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The geometric phase in quantum mechanics is formulated for charged particles in a gauge-
invariant, geometric manner. It is then extended to an evolution resulting from a sequence of mea-
surements as in the work of Pancharatnam and Aharonov and Vardi. Its close connection to the
Feynman formulation of quantum mechanics is pointed out. The geometric angles, which are gen-
eralizations of the classical, adiabatic angles introduced by Hannay and the quantum, adiabatic an-
gles introduced by Anandan and Stodolsky in their group-theoretic treatment of Berry’s phase, are
studied in quantum and classical physics. The geometric phase for a quantum spin in a magnetic
field due to a second particle is obtained using the quantum reference frame defined by the latter.
The question of whether the geometric phase and angles are local or nonlocal and their relationship
to the electromagnetic and gravitational phases are also discussed.
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I. INTRODUCTION

The laws of physics have local and nonlocal conse-
quences. Historically, physicists, in general, have readily
recognized the local consequences, such as the accelera-
tion of a particle subject to a given impressed force or the
electromagnetic field at a point due to a given system of
charges in motion. But they have been relatively slow in
recognizing the nonlocal or global consequences, which,
even after they are discovered, are often subject to con-
troversy. By a nonlocal consequence, we mean an effect
that cannot be predicted by a strictly local consideration.
It may depend on an entire closed curve in space-time
and be nonexistent or meaningless for any portion of it.
An example of a nonlocal effect is the phase shift in the
interference of a charged particle due to an electromag-
netic field that vanishes along the interfering beams,
known as the Aharonov-Bohm (AB) effect.!

An interesting consequence of quantum mechanics that
has both local and nonlocal aspects, which remained un-
discovered for almost six decades, is a geometric phase
associated with any cyclic evolution. This was found by
Berry? in adiabatic cyclic evolutions and subsequently
generalized to all cyclic evolutions by Aharonov and
Anandan.® A classical analog of the adiabatic (Berry)
phase was found by Hannay* and Berry,’ and is called the
Hannay angle. Anandan and Stodolsky® have also intro-
duced a set of angles in their geometric study of Berry’s
phase. While all these papers study the geometric phase
when the states evolve according to an equation of
motion, Pancharatnam’ and Aharonov and Vardi® have
considered the phase changes when measurements are
made which have implicit in them the geometric phase.
In this paper we shall study the relationships between all
these concepts. We shall also further generalize the
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geometric phase, and study its physical implications.

In Sec. II we formulate the geometric phase, regarded
as a consequence of Schrodinger’s equation. We then
treat the geometric phase, as a consequence of measure-
ments in Sec. III and consider its relation to the path-
integral formalism. In Sec. IV we study the geometric
angles, which are a unification and nonadiabatic generali-
zation of the classical adiabatic angles of Hannay and the
quantum adiabatic angles by Anandan and Stodolsky,®
due to one of us.” We argue in Sec. V, that while the
geometric phase is nonlocal, the geometric angles are lo-
cally measurable, unlike the AB effect.

In Sec. VI we study the geometric phase for a spin pre-
cessing in a magnetic field due to another particle which
is treated quantum mechanically. Following Aharonov
and Kauferr,'® we use the quantum frame of reference of
the second particle. The geometric phase is acquired by
the second particle from a fictitious gauge field that it in-
teracts with in the adiabatic limit.

II. THE GEOMETRIC PHASE
FOR CHARGED PARTICLES

Suppose ¥ is the Hilbert space of a quantum system
and P is the projective Hilbert space consisting of the
rays of 7. The state |¥(¢)) of the system evolves ac-
cording to the Schrodinger equation

., 0

zﬁgt//(x,t)z[H,‘. +qAy(x,1)]¥(x,t), (2.1)
where ¥(x,?) is the wave function of the state | ¥(z)), g is
the charge, A, is the electrostatic potential, and the ki-
netic Hamiltonian H, in the absence of any field other
than the electromagnetic field is
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Hy=—-— V—i—%A(x,t) :
where A is the electromagnetic vector potential. Now
define
P(x,t)=exp i—%f:on(x,t')dt’ W(x,t) 2.2)

which is invariant under gauge transformations that tend
to the identity as ¢t — o, which represents an instant that
is very far back in time. This gauge-invariant part of the
wave function may be treated in the same way as the
wave function of an uncharged system in Ref. 3. Suppose
the system undergoes a cyclic evolution in the time mter-
val [0, 7], by which we mean that the evolution of 1/1(x t)

that is given by a curve in Ff projects to a closed curve C
in @, ie., P(x,7) —e‘¢¢ (x,0), where ¢ is gauge invariant.
Now define  ¢(x,t)=e " 4(x,t), where the
differentiable, gauge-invariant function f(¢) is chosen so

that ¥(x,7)=1(x,0). Then, on using (2.1) and (2.2),
B(x,7)
=e'Pexp [~h“f0’<$<t)1ﬂkm | 9(e))dr |9(x,0) ,
(2.3)
where>
B=i [XG|9rdi=ic(F|d | (2.4)

with the overdot denoting differentiation with respect to
time and d is the exterior differential on 7.

