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We present a general sum rule in the Born approximation governing neutrino scattering from local po-
tentials in a crystal. This relation facilitates the placing of stringent bounds on the force exerted on a
crystal by a flux of neutrinos. The force is found to depend linearly on the number of scattering centers

and no exotic coherent effects are predicted.
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The recent suggestion by Weber! that the cross sec-
tion for finite-angle scattering of neutrinos from crystals
can be proportional to N2, the square of the number of
scattering centers, even for neutrinos with energies on
the order of 1 MeV, is indeed intriguing. In fact, the re-
sults of several experiments have been presented which
are claimed to support this hypothesis."?> There have,
however, been several arguments given against the ex-
istence of such phenomena.>*

Casella® has made a detailed calculation which result-
ed in the corresponding force on the crystal being pro-
portional to N rather than N? except for neutrinos with
h/p of order of the crystal dimensions. The purpose of
this paper is to present a general sum rule for the
scattering of neutrinos from an arbitrary aggregate of
scattering centers via local p . ntials.> This sum rule
implies a rigorous inequality v-*...h can be used to place
an upper bound on the force of a “v wind” on a crystal.
We also comment on other possible consequences of such
anomalous interactions should they exist.

Let us consider the scattering of a weakly interacting
particle from a system of NV local, nonoverlapping sta-
tionary potentials at coordinates r,. We shall now derive
the following sum rule:

dedn(l —cosO)M
dQ
do,(E,Q)
,,gldedﬂ(l _COSB)_Q ¢))

which relates the differential cross section of the compos-
ite system, d¥/d Q, to that of the individual scattering
centers, do/d Q, when both are calculated in the Born
approximation.

The nonrelativistic amplitude for scattering from the

composite system is given by
F(p; =& v igr—=_ _H p
(pi,ps) e fd rv(r)e > Vig), (2)

where u and q are the mass and momentum transfer of
the incident particle, respectively, and the tilde indicates
the Fourier transform. Parseval’s theorem relating the
scattering potential of the system, V(r), and its trans-
form V(q) is expressed as follows:
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where
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The fact that the potentials at different sites do not over-
lap implies that v,(r—r,)v, (€ —rm) =6mv2, which,
when substituted into Eq. (3), yields

- N
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Parseval’s relation can also be applied to the individual
potentials yielding an expression analogous to Eq. (3),

e [ar o |2= [ a2, )
which, when substituted into Eq. (5), gives
. N
fd3q|V(q)|2=Zfd3q|6,,(q)l2. @)
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The scattering cross section of the composite system and
of the individual potentials are proportional to |V (q) |2
and | 5(q) | %, respectively, so that | V(q) | 2«dZ/d Q and
|5,(q) | *«do,/dr. We also find it convenient to
change variables g, =psinfcos¢p, g, =psinfBsing, and
g:=—p(1 —cosf) so that d3g=p2dpda(l—cosh).
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Equation (7) can then be written as
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At sufficiently high incident v energy, A, the integrands
in Eq. (9) become identical because the fraction of
atoms recoiling coherently becomes negligible. The con-
tributions to both integrals for E > A are identical;
hence, we obtain the following useful relation:
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An interesting feature of Eq. (10) is that the integrat-
ed quantity (1 —cos8)dZ/dQ is proportional to N and
not N2 It is true, nevertheless, that dX/dQ «N? for
very small scattering angles; however, the small integra-
tion measure, as well as the extra factor
(1 —cosB) = 0?/2, vitiate the N? contributions. Also, we
will discover below that the magnitude of the total z
component of the force exerted on the crystal by neutri-
nos contains the same factor (1 —cos8).

