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We present the two-state vector formalism of quantum mechanics. It is a time-
symmetrized approach to standard quantum theory particularly helpful for
the analysis of experiments performed on pre- and post-selected ensembles.
Several peculiar effects which naturally arise in this approach are considered.
In particular, the concept of “weak measurements” (standard measurements
with weakening of the interaction) is discussed in depth revealing a very
unusual but consistent picture. Also, a design of a gedanken experiment which
implements a kind of quantum “time machine” is described. The issue of
time-symmetry in the context of the two-state vector formalism is clarified.

13.1 Descriptions of Quantum Systems

13.1.1 The Quantum State

In the standard quantum mechanics, a system at a given time t is described
completely by a quantum state
), (13.1)

defined by the results of measurements performed on the system in the past
relative to the time ¢. (It might be that the system at time ¢ is not described
by a pure quantum state, but by a mixed state (density matrix). However,
we can always assume that there is a composite system including this system
which is in a pure state.) The status of a quantum state is controversial: there
are many papers on reality of a quantum state and numerous interpretations
of this “reality”. However, it is non-controversial to say that the quantum
state yields maximal information about how this system can affect other
systems (in particular, measuring devices) interacting with it at time t. Of
course, the results of all measurements in the past, or just the results of
the last complete measurement, also have this information, but these results
include other facts too, so the quantum state is the most concise information
about how the quantum system can affect other systems at time t.
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The concept of a quantum state is time-asymmetric: it is defined by the
results of measurements in the past. This fact by itself is not enough for the
asymmetry: in classical physics, the state of a system at time ¢ defined by
the results of the complete set of measurements in the past is not different
from the state defined by the complete measurements in the future. This
is because for a classical system the results of measurements in the future
are defined by the results of measurements in the past (and vice versa). In
quantum mechanics this is not so: the results of measurements in the future
are only partially constrained by the results of measurements in the past.
Thus, the concept of a quantum state is genuinely time-asymmetric. The
question arises: Does the asymmetry of a quantum state reflect the time
asymmetry of quantum mechanics, or it can be removed by reformulation of
quantum mechanics in a time-symmetric manner?

13.1.2 The Two-State Vector

The two-state vector formalism of quantum mechanics (TSVE') originated in
a seminal work of Aharonov, Bergmann, and Lebowitz (ABL) [1] removes this
asymmetry. It provides a time-symmetric formulation of quantum mechanics.
A system at a given time ¢ is described completely by a two-state vector

(@] W), (13.2)

which consists of a quantum state |¥) defined by the results of measurements
performed on the system in the past relative to the time ¢ and of a backward
evolving quantum state (®| defined by the results of measurements performed
on this system after the time ¢. Again, the status of the two-state vector might
be interpreted in different ways, but a non-controversial fact is that it yields
maximal information about how this system can affect other systems (in
particular, measuring devices) interacting with it at time ¢.

The description of the system with the two-state vector (13.2) is clearly
different from the description with a single quantum state (13.1), but in both
cases we claim that “it yields maximal information about how this system
can affect other systems (in particular, measuring devices) interacting with
it at time ¢.” Does it mean that the TSVF has different predictions than the
standard quantum approach? No, the two formalisms describe the same the-
ory with the same predictions. The difference is that the standard approach is
time asymmetric and it is assumed that only the results of the measurements
in the past exist. With this constrain, |V) indeed contains maximal infor-
mation about the system at time ¢. The rational for this approach is that if
the results of the future measurements relative to the time ¢ exist too, then
“now” is after time ¢ and we cannot return back in time to perform measure-
ments at t. Therefore, taking into account results of future measurements is
not useful. In contrast, the TSVFE approach is time symmetric. There is no
preference to the results of measurements in the past relative to the results of
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measurements in the future: both are taken into account. Then, there is more
information about the system at time t. The maximal information (without
constrains) is contained in the two-state vector (@] ).

