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Outline

• The problem: dependence on oil import and ecology
damages.

• The solution: renewable energy and alternative fuels
(hydrogen (the Hydrogen Economy), alcohols).

a) FC systems for cars and small electric vehicles
(scooters)

b) RFC and redox battery (VRB) for renewable-energy
storage and load leveling.

• World activity and markets .

• Factors that inhibit PEM FC commercialization – the
cost of membranes and platinum catalysts.
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The goal: reducing oil import and producing “green” energy

• Israel imports over 95% of its oil.
• Most oil reserves are located in politically unstable states.
• The solution: to shift power production to renewable energy and

to develop vehicles powered by renewable energy and by new
fuels.

• An efficient and “green” way to convert fuels into energy is by
the use of fuel cells.

• Most leading car manufacturers are developing FC or FC-hybrid
cars.

• Alternative fuels being considered are hydrogen and alcohols,
with most of the effort going into the development of hydrogen
FCs.

• Alcohol-fed FCs have some advantages over hydrogen FCs.
• Alcohols can be produced from natural gas, which has a supply

reserve of over 50 years and is produced by biological
processes.
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Basic Operation of a PCM Fuel Cell

• Chemical Reaction
Produces Electricity

• Fuel - H2, O2

• By-Product - H2O

• Electrons Released at
Anode

• Electrons Collected at
Cathode
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PEM fuel cells
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PEM FC stack
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Possible System Configurations: which is the best?
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World Activity, Investments and
Markets

• Over a billion dollars per year investments.

• Estimated production rate of more than a million
FC cars per year by about 2015.

• Very large national and private-sector FC
projects in most industrial countries, including
India and China.

• Most car manufacturers are involved; some have
already demonstrated FC EVs and FC–battery
hybrid EVs.

• Several FC-powered scooter projects.
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FCEVs
Recent GM PEM FC Stack For EVs (9.2004)
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DMFC (up) and hydrogen FC (down) Scooters

2006
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The cost problem of PEM FC for EVs
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Performance IssuePerformance Issue -- Voltage Losses in StateVoltage Losses in State--ofof--
thethe--Art HArt H22/air Fuel Cells/air Fuel Cells (0.4 mgPt/cm2)
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TAU NP-PCM-Based H2/Air Fuel Cell Performance
no air humidification, 2 mg Pt/cm2 on each electrode, 2M triflic acid, PVDF

based NP-PCM (EV goal: 0.9W/cm2 at 0.65V and 0.1 mgPt/cm2).
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Recent progress in MEA development for EVs

• Improved performance and lower Pt
loading (currently about 0.4 mgPt/cm2).

• Improved membrane durability.

• Better and more stable catalysts for ORR
(Nina).

• Better corrosion-resistant carbon support
for the Pt nanoparticles.

• More stop-and-start (load-change) cycles
and better cold-start.
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Interface, vol 14, #3,

Mathias et. al (2005).
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Why use Pt-alloys? Lower area loss

Interface,
vol 14, #3,
Mathias et.
al (2005).
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Development goals for EV FCs

• Low-cost and low-RH (25-50%) high-temperature
membrane (above 120oC) in order to reduce Pt
loading and to reduce the size and power loss of the
cooling system (twenty research groups in the USA).

• Target cost for catalysts: less than $10/kW
• (or 0.2 gPt/cm2 (total) at $35/g Pt)
• More active (by factor of only 3-4) and more stable

ORR catalysts.
• Better understanding of the MEA-degradation

mechanism and of the proton-conduction
mechanism at low RH.

• Hydrogen cost will be at least twice that of gasoline.
Thus FC efficiency must be twice that of ICE.

• ICE delivers about 1kW/l, FCs must meet this value.
• The best solution for EVs is a FC-battery hybrid

system.
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Development Goals for Small FC-powered EVs
(e.g. scooters)

• The preferred fuels for this application are methanol
or ethylene glycol (using a direct-oxidation FC).