To obtain an expression for the force, we consider a v
flux, ¢(E), incident on the crystal in the z direction. We
can express the force as follows:

dX(E, Q)
da

an

where (E/c)(1 —cosf) is the momentum transfer to the
crystal by a neutrino of energy E when it elastically
scatters through an angle 6, and E is the end-point en-
ergy of the neutrino spectrum. In the case of reactor
neutrinos, the quantity E¢(E) has a maximum value for
E =2 MeV; hence, we evaluate it at this energy.® This
yields the following useful inequality:

Fzs{£¢(E)}
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In Eq. (10), we can choose A as high as we please;
hence, if we simply choose A > E, for the moment, we
can use Eq. (10) with Eq. (12) to obtain
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Let us now evaluate this expression for a 100-g crystal of
Al,O; (N=3.3x10%*) in a flux of reactor neutrinos of
5%x10'' v/em? sec. Using a calculated reactor spec-
trum,® we find N{(E/c)P(E )} max=1.8%x10% v cm 3.
For do,(E,0)/dQ, we use the expression given by
Drukier and Stodolsky’ which can be reexpressed as

:—gz3.34x 10 7%(4 — Z)2E2(14+cos8) cm?2  (14)

We obtain an effective value (4 —2Z)?=117 and, per-
forming the trivial integrations in Eq. (13), we find
F, <3x10 ~2A3dyn when A is in megaelectronvolts.

Since we are dealing with a sum rule, A must be
chosen high enough to ensure that for E> A an
insignificant fraction of the scattering events result in
coherent scattering. We require that the momentum
transfer q correspond to a length scale not much smaller
than the dimensions of the crystal. A straightforward
calculation, using Eq. (14) and ¢, =(E/c)(1 —cos6),
yields a simple expression for the fraction of scattering
events which will be coherent, namely, f=6¢ when E
is large and hence 6 is small, and where 6
=arccos{l —cq/E}. We see then that A=10 MeV is a
very conservative cutoff energy. In this case,
F, <3x10 "' dyn, which is a factor of 10 ™' smaller
than the experimental result given in Ref. 1. We note as
an aside that even if we chose A=1 GeV, we find
F,<3x107' dyn. At such high energies, even
coherent scattering from nucleons is lost other than in
the forward direction.

It is worth emphasizing that the present discussion
differs completely from previous investigations®® of the
pressure due to the 3-K (wavelength of 1 cm) back-
ground neutrinos which do scatter coherently from mac-
roscopic grains. The speculation refuted in Refs. 8 and 9
was that the pressure is O(Gg) rather than O(G2).

In the above discussion, the quantum character of the
scatterers was completely neglected. We now address
the question of possible enhancement effects due to this
aspect. Let us consider an extreme case in which such
effects are maximal, but one which is very unrealistic for
neutrino scattering. We will see that under the most op-
timistic conditions with slow, heavy “neutrinos,” no
unexpected enhancements occur; hence, a fortiori, none
should occur for ordinary neutrinos.

Let us consider an analogy in which slow massive neu-
trinos (10 "*< B <1073), interact via vector Z° ex-
change, impinging on a macroscopic superconductor.
The electron pairs are all in the same macroscopic quan-
tum state and they move rapidly compared to the neutri-
no transit time. In this case, an adiabatic Born-
Oppenheimer approximation applies, and the incident
neutrino experiences an average effective potential Vg
extending over the entire lattice, rather than experi-
encing the potentials of individual electrons. We illus-
trate this point by representing the individual potentials
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by square wells of width a=10 "' cm =M !, and depth
Vo=Mg2=10 GeV. The average effective potential has
a depth V=Voa?/d3=Vyx10"2#=10"13 eV, where
d=10"8 cm is the average interatomic distance. While
all neutrinos will experience V, its effect is completely
negligible compared with the individual kinetic energies,
Tme?B?=10"%-10"3 eV, for m=1 keV. No sig-
nificant scattering is expected.