This treatment differs from the treatment of charged
systems in Ref. 3 in that J(x,t), which is the representa-
tive of C in #, is gauge invariant, unlike the ¥ in Ref. 3.
The present treatment has the advantage that 3, given by
(2.4), is electromagnetic gauge invariant and explicitly
geometrical in the sense that it is the integral of the one-
form G=i{(¢|d | ¥) around the closed curve C in P. If
we choose a different |¢')=e™|¢), then
G —G'=G —dA and therefore B is invariant. Thus, B is
geometrical in the sense that it is the same for the infinite
class of Hamiltonians that generate the motions in #
that project to the same closed curve C in ?. Also, the
normalized states in 7 form a U(1) principal fiber bundle
over P (Refs. 3, 11, and 12). Then e‘? is the holonomy
transformation along C associated with the universal con-
nection in this Hopf bundle.

The essential difference between our approach and
Berry’s approach is that we regard 3 as a geometric phase
associated with the motion of the state of the quantum
system and not with the motion of the Hamiltonian as
Berry did. Thus we treat 8 as being kinematical in origin
unlike Berry for whom it is dynamical in origin For ex-
ample, i m the case of the precession of a spin in a magnet-
ic field,’ it does not matter whether a particular motion is
caused by a constant magnetic field or a large magnetic
field in the direction of the spin which is changed adia-
batically to cause the same motion of the spin. The
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geometric phase is the same in both cases. Our approach
has the advantage that by disregarding which Hamiltoni-
an caused the motion, we are able to treat nonadiabatic
evolution on the same footing as adiabatic evolution.

III. GEOMETRIC PHASE AS A CONSEQUENCE
OF MEASUREMENTS AND PATH INTEGRALS

The state vector | ), in the Schrédinger picture, un-
dergoes two types of evolution. One is a continuous evo-
lution according to the Schrodinger equation, considered
in Sec. II. The other is a discontinuous change it under-
goes when a measurement is performed, according to
the usual Copenhagen interpretation. We shall be con-
cerned here only with a special class of measurements
called “filtering”; i.e., the apparatus interacts with
[9)=|¢) o |¥)+ |EIE|¢), where ($|E) =0, so as
to select |$)(d|¥) without interacting with it, say, by
absorbing | £){&|¢). For example, the apparatus may
be a polarizer that lets through light with a given polar-
ization. Then the new state after such a measurement is

[y =1¢){s|¥) .

Here, (¢'|¢')=|{(¢|¥)|% which is in general less
than 1, may be physically interpreted as the ratio of the
intensity of the new beam to the old beam intensity.
Since the geometric phase, as seen in Sec. II, arises entire-
ly from the inner product, this suggests that the phases of
inner products of the form (¢ | ¢) that accumulate dur-
ing filtering measurements may give rise to a geometric
phase.

First, following Pancharatnam,” define the phase
difference X between |¢,) and |,) which are not or-
thogonal by

7

(1) 71 1 9y) | (3.1)

We shall denote the projection of |) in P by (). We
shall show that X is the phase difference between |,)
and |9, ) which is obtained by parallel transporting
| ¥ along the shortest geodesic joining (1) to (¢,). It
should be noted that because |,) and |¢,) are in the
same ray, the phase difference between them is defined in
the usual way, whereas an interesting aspect of the Pan-
charatnam phase X is that it is defined for two states that
need not be in the same ray.

To prove the theorem mentioned above, choose an
orthonormal basis of an (n + 1)-dimensional # in which
[¥)=(z%2!,...,z2"=2%1,w!,...,w"), where w'
=z/2%, which are well defined everywhere except in the
region for which z°=0. These w" are called inhomogene-
ous coordinates on 7. Then the Fubini-Study metric is

exp(iX)=

=k
1+ D, w*)8;; — w,wld dw |

ds’=
(1+ D, wk)?