If the TSVE has the same predictions as standard quantum mechanics,
what is the reason to consider it? And what about the argument that when
the results of future measurements are known it is already too late to make
measurements at time t7 [fow the two-state vector might be useful? The
answer to the first question is that it is important to understand the time-
symmetry of nature (described by quantum mechanics). The time-asymimetry
of the standard approach might be solely duc to the usage of time-asymmetric
concepts. The answer to the sccond question is that there are many situa-
tions in which we want to know how a system aflected other systemis in the
past. The TSVE proved to be particularly useful after introduction of weak
measurements [2—-4] which allowed to see that systems described by some two-
state vectors can affect other system at time ¢ in a very peculiar way. This
has led to the discovery of numerous bizarre cffects [5-8]. It is very difficult
to understand these effects in the framework of standard quantum mechan-
ics; some of them can be explained via miraculous interference phenomenon
known as super-oscillations [9].

13.1.3 How to Create Quantum Systems
Corresponding to Various Complete Descriptions?

The maximal complete description of a quantum system at time t is a two-
state vector (13.2). We will name the system which has such a description as
pre- and post-selected. (Again, it might be that at time ¢ the system is not
described by a “pure” two-state vector. However, we can assumec that there
is a composite system including this system which is described by a two-
state vector.) In some circumstances, the system might have only a partial
description. For example, if timme ¢ is “present” and the results of the future
measurements do not exist yet, then at that time, the system is described only
by a usual forward evolving quantum state (13.1): the pre-selected system.
Later, when the results of the future measurements will be obtained, the
description will be completed to the form (13.2). It is also possible to arrange
a situation in which, until some measurements in the future, the complete
description of the system at time t is the backward evolving quantum state
(P|: the post-selected system. We will now explain hiow all these situations
can be achieved.

Single Forward-Evolving Quantum State

In order to have now a system the complete description of which at time ¢
is a single quantum state (13.1), there should be a complete measurement
in the past of time ¢ and no measurement on the system after time ¢, see
Fig. 1a. The system in the state [¥) is obtained when a measurement of an
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Fig. 13.1. Description of quantum systems: (a) pre-selected, (b) pre- and post-
selected, (c) post-selected, and (d) generalized pre- and post-selected.

observable A at time t; is performed, t; < t, obtaining a specific outcome
A = a such that the created state |a) performs unitary evolution between t;
and t governed by the Hamiltonian H,

Ut t) = e tJo Hat (13.3)

to the desired state:
0) = Uts,t) la) . (13.4)

The time “now”, t,,, should either be equal to the time ¢, or it should be
known that during the time period [, £,04] no measurements have been per-
formed on the system. The state |[¥) remains to be the complete description
of the system at time ¢ until the future measurements on the system will be
performed yielding additional information.

The Two-State Vector

In order to have now a system the complete description of which at time ¢
is a two-state vector (13.2), there should be a complete measurement in the
past of time ¢ and a complete measurement after the time ¢, see Fig. 1. In
addition to the measurement A = a at time t;, there should be a complete
measurement at ts, to > t, obtaining a specific outcome B = b such that the
backward time evolution from ¢y to t leads to the desired state

(B = (| Ul(t, ta) . (13.5)
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The time “now”, t,‘ww is clearly larger than t;. The two-state vector (@] |¥)
is the complete description of the system at time t starting from the time ¢,
and forever.

A Single Backward-Evolving Quantum State

We have presented above a description of quantum systems by a single
forward-evolving quantum state (13.1) and by a two-state vector (13.2). It
is natural to ask: Are there systems described by a single backward-evolving
quantum state? The notation for such a state is

(9] . (13.6)

A measurement of B at time t, even in the case it yields the desired outcome
B = b, is not enough. The difference between preparation of (13.1) and
(13.2) is that at present, ¢, the future of a quantum system does not exist
(the future measurements have not been performed yet), but the past of a
quantum system exists: it seems that even if we do not know it, there is
a quantum state of the system evolving towards the future defined by the
results of measurements in the past. Therefore, in order to obtain a quantum
system described by a backward evolving quantum state (13.2), in addition
to the post-selection measurement performed after time ¢, we have to erase
the past.