• TAU novel NP-PCM based DOFC demonstrated
0.5W/cm2 and 0.3 W/cm2 for DMFC and DEGFC
respectively.

• Much more active fuel-oxidation catalysts and also
ORR catalysts are needed.

• Pt loading must be reduced, preferably to less than
1mg/cm2 (today it is 3-8).

• The corrosion (degradation) rate of the Pt-Ru fuel-
oxidation catalyst must be reduced.

• A low-cost and low-RH (25-50%) high-temperature
membrane is needed.
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TAU 50cm2 single-cell DMFC (or H2/air).

This cell size can be used to build a 1kW 70-cell stack
which will have a volume of about 2-4 liters (enough to

power a scooter).
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Storage of solar and wind power
and load leveling

• Hydrogen bromine RFC for remote sites

• Vanadium Redox Battery (VRB)
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• The market is huge, many billions of dollars.

• The problem:
• Today, all electric power-storage systems are too

expensive for large solar and wind generators and
for load leveling.

• The major problem is the cost of the chemicals used
for electrical-energy storage.

The solution:
• The TAU hydrogen-bromine (RFC) energy-storage

system is based on low-cost materials. Thus, when
fully developed, it will be an enable technology for
large solar- and wind-energy storage systems and
for load leveling.

Commercialization of large solar and
wind electric-power storage systems
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VRB system scheme

PEM

V 2+ / V3+
V 4+ / V 5+
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VRB-ESS

Stacks

10 KWh ESS

2 MWh ESS



24

HBr – Br2 aqueous
solution tank Hydrogen tank

Electrolyzer
2HBr H2 +Br2

Fuel cell
H2 +Br2 2HBr

Liquid
Pump

Compressor

Power out
Power in –
solar, wind

Schematic diagram for solar / wind energy storage
system using regenerative H2 – Br2 fuel cell

H2

H2
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TAU NP-PCM based H2/Br2 FC - Effect of temperature on
the performance .

Ambient H2 pressure, no H2 humidification, stoich H2 = 2; 0.6M Br2, 1M HBr; 100µ
PVDF based NP-PCM. Anode: 1 mgPt/cm2 , cathode: 1.5 mgPt/cm2
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Scaling Up Production of NP-PCM
- Continuous Coater (15m2/h)

33cm wide 2G NP33cm wide 2G NP--PCMPCM



27

Comparison of Hydrogen-Bromine RFC with VRB

• VRB Power Systems produces and sells a vanadium-
redox-battery (VRB) system for electrical-energy storage.
These systems cost between $350-$600 per kWh, with
sizes ranging from a few hundred kWhs to MWh-size
systems

• They have just sold $6M systems to Ireland for wind-
energy storage.

• The cost of bromine is much lower than that of vanadium
oxides - $3-6 per kWh compared to over $40/kWh* (up
to $120/kWh) in the case of VRB.

• Conclusion: The TAU hydrogen bromine RFC
system, based on a low cost NP-PCM, will be an
enable technology (when fully developed) for solar,
wind energy storage and load leveling.

* 5kg(V2O5)/kWh at $8/kg(V2O5); 3.3kg(Br2)/kWh at $0.9/kg (Br2) or 100% excess as bromide
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Summary

• In order to meet the FC cost targets for EVs we need
ORR catalysts that are four times more active and
stable and/or high-temperature membranes.

• Methanol and ethylene glycol are promising fuels at
least for small EVs. They have some advantages over
hydrogen; however better fuel oxidation and ORR
catalysts are required.

• TAU demonstrated the world most powerful direct
methanol and ethylene glycol fuel cells.

• Israel and Western countries need alternative energy
sources.

• Broad use of solar and wind electric generators (as well
as load leveling) need large and low-cost storage
systems.

• The low-cost TAU NP-PCM-based high power hydrogen-
bromine RFC appears to be an enable technology for
these applications.