(3.2)

where the overbar denotes the complex conjugate and the
index is lowered using §,;. Note that (3.2) is invariant un-
der unitary transformatlons of (w!,...,w"). Therefore,
all “directions” in P are equivalent. Hence, there is no
loss of generality in choosing the inhomogeneous coordi-
nates of (¢¥,) and (3,) to be (0,0,...,0) and
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(T,0,...,0), where T is a positive number. By symme-
try, the curve, real t —(¢,0,...,0), is a geodesic passing
through these two points. But there are two geodesics
connecting these two points. For the shorter geodesic,
0<t <T. For the longer geodesic, ¢ goes from O to nega-
tive, tends to — oo, and becomes undefined at a point cor-
responding to z,=0, and then is large positive, decreas-
ing until t =T.

Also, let |¢,)=c(1,0,...,0), where c is a constant,
and let |(2))=c(1+12)"1%(1,1,0,...,0) be a vector
field defined on the geodesic. Then {y(t)|d /dt | (1)) is
pure imaginary because {#(¢) | ¥(¢)) is a constant, but it
is also real because ¢ is real Therefore,
(y(t)|d /dt | ¥(t)) =0, which implies that |(z)) is be-
ing parallel transported. Since, |¥(0))= | ¢,) it follows
that | (7)) = | ¥, ), which is obtained by parallel trans-
porting | ¢, ) along the shorter geodesic C,, from (¢,) to
(1,). Hence, given any |v,)=rexp(iX)| ¥,) in the
same ray as |¢p), where r is positive, then X satisfies
(3.1), which proves the theorem. There is no loss of gen-
erality in choosing ¢ to be 1. Then on defining the nor-
malized |¥(¢)), which projects to C,, so that
| 9(0))=|¥,) and | §(T)) = | ¢,), it is easily seen that

X=ifcn<n7:|$>dt . (3.3)

Samuel and Bhandari’ have proved previously a

theorem analogous to the above one in a space 72 which
is obtained from # by removing just the phase informa-
tion. But we have also shown that X is determined by
parallel transport along the shorter geodesic. Also, we
prefer to work in ? because the additional information
contained in 7, namely, the magnitude of a typical vec-
tors |y), is irrelevant to the phase acquired: Even
though during the measurement, in general, the state un-
dergoes a nonunitary transformation, the magnitudes of
the initial or final vectors do not affect X, defined by (3.1),
or the theorem proved above. Even for nonunitary evolu-
tions due to a dynamical equation, it has been shown'®
that the geometric phase is the same as due to parallel
transport on 7 using the above connection. Also, a cyclic
evolution as we have defined it is a closed curve in 2 but
not necessarily a closed curve in 7; therefore, it is not
possible to obtain exp(if3) as a holonomy of a connection
on R, in general. We prefer P also because it contains a
complex structure and a symplectic structure that # does

| Y(t+dt)) = | Pt +dt)){P(t +dt) | Ps(t +dt))

not contain. From a physical point of view, the change in
magnitude of | ¥) has no significance if we are describing
a single quantum system and then 7 has no more
relevant information than what is contained in 7.

Consider now a cyclic evolution, around a closed curve
C in P, that occurs due to a sequence of filtering measure-
ments and dynamical evolution in between measure-
ments. Here C is made of segments that are determined
by Schrodinger’s equation between measurements and
shortest geodesics joining the projections of initial and
final states in 7 at each measurement. Then the total
phase ¢ acquired can be determined by defining a section
| ¥) that is differentiable on C and keeping track of the
phase changes of | ¥(¢)) during a measurement using the
above theorem and during dynamical evolution using the
treatment in Sec. II. Hence ¢=F+86 where 6 is the
dynamical phase in (2.3) and B=i $ (P |d |¥), ie.,
exp(if3) is the phase factor acquired (holonomy transfor-
mation) in parallel transporting a state vector around C
with respect to the same canonical connection on the nat-
ural line bundle over ? that we used to obtain the
geometric phase when the evolution was continuous un-
der the action of Schrodinger’s equation.

In general, as mentioned above, the magnitude of | ¥)
is reduced because of the measurements. However, as
seen below, if a dense sequence of measurements is made,
then the magnitude of |) is not reduced. This means,
for example, if light passes through a large number of po-
larizers such that the directions of polarizations of any
two successive polarizers differ by an infinitesimal angle
then the intensity of the beam is practically undimin-
ished, i.e., the probability of a photon moving through
any trajectory in Hilbert space can be made indefinitely
close to one by a dense sequence of measurements.