How to erase the past of a quantum system? A complete measurement
before the time t certainly partially erases the information which the system
had before the measurement, but it also creates the new information: the
result of this measurement. It creates another quantum state evolving forward
in time, and this is, really, what we need to erase. We have to achieve the
situation in which no information arrives from the past. It seems impossible
given the assumption that all the past is known. However, if we perform a
measurement on a composite system containing our system and an auxiliary
system, an ancilla, then it can be done, see Fig. 1c. Performing a Bell-type
measurement results in one of a completely correlated states of the system
and the ancilla (the EPR-type state). In such a state, each system has equal
probability to be found in any state. However, the measurement on one system
fixes the state of the other, so, in addition to the Bell-type measurement we
need to “guard” the ancilla such that no measurement could be performed
on it until now. Again, the complete description of a quantum system by
a single (this time backward-evolving) quantum state can be achieved only
for a period of time until the measurements on the ancilla would fix the
forward-evolving quantum state for the system.

Note other discussions of retrodiction when the past is postulated to be
random [10-12].
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13.1.4 The Generalized Two-State Vector

The descriptions we described above correspond to an “ideal” case. We have
assumed that complete measurements have been performed on the system in
the past, or in the future or both. The philosophical question is this: can we
assume that going sufficiently far away to the past, far away to the future
and far in the sense of considering composite systems larger and larger, at the
end there always be a complete description in the form of a two-state vector.
Usually we do put constraints how far we go (at least regarding the future
and the size of the system). In constructing the situation in which a system
is described by a backward evolving quantum state only, we already limited
ourselves to a particular system instead of being satisfied by the correct claim
that our system is a part of a composite system (which includes also the an-
cilla) which does have forward evolving quantum state. As in the standard
approach, limiting our analysis to a particular system leads to descriptions
with mized states. There are situations in which the forward evolving state
is a mixed state (the system is correlated to an ancilla) and backward evolv-
ing state is another mixed state (the system correlated to another ancilla).
Although the generalization to the mixed states is straightforward, it is not
obvious what is its most convenient form. For a powerful, but somewhat cum-
bersome formalism, see [13]. However, there is a particular case which is not
too difficult to describe. It corresponds to another “pure” two-state vector
description: generalized two-state vector.

Generalized two-state vector [4] is the name for the superposition of two-

state vectors
| > (@] %) (13.7)

In general, the sets {|¥;)}, {(®:|} need not be orthogonal. Then, the nor-
malization should be chosen consistently, although it is not very important
since in main applications of this concept the normalization does not affect
anything.

For simplicity we will consider the case of zero free Hamiltonian for the
system and for the ancilla. In order to obtain the generalized two-state vector
(13.7) we have to prepare at t1 the system and the ancilla in a correlated state
> W) i), where {[i)} is a set of orthonormal states of the ancilla. Then
we have to “guard” the ancilla such that there will be no measurements
or any other interactions performed on the ancilla until the post-selection
measurement of a projection on the correlated state 1/v/N S, |&;)i), see
Fig. 1d. If we obtain the desired outcome, then the system is described at
time t by the generalized two-state vector (13.7).
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13.2 Ideal Quantum Measurements

13.2.1 Von Neumann Measurcments

In this section I shall discuss how a quantum system characterized by a certain
description interacts with other systems. Some particular types of interactions
are named measurernents and the effect of these interactions characterized as
the results of these mcasurements. The basic concept is an ideal gquantum
measurement of an observable C. This operation is defined for pre-selected
quantum systems in the following way:

If the state of a quantum system before the measurement was an
eigenstate of C with an eigenvalue ¢, then the outcome of the mea-
surement is ¢, and the quantum statc of the system is not changed.

The standard implementation of the ideal quantum measurement is modeled
by the von Neumann Hamiltonian [14]:

H = g(t)PC, (13.8)

where P is the momentum conjugate to the pointer variable @, and the
normalized coupling function g(t) specifies the time of the measurement in-
teraction. The outcome of the measurement is the shift of the pointer variable
during the interaction. In an ideal measurement the function g(¢) is nonzero
only during a very short period of time, and the free Hamiltonian during this
period of time can be neglected.