All of the above arguments notwithstanding, it is still
interesting to ask if there are not some dramatic effects
which should have already been observed if Weber’s re-
sults were indeed correct. In this case, the macroscopic
cross section ZeN? and £=1 cm? for a crystal with di-
mensions L =1 cm. In smaller crystals, the macroscopic
cross section is much smaller. For a crystal of dimension
L, £, «L® and the mean free path for a neutrino is
(nz.) “'=L 73 In polycrystalline materials comprised
of single crystals of L =1.0, 0.1, 0.01, and 0.001 cm, for
example, the mean free paths are 1 cm, 10 m, 10 km,
and 10* km, respectively. This is in sharp contrast to the
ordinary case in which e /V, and the mean free path is
not dependent on how the macroscopic sample is subdi-
vided. It seems then that one would have to understand
at least the size distribution of crystalline materials in
the Earth’s crust and mantle in order to interpret solar-
neutrino experiments. The N? nature of the cross sec-
tions could possibly lead to strong diurnal variations in
the detection rates, an effect which could only be ob-

served in a new generation of direct-counting solar-
neutrino experiments.'® It might then be remotely possi-
ble that the distribution of crystal sizes conspires to
reduce the expected count rate in Davis’s *’Cl experi-
ment by a factor of 3.

If this were the case, however, the total solar energy
absorbed by the Earth would increase by ~20% over
that due to photon absorption alone. One is tempted to
wonder whether the present understanding of the Earth’s
temperature due to solar photons and terrestrial radioac-
tivity is complete enough to exclude such a revision; the
change in the overall temperature due to solar neutrinos
would be =15°C.

One final amusing thought concerns the possible effect
of the pressure exerted by the solar v wind on experi-
ments of the Dicke-Braginski type.'""'? These measure-
ments verified that various objects experience the same
solar gravitational acceleration to within one part in
10'2. The v-wind forces in such experiments, on a 100-g
single crystal and on other amorphous mixture of equal
mass, would differ by approximately 10 ¢ dyn. The
measured solar gravitational attraction would be 60 dyn,
but with an uncertainty of only 6x10 ~!! dyn. It seems
that such experiments would be best suited for testing
Weber’s hypothesis as well as his experimental results.

This work was supported by the National Science
Foundation under Grants No. PHY-86-42875 and No.
PHY-86-04581.

(@) Also at the Department of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel.

1J. Weber, Phys. Rev. C 31, 1468 (1985), and Found. Phys. 14, 1185 (1984).

2). Weber, in Intersections Between Particle and Nuclear Physics— 1986, edited by Donald F. Geesaman, AIP Conference
Proceedings No. 150 (American Institute of Physics, New York, 1986), p. 1038.

3T. H. Ho, Phys. Lett. 168B, 295 (1986); G. F. Bertsch and Sam M. Austin, Phys. Rev. C 34, 361 (1986).

4R. Casella, in Ref. 2, p. 1040, and Nuovo Cimento 94, 42 (1986).

5Tt is straightforward to show that when calculating first-order elastic scattering amplitudes the scatterers can be replaced by po-
tentials. We demonstrate this with /V scatterers in harmonic-oscillator ground states exp[ — (r; —R;)%/2A%], a neutrino plane wave

ik-ry

e ° via the interaction A8(ro —r;). The corresponding first-order scattering amplitude is proportional to the expression

N N
ik, — k) —(r,—R,)?/2a% —(r,, —R,,) %242
fdroe'(’ ! '°fdn-'-dr1v[ne N “JZA&(ro—rk)He tm =Ry )7/287
- k m=1

ji™1

The integrals in the square brackets are trivial, and the above expression becomes

fdr K ﬁ’: se ~F0R)YA?
0 .
=

This is tantamount to our replacing the particles with Gaussian potentials. Obviously, this general result does not depend on the fact
that we approximated the quantum states of the scatterers by harmonic-oscillator states nor on the form of the interaction used.
6F. T. Avignone, 111, and Z. D. Greenwood, Phys. Rev. C 22, 594 (1980).

7A. K. Drukier and L. Stodolsky, Phys. Rev. D 30, 2295 (1984).

8N. Cabibbo and L. Maini, Phys. Lett. 114B, 115 (1982).

SPaul Langacker, Jacques P. Leveille, and Jon Sheiman, Phys. Rev. D 27, 1228 (1983).

10This situation could arise in attempts to detect cold dark matter with superconducting devices (see Ref. 7).
1P G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. (N.Y.) 26, 442 (1964).

12y B. Braginskii and V. 1. Panov, Zh. Eksp. Teor. Fiz. 61, 873 (1972) [Sov. Phys. JETP 34, 463 (1972)].

1175