If no measurement is performed in the time interval
(t,t 4dt), then

[ s(t +dt))=(1—ifn"'Hdt)| (1)), (3.4)

where the subscript 8 indicates a state obtained by purely
dynamical evolution. Now write |(2))= | #(z))e”/",
where (9(¢) | #(t)) =1 for all ¢ and f(¢) is complex with
f(0)=0. Suppose a measurement is performed at time
t +dt leading to a projection by the operator
P, 4= |9t +dt)) (¢t +dt)|, where |¢(t+dt))
differs infinitesimally from |(¢)). Then the new state
resulting from the measurement is

= | Pt +d))[1—i#i= X P(e) | H | §(0))dt +{ dl¢) | 9(2))dt]e

on using (3.4) and performing a Taylor expansion of the matrix element to first order in dt. Therefore

e+ —if WO 11 _ig=W(g(e) | H | §t) Yt +{g(e) | §(1))dr] .

(3.5)

If a sequence of dense measurements are performed in the interval [0,7] such that the system undergoes a cyclic evolu-
tion then the | () )s in the projection operators can be chosen so that | (7)) = | #(0)). Hence the final state result-

ing from this dense sequence of measurements is

W0 = [9O)exp |~ i~ [ (B0 | H | Bunde+ [ TG0 | §)a |

(3.6)
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where the phase factor is obtained by multiplying togeth-
er the infinitesimal phase factors acquired for each suc-
cessive measurement given by (3.5). Hence, the phase ac-
quired by the state is the sum of a dynamical phase and a
geometrical phase, like in Sec. II where it underwent
purely Schrodinger evolution.

Also, because of the normalization of |#(t)),
(P(2) | P(t)) = —(P(t) | ¥(t)) is pure imaginary. There-
fore, according to (3.6), the magnitude of | ¥(t)) does not
change because H is Hermitian, i.e., f(¢) is real. We have
therefore shown that the quantum state can be made to
follow any trajectory in 7 with probability approaching
one, by making a dense set of filtering measurements.
Hence, we can associate a geometric phase with every cy-
cle and not just the one satisfying the equation of motion.
Even if H is not Hermitian, the change in the magnitude
of |¥) is entirely in the dynamical part of (3.6) so that
the geometric phase is still the same as in the unitary evo-
lutions considered previously.

Also, if the sequence of measurements is not dense then
the change in magnitude of | ) for a given cycle C in P
depends on the particular sequence of measurements per-
formed, but the geometric phase factor exp(if3) depends
only on C. This is similar to the fact that the change in
magnitude due to nonunitary evolution even under a non-
linear equation is entirely in the dynamical part.!>!*
Hence the geometric phase depends only on C and is in-
dependent of how the evolution around C takes place,
whether it is nonunitary, nonlinear, or what particular se-
quence of measurements are performed. This shows an
advantage of the present treatment which uses the projec-
tive Hilbert space instead of the parameter space of the
earlier treatment? which does not permit such a general
geometric phase.

The geometric and dynamical parts can be clearly
separated in the Heisenberg picture. In this representa-
tion, a state does not change except when a measurement
is made. Therefore, the only way to have a nontrivial cy-
clic evolution is through a sequence of measurements.
Then, the above analysis implies that the final Heisenberg
state | (7)) y=exp(iB) | ¥(0))y, where | ¥(0))¥ is the
initial Heisenberg state and f3 is the geometric phase asso-
ciated with the geodesic polygon in 7 determined by the
measurements.

Returning to the Schrodinger picture, Aharonov and
Vardi® considered the special case of |(t)), above, be-
ing a Gaussian wave packet corresponding to the system
following an approximate classical trajectory and showed
that by subjecting a quantum system to a dense set of
measurements, it can be made to follow approximately
any path y, and further, it then accumulates a phase
S, /#, where

Sy= fy(p dg—H dt) (3.7)
is the classical action along this path. The first term in
the integration is the geometric phase'® while the second
term is the dynamical phase in this case. The first term is
analogous to the | p dg term used by Berry> ' to obtain

Hannay’s angles,4 as will be mentioned in Sec. V. We em-
phasize that in (3.7), ¥ need not be the trajectory satisfy-

ing the classical equation of motion. We can define a
‘“geometric phase” for each Feynman path as the first
term in (3.7). But it is only for a cyclic evolution, for
which y is a closed curve in phase space, that this term is
invariant under canonical transformations.

Consider now the second quantization of the
Schrodinger field for which the action used in the Feyn-
man path integral is

=éfdt((¢|t]z)—(1/}|¢)—ﬁ"(¢lH|1/J>). (3.8)
The first two terms in the integration give the geometric
phase and the last term the dynamical phase for a field
that obeys Schrodinger’s equation. But the above argu-
ments suggest that we may be able to define a geometric
phase more generally for any Feynman history by

B= [dp )=l (3.9
which may be given physical meaning by means of a
dense sequence of measurements.

