (see for example 120 fire / explosion incidents reported in; <u>http://www.rcgroups.com/forums/showthread.php?t=209187</u>

Causes:

Overcharge; Internal or external short-circuit; Mechanical impact (abuse); External heat (abuse) etc.

3DMB battery consists of ~30,000 holes/cm². In each one there is a complete lithium ion micro-cell. All these "micro-cells" are connected in parallel.

It is projected that such as multi-cell battery will be safer than the traditional ones as there is a 10-20 micron insulating wall (coated by 2 micron nickel film on both sides) between neighboring micro-cells (surrounding each one of them).

Strand

of DNA

2 nm

Nide

JIZE LUMPARISONS

Summary

Strand

of DNA

~2 nm wide

1. A technology for the manufacturing of 3DMB based on the interlaced Si has been developed, complete cells to be tested soon

- 2. The 3D-CMBs with modified MoO_yS_z cathode exhibited stable cycle life with about 100 μ Ah/mm² reversible capacity, ~100 times higher than that of a planar 2D thin-film cell of the same footprint with non-modified cathode.
- 3. The 3D-CMBs with electrodeposited V_2O_5 are under testing

Companiou

4. High-power 3DMBs on perforated substrates are expected to be safer than the ordinary batteries