13.2.2 The Aharonov-Bergmann-Lebowitz Rule

For a quantum system described by the two-state vector (13.2), the proba-
bility for an oulcome ¢, of an ideal mcasurement of an observable C is given
by {1,4]

(PP o=c, )

T @Po— )2

For a quantum system described by a generalized two-state vector (13.7),
the probability for an outcome ¢, is given by {4]

[0 (P Po=c, |F:)[?
Zj |22 il @ilPo—c W) [P

Another important generalization of the formula (13.9) is for the case in
which the post-selection measuremnent is not complete and therefore it does
not specify a single post-sclection state (®|. Such an cxample was recently
considered by Cohen [15] in an (unsuccessful {16]) attempt to find constraints

Prob(ey,) (13.9)

Prob(c,) = (13.10)
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to the applicability of the ABL formula. In this case, the post-selection mea-
surement is a projection on a degenerate eigenvalue of an observable B = b.
The modified ABL formula is [16]:
Pp_yPo—. |02
Prob(c,) = b s=tPo=e, )] 5. (13.11)
5 IPe=bPo=c, %)l
This form of the ABL formula allows to connect it to the standard formalism
of quantum theory in which there is no post-selection. In the limiting case
when the projection operator Pp_;, is just the unity opcrator I, we obtain
the usual expression:

Prob(c,) = [|Pcwe, P)])* . (13.12)

13.2.3 Three-Boxes Example

Consider a particle which can be located in one out of three boxes. We denote
the state of the particle when it is in box ¢ by |7). At time t; the particle is
prepared in the state

1

[&) \/§(|1> +12) + 13)) . (13.13)
At time to the particle is found to be in the state
1
|P) = 75((” +12) - 13)) . (13.14)

We assume that in the time interval [t;, {2] the Hamiltonian is zero. Therefore,
at time ¢, t; <t < o, the particle is described by the two-state vector

(@] 1) = S (1] + 2] = (1) (1) +12) +13)) (13.15)

Probably the most peculiar fact about this single particle is that it can be
found with certainty in two boxes [4]. Indeed, if at time ¢ we open box 1, we
are certain to find the particle in box 1; and if we open box 2 instead, we
are certain to find the particle in box 2. These results can be obtained by
straightforward application of the ABL formula (13.9). Opening box 4 corre-
sponds to measuring the projection operator P, = |i){(¢|. The corresponding
operators appearing in (13.9) are

PPIZI = |7><7’| 3 PP;=0 = Z l]><]| . (1316)
J#i
Therefore, the calculation of the probability to find the particle in box 1
yields:
H(e[1)(1]7)|? 5P
(DI CLP)P + [(212) 21&) + (PI3)BIE) 2 512 +10]2
(13.17)

Prob(P; =1) =
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Similarly, we obtain Prob(P2 = 1) = 1. Note, that if we open both box 1 and
box 2, we might not see the particle at all.

This example can be generalized to the case of a large number of boxes
N. A single particle described by a two-state vector

%(m 24 = VNN (1) +[2) + o + VN ZZNY) . (13.18)
This single particle is, in some sense, simultaneously in IV — 1 boxes: whatever
box is opened (except the last one) we are certain to find the particle there.

Beyond the peculiarity of having one particle in several places simultane-
ously even in a stronger sense than it is in a double slit experiment, there is
another feature which is not present in systems described by a single quan-
tum state: probability of finding a particle in one box depends on what is
done in another. If nothing is done in other boxes then the probability is one,
but if other boxes are opened at the same time, the probability to find it in
the first box is less than one. This is some kind of conteztuality [17].

13.2.4 The Failure of the Product Rule

An important difference between pre- and post-selected systems and pre-
selected systems only is that the product rule does not hold [18]. The product
rule, which does hold for pre-selected quantum systems is that if A = a and
B = b with certainty, then it is certain that AB = ab. In the three-boxes case
we know with certainty that Py =1, Py = 1. However, P1 Py = 0.