The above arguments also suggest that there may be a
hierarchy of “geometric phases” corresponding to every
level of quantization beginning with the “zeroth quan-
tized” or classical particle theory, as long as the theory is
defined by an action that has a dynamical part which can
be subtracted away so that the remaining part is geome-
trical. So if we have a “third quantized” theory corre-
sponding to allowing several copies of the same field (e.g.,
the field is a string), it appears that there should be a
geometric phase in such a theory.

IV. QUANTUM AND CLASSICAL ANGLES

In our approach so far, we regarded the geometric
phase as being due to the geometry of ?, which is in-
dependent of the Hamiltonian H, unlike Berry who re-
garded it, in the adiabatic limit, as a geometric property
of the space of parameters of which H is a function.
Indeed, the parameter space does not naturally have the
Simon connection'? that determines the Berry phase, un-
like 7 which has a natural geometric connection whose
holonomy gives the geometric phase whether or not the
evolution is adiabatic.

However, P can be a large space that may be infinite
dimensional whereas the parameter space is usually finite
dimensional and may therefore appear to be more con-
venient in such cases. But the parameter space is not use-
ful in the nonadiabatic case. It is therefore desirable to
develop an approach that is intermediate between Berry’s
approach? and our previous approach® that would have
the convenience of the finite-dimensional parameter space
and yet provide a proper geometric description of cyclic
evolutions that is unrestricted by the adiabaticity as-
sumption. In this section we hope to demonstrate that
such an intermediate approach is indeed possible.

Consider a class € of Hamiltonians. If there is a (1-1)
map from a parameter space & into € as in the examples
considered by Berry, then € may be taken to be the same
as &. For any time interval (¢,,¢,), H(t) is a curve in @
that determines the corresponding time-evolution opera-
tor
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)
V(tyt,)=P exp [—m-‘ft H(t)dt] .
1

V(t,,t,), being unitary, has a complete orthonormal set
of eigenvectors, each of which undergoes a cyclic evolu-
tion in the interval (¢,,¢,). Suppose that the set of all
such operators generate a group G (@) that is indepen-
dent of the representation of ¢. For example, for a spin
with magnetic moment p in a homogeneous magnetic
field B, H=uJ-B where J;, i=1,2,3, generate SU(2),
which is our G, independently of the representation or
the spin. Here the parameters are B; so that § is R>. But
the parameter space is not needed in our approach.

Consider any Hamiltonian evolution H (¢) in an arbi-
trary time interval [0,7]. Let {|n(0))} be the complete
set of normalized eigenstates of V(r,0). Then
| ¥,(2)) =V (£,0)| n(0)) undergoes cyclic evolution in
the interval [0,7]. Now choose an orthonormal basis

|n(2))=U(t)| n(0))
= explig, ()] | ¥,(2)) 4.1
such that g (0)=0 and
(n() [ a())=(n(0) | U ()U(2)| n(0))
=0 for every n . 4.2)

It can be shown that® there exists a unique unitary U(¢)
that satisfies (4.1), (4.2), and U (0)=1.

On substituting | ¢,(¢)) into Schrodinger’s equation,
we obtain, on using (4.1) and (4.2),

[ ¥,(1))=exp

_m—lfo'w,, |H () | ¢,)dt' | | n(0) .

(4.3)

Hence, the geometric phase 8, arises entirely from the
evolution of | n(t)):

|n(7))=U(r)| n(0))
= exp(iB,)|n(0)) . (4.4)

Suppose now that { | n(0))} are simultaneous eigenstates
of a maximal set of commuting generators {J;(0):
i=1,...,m} of G. Then {|n(¢))} and {|¢,(t))} are
simultaneous eigenstates of

J=Uumgoule, i=1,2,...,m, 4.5)

which generate a Cartan subalgebra of the Lie algebra of
G, i.e.,

J(&) | n(0))=j;(n)|n()) ,i=1,2,...,m , (4.6)

where j;(n) are independent of time. Physically, this cor-
responds to the states |n(¢)) being invariant under an
Abelian group K of symmetries generated by the J;s. In
the example of a spin precessing in a magnetic field, con-
sidered above, K is the U(1) group of rotations about the
instantaneous spin states { | n(z))} that undergo cyclic
evolution.

Since {|n(t))} undergo cyclic evolution, it follows
that

m
iS a,J,(0)
k=1

U(r)=exp . 4.7)

These angles a; are the generalizations to nonadiabatic
motion of the angles introduced by Anandan and Stodol-
sky.® It follows from (4.4) and (4.7) that

2 akjk(n)=B,, . (4.8)
k=1

As a particular application, consider the motion of a
quantum spin in a magnetic field B (¢) generated by the
Hamiltonian H =uB-J, where J;,i=1,2,3, generate the
SU(2) rotation group. The operator U (¢) would then be-
long to the representation of SU(2) corresponding to the
spin of interest. It therefore represents a rotation. For
SUR2), m =1 in the above treatment and we choose
the element of the Cartan subalgebra for which (4.6)
is satisfied to be the generator J,(¢) of the instant-
aneous quantization axis for the spin states |n(z)),
n=12,...,2j+1.

Now, U(t) can be given an interpretation analogous to
the one given previously® in the adiabatic limit in which
the magnetic field always points along the quantization
axis, unlike in the present more general case. According
to (4.5) and (4.6), U(t) transforms the instantaneous
quantization axis at time O to the one at time z. Also (4.2)
implies that there is no rotation about the instantaneous
quantization axis of { | n())} at every time ¢, i.e., U(¢) is
a product of infinitesimal rotations of the quantization
axis, each of which is about an axis perpendicular to the
instantaneous quantization axis. Hence if S is a sphere
representing the set of all possible directions of the quant-
ization axis, U(¢) may be regarded as parallel transport-
ing a treibein on S with its instantaneous z axis always in
the radial direction. During a cyclic evolution, this
treibein moves along a closed curve on S and has rotated
by an angle a about its z axis, corresponding to
U(7r)= expliaJ,(0)] in (4.7). Since its X, Y axes are al-
ways being parallel transported,

a= f (Gaussian curvature)
b3

=solid angle subtended by X at the center of S,

where X is the portion of S that is bounded by the closed
curve.

The angles a; are independent of 4. This suggests that
they may have a classical analog. To investigate this, we
first consider what the classical analog is for a cyclic evo-
lution in P. Each element in 7 may be specified as the
eigenspace of a complete set of commuting observables.
Therefore, the classical analog of this element may be
defined by specifying the values of a complete set of ob-
servables in involution. Suppose that our {J;} above
form a complete set of commuting observables and classi-
cally correspond to a set of observables I;(g,p,?) in invo-
lution, where gq,p represent a set of generalized coordi-
nates and momenta, i.e.,

(I,I;}=0, i,j=12,...,m 4.9)

where { , } represents the Poisson brackets. Every set of
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values of the observables {I;} determine a surface in
phase space, which would then be the analog of the ele-
ment of 7 in quantum mechanics.

We restrict to the case when m is the number of in-
dependent g;. Then this surface is called a Lagrangian
submanifold. If it is compact then it is a torus. It may be
coordinated by the conjugate set of observables
{6,(g,p,1)} satisfying

[Oi’ej}=0’ {11’91‘}:6{/' .

The coordinates (6,I) are called the action angle vari-
ables. A cyclic evolution in the interval [0,7] is defined
by the conditions

Ij(q,P,O)=Ij(Paq7T)
and
gi(q:P:O)'—'gi(q’P’T) N

The Hamiltonian H (¢) that generates this evolution need
not be a function of the observables {I;(1)}.
Clearly the values of {I;} are the classical analogs of
the eigenvalues j;. Since j; are constants, we must have
dI; 9l

13

dt ot
Then the corresponding classical system is said to be in-
tegrable. Semiclassically, a suitably chosen {I;} satisfies
the Bohr-Sommerfeld quantization condition

{H,I;}=0. (4.10)

I,=%j,=%(n;+0;), (4.11)

where n; integers and o; are constants. Thus the La-
grangian submanifolds are discrete in the semiclassical
picture. But in the classical limit of large n;,I; and there-
fore the Lagrangian submanifolds vary continuously, as it
is in classical physics. In this limit, (4.8) implies
a-=ﬁ—a—B . (4.12)
! oI

i

It can be shown using the purely classical theory>'®® that
d
=T 7« )dt
Qa; oI, f<§1’kq k>

9
=3I <gs §pkqu> , 4.13)

where angular brackets denote averaging over the torus.

A special case is a system for which the Hamiltonian
varies adiabatically, then the orbit lies on the Lagrangian
submanifold to a good approximation. This is the special
case that was considered by Hannay* and Berry® in his
derivation of (4.12). But we notice that (4.8) is actually a
stronger condition than (4.12) and it does not assume the
adiabatic limit. Also, the geometric angles «; already ex-
ist in the quantum theory, even before the classical limit
is taken.