Another example of this kind in a which measurement in one place affects
the outcome of a measurement in another place is a pre- and post-selected
pair of separate spin—% particles [19]. The particles are prepared, at time ¢,
in a singlet state. At time {2 measurements of o1, and o3, are performed
and certain results are obtained, say o1, = 1 and o9, = 1, i.e. the pair is
described at time ¢, t; < t < tg, by the two-state vector

—_( 13.19
7 To | (Ty [ T2 ) = T4 12)) - (13.19)

If at time t a measurement of oy, is performed (and if this is the only measure-
ment performed between ¢; and t3), then the outcome of the measurement
is known with certainty: o,,(t) = —1. If, instead, only a measurement of
0o, 1s performed at time ¢, the result of the measurement is also certain:
02,(t) = —1. The operators oy, and o3, obviously commute, but neverthe-
less, measuring oo, (t) clearly disturbs the outcome of the measurement of
o14(t): it is not certain anymore.

Measuring the product 01,02, is, in principle, different from the mea-
surement of both o1, and o2, separately. In our example the outcome of
the measurement of the product is certain, the ABL formula (13.9) yields
01402, = —1. Nevertheless, it does not equal the product of the results



378 Yakir Aharonov and Lev Vaidman

which must come out of the measurements of o, and oy, when every one of
them is performed without the other.

Note measurability of the product o,,02; using only local interactions.
Indeed, we may write the product as a modular sum, 01,02, = (014 +
o9, )mod4 — 1. It has been shown [20] that nonlocal operators such as (o1, +
09.)mod4 can be measured using solely local interactions.

Hardy [21] analyzed another very spectacular example in which an elec-
tron and a positron are found with certainty if searched for in a particular
place, but, nevertheless, if both are searched simultaneously, there is certainty
not to find them together. Again, the failure of the product rule explains this
counterintuitive situation and the far reaching conclusions of Hardy’s paper
seem not to be warranted [18].

The two spin—% particles example with a small modification of omitting
the measurement at time t; performed on a second particle, but instead,
“guarding” it starting from time ¢; against any measurement, is a demon-
stration of obtaining a quantum system described only a by backward evolv-
ing quantum state (1, |- The probability distribution for outcomes of spin-
component measurements performed at time ¢ is identical to that of a particle
in a pre-selected state | T;). Note that for quantum systems which are post-
selected only, the product rule does hold.

13.2.5 Ideal Measurements Performed on a System
Described by Generalized Two-State Vector

Another modification, replacing the measurements at ¢ on two particles by
measurement of a nonlocal variable such as a Bell operator on both particles
and guarding the second particle between #; and ty produces a generalized
two-state vector for the first particle. Such particles might have a peculiar
feature that the outcome of spin component measurements is certain in a
continuum of directions. This is a surprising result because the pre-selected
particle might have definite value of spin component at most in one direction
and the particle described by two-state vector will have definite results of spin
component measurements in two directions: one defined by pre-selection and
one defined by post-selection (the directions might coincide). For example
[4], the particle described by a generalized two-state vector

cosx(te || 1:) —sinx(la |14, xe(0,3), (13.20)

will yield the outcome o, = 1 for the cone of directions 7j making angle 6
with the z axes such that 8 = 4arctan+/tan x. This can be verified directly
using the formula (13.10), but we will bring another argument for this result
below.

The generalized two-state vector is obtained when there is a particular
result of the nonlocal measurement at time to. It is interesting that we can
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construct a particular measurement at time ¢2 such that whatever the out-
come will be there will be a cone of directions in which the spin has a definite
value. These cones intersect in general in four lines. It can be arranged that
they will “touch” on, say z axis and intersect in y and 2z axes. Then, in all
cases we will be able to ascertain the value of 0, oy, and o, of a single par-
ticle [5]. Recently, this problem has been generalized to the spin-1 particle
[22] and even to a more general case [23].