We now illustrate the above general ideas by consider-
ing the precession of a symmetrical top, which is the clas-
sical analog of the precession of a quantum spin con-
sidered above. The action variable I corresponding to the

quantum observable J,, above, is the angular momentum
about the axis of the top and it is assumed to satisfy
(4.10). The conjugate variable 6 is the angle of rotation
about the same axis. We choose the sphere S now to
represent the set of possible directions of the axis of the
top. A cyclic evolution has occurred when the axis of the
top has traced out a closed curve on this sphere. As in
the quantum case we can consider a treibein, with its in-
stantaneous z axis always radial, that is parallel trans-
ported along this curve. The component w of the angular
velocity of the top along this z axis is the same as the one
measured relative to the treibein. But the treibein itself
rotates by the angle «, described above. Hence the total
rotation of the top about its axis during the cyclic evolu-
tion is

A= [Twdtta. (4.14)

0

We emphasize that the adiabatic approximation is not
needed here, and the above example is a classical analog
of the nonadiabatic precession of a quantum spin in a
magnetic field considered in our earlier work.® Also, the
geometric angle a is the same for the quantum and classi-
cal cases and should not be regarded as existing only in
the classical limit.

V. ARE THE GEOMETRIC PHASE
AND ANGLES NONLOCAL?

As mentioned in Sec. II only for a cyclic evolution the
change in the geometric phase 3 can be defined invariant-
ly. This makes it appear that 3 is global in the sense that
it can be unambiguously defined only for a cyclic evolu-
tion. In this respect f is analogous to the AB phase.!
But the geometric angle a differs from the AB phase in
the following important respect. The AB phase, in a non-
simply connected region, is truly nonlocal and global in
the sense that it cannot, in general, be expressed in terms
of locally observable quantities, whereas a, at least in spe-
cial cases, can be expressed as a sum of locally observable
quantities.

To see this, note first that while the geometric phase is
associated with a cyclic evolution of a single state, the
geometric angles a; are associated with the cyclic evolu-
tion of a complete set of orthogonal states { |,(¢))}.
We can observe a; by observing the motion of superposi-
tions of these states. This is easily illustrated by the pre-
cession of a spin-; particle for which there is just one a.
Suppose |¥(t))=a | ¥,(1))+b | ¥,(t)), where | ¢,) and
| ¥,) are orthonormal states that undergo cyclic evolu-
tion. There exists a continuous vector field n(z) such that
| ¥;(2)), i =1,2, are eigenstates of n(z)-J. We shall call
the direction of n(¢) the direction of the spin vector. It
follows from (4.3) that this direction precesses about the
instantaneous axis of quantization with frequency

o()=A""| (Y, (t) | H(2) | ¢y(1))
—( () | H () | (1)) | .

But the total angle of precession during a cyclic evolution
is given by (4.14). On the other hand if we choose a plane
perpendicular to the initial direction of the quantization
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axis and @(t) is the frequency of precession of the projec-
tion of the spin vector on this plane then A= f B(t)dt.

Hence, &(¢) has a dynamical part and a geometrical part
da/dt that give, respectively, the first and the second
terms in (4.14) on integration.

Hence a is, in this special case, the integral of a locally
measurable quantity and therefore, in this sense,
represents a local effect. And a, understandably, survives
the classical limit. But 3, on the other hand, depends on
the choice of | ¥), except for a cyclic evolution. There-
fore, B must be regarded as a nonlocal phase. Since B(n)
can be determined from a i by (4.8), it follows that the ac-
tions I j(n), which obey the Bohr-Sommerfeld quantiza-
tion conditions, must also be regarded as being nonlocal.

It follows also from the above remarks that the experi-
ments of Tycko!” and Suter e al.'® which measure the
extra geometric precession of a superposition of spin
states that undergo cyclic evolution using nuclear mag-
netic resonance, are really direct measurements of the
geometric angle a and are only indirectly measurements
of the geometric phases [3;. However, a recent experi-
ment of Suter, Mueller, and Pines'® does measure the
geometric phase.

It appears that the basic reasons why a can be ex-
pressed as a sum of locally observable quantities in the
above example are that (1) it is possible to interfere
different spin states and (2) the precession of the super-
posed spin state can be compared with a laboratory frame
that does not undergo the same precession because its
motion is governed by a Hamiltonian that does not have
the same type of interaction that causes the precession of
the spin. This is unlike the AB phase which is observable
only around a closed curve in space-time and not along
any portion of it because it is not possible to interfere
different charges, which is called the charge superselec-
tion rule. In this respect the geometric angles, in this
case, are like the phase in a gravitational field,?®?! with
the mass playing the role analogous to the electric
charge. Since two masses can be interfered as in the kaon
system, it is possible to express the gravitational phase in
terms of locally measurable quantities,22 unlike the elec-
tromagnetic phase.

On the other hand, the effect of the coupling of spin to
the curvature of space-time in the interference of two
coherent beams in a gravitational field, that was found by
one of us,?"?? is nonlocal, like the AB effect because the
curvature affects all physical systems in the same way, as
implied by the principle of equivalence. So it is not possi-
ble to compare the Lorentz transformation undergone by
the spin state along any subportion of the beams with
some standard system, unlike in the case of the geometri-
cal angle as mentioned in (2) above.

VI. QUANTUM FRAMES OF REFERENCE

So far, the geometric phase was treated in situations in
which a quantum system was placed in an environment
that was treated classically, e.g., a quantum spin in a clas-
sical magnetic field. We wish to investigate the geometric

phase when the environment is also quantum mechani-
10,24
cal.™
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To this end consider a quantum spin that is in a mag-
netic field whose direction is determined by the position
of a second quantum-mechanical particle. The Hamil-
tonian is

B

H:TLl-r+—l-p2 ,

2m (6.1)

where L, is the spin or angular momentum of the first
particle, whereas r and p are the position and momentum
of the second particle, B and m are constants represent-
ing the magnetic field and the mass.

Now, (6.1) is written in a basis determined by the labo-
ratory frame that is described classically. It is as if the
spin is ‘“immersed” in an external classical space that
contains also the laboratory frame, which, because of its
large mass, can be described classically to a good approx-
imation. On the other hand, we can insist on strict “rela-
tivism” by giving up the laboratory axes, which are not
part of the dynamical system being considered and refer
the orientation of the spin to the second quantum parti-
cle. Following Aharonov and Kauferr,® in this descrip-
tion which will be further explained below, we shall call
the second particle the quantum reference frame for the
first particle.

Suppose, r=r(cos8, sinfcosd, sinfsing) and L,
=(L,y,L,,,L;,) in the laboratory frame. We wish to
‘““diagonalize” the first term in H in (6.1) by transforming
the z axis to the direction of r. This can be achieved by
the unitary operator

U(6,¢)= exp(iL,,0)expl(iL,,¢) . (6.2)
The transformed Hamiltonian is
H'=UHU'=BL,,+——(p— A?, (6.3)
2m
where
A=sin6 V4L, +VOL,,+ cosO V4L, . (6.4)

Hence by giving up the laboratory axes and adopting
the quantum frame of the second particle we have gained
a ‘“‘gauge potential” A. This can be understood as fol-
lows. Before the unitary transformation was performed
the laboratory frame determined a basis { | n )} for the
Hilbert space V of particle 1 consisting of the eigenstates
of the component of L along the laboratory z axis. For
each position r of particle 2, V may be regarded as an
“internal space.” The basis { | n )} determined a “distant
parallelism” between the internal spaces at any two
values of r, since two vectors in the two spaces can be re-
garded as parallel if their components with respect to the
common basis determined by the laboratory frame are
proportional.

By giving up the laboratory frame we can no longer
identify vectors in vector spaces corresponding to
different values of r. We are free to choose the basis for
the V that is attached each r in the spirit of “local gauge
invariance” of a gauge theory. The transformation (6.2)
chooses a particular such basis consisting of eigenstates
of L-r which are determined by the direction of particle
2. The “gauge potential” A then enables us to parallel
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transport the “internal space” vectors in this basis along
curves in the r space so that distant parallelism can be es-
tablished. This is possible because A still represents the
flat connection of the laboratory space.

We now consider the adiabatic limit corresponding to
B — . The transition from the ground state |¢vg) to
the excited states would then be negligible. It is then easy
to show that the effective Hamiltonian for the second
particle is {1, | H | ¢, ). Then the first two terms in (6.4)
‘“average out” to zero so that

A fective= COSO VL |, . (6.5)
This is the vector potential of a ‘““magnetic monopole” at
the origin which gives the Berry phase analogous to how
the vector potential due to the usual magnetic field gives
the Aharonov-Bohm phase.
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While Berry? has observed that the geometric phase in
this problem arises from a ‘“magnetic monopole” at the
origin of the parameter space, our approach differs from
his approach in that (a) we treat the parameter space
quantum mechanically as the configuration space of a
second quantum particle and (b) the Berry phase B is ac-
quired by the second particle in our treatment, although
in the product wave function, e can instead be attribut-
ed to the first particle. Our approach differs also from
the earlier treatment of coupled systems,?* which intro-
duce also a “gauge potential” in that these authors use
the laboratory frame instead of the quantum frame of
reference as we do. The present point of view will be ex-
plored in greater detail in a future paper.?’

Note added in proof. We have received a paper by M.
G. Benedict and L. Gy. Fehér which contains some of the
results of Sec. III of this paper.
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