13.3 Weak Measurements

13.3.1 Introduction

The most interesting phenomena which can be seen in the framework of
the TSVF are related to weak measurements [3]. A weak measurement is
a standard measuring procedure (described by the Hamiltonian (13.8)) with
weakened coupling. In an ideal measurement the initial position of the pointer
Q is well localized around zero and therefore the conjugate momentum P
has a very large uncertainty which leads to a very large uncertainty in the
Hamiltonian of the measurement (13.8). In a weak measurement, the initial
state of the measuring device is such that P is localized around zero with
small uncertainty. This leads, of course, to a large uncertainty in @ and
therefore the measurement becomes imprecise. However, by performing the
weak measurement on an ensemble of N identical systems we improve the
precision by a factor VN and in some special cases we can obtain good
precision even in a measurement performed on a single system [2].

The idea of weak measurements is to make the coupling with the mea-
surfhg device sufficiently weak so that the change of the quantum state due
to the measurements can be neglected. In fact, we require that the two-state
vector is not significantly disturbed, i.e. neither the usual, forward evolving
quantum state, nor the backward evolving quantum state is changed signif-
icantly. Then, the outcome of the measurement should be affected by both
states. Indeed, the outcome of a weak measurement of a variable C' performed
on a system described by the two-state vector (| |¥) is the weak value of C:

(o) (13.21)

v = 2Dy

Strictly speaking, the readings of the pointer of the measuring device will
cluster around Re(C.,). In order to find Im(C,,) one should measure the shift
in P [3].

The weak value for a system described by a generalized two-state vector
(13.7) is [4]:
2 il P C )

Cy =
22 0i(Pi| )

(13.22)
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Next, let us give the expression for the weak value when the post-selection
measurement is not complete. Consider a system pre-selected in the state
|@) and post-selected by the measurement of a degenerate eigenvalue b of a
variable B. The weak value of C in this case is:

([P 5_sC|)

Co = TP, 7)

(13.23)

This formula allows us to find the outcome of a weak measurement per-
formed on a pre-selected (only) system. Replacing P g—; by the unity operator
yields the result that the weak value of a pre-selected system in the state |¥)
is the expectation value:

Cyp = (T|C|T) . (13.24)

Let us show how the weak values emerge as the outcomes of weak mea-
surements. We will limit ourselves to two cases: first, the weak value of the
pre-selected state only (13.24) and then, the weak value of the system de-
scribed by the two-state vector (13.21).

In the weak measurement, as in the standard von Neumann measurement,
the Hamiltonian of the interaction with the measuring device is given by
(13.8). The weakness of the interaction is achieved by preparing the initial
state of the measuring device in such a way that the conjugate momentum of
the pointer variable, P, is small, and thus the interaction Hamiltonian (13.8)
is small. The initial state of the pointer variable is modeled by a Gaussian
centered at zero:

GMP(Q) = (A%r)~ /1= @7 /247 (13.25)

The pointer is in the “zero” position before the measurement, i.e. its initial
probability distribution is

Prob(Q) = (A%r)~1/2e-Q%/4% (13.26)

If the initial state of the system is a superposition |¥) = Yay|e;), then after
the interaction (13.8) the state of the system and the measuring device is:

(A27r)_1/4z‘:'ai[ci>e_(Q"C*)2/242 . (13.27)

The probability distribution of the pointer variable corresponding to the state
(13.27) is:
Prob(Q) = (A2r) V2 D|qy|2e=(@-c0)*/ A% (13.28)

In case of the ideal measurement, this is a weighted sum of the initial probabil-
ity distribution localized around various eigenvalues. Therefore, the reading
of the pointer variable in the end of the measurement almost always yields
the value close to one of the eigenvalues. The limit of weak measurement cor-
responds to A > ¢; for all eigenvalues ¢;. Then, we can perform the Taylor
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expansion of the sum (13.28) around @ = 0 up to the first order and rewrite
the probability distribution of the pointer in the following way:

Prob(Q) = (A%m) /2 Zja,[2em(@-e)?/ 4%
= (A%m) 72Dl (1 - (Q - ¢)?/4%)
— (AQ,R_)——I/Qe—(Q—E|¢’i|2Ci)2/A2 i (1329)

But this is exactly the initial distribution shifted by the value X|a;|?c;. This
is the outcome of the measurement, in this case the weak value is the expec-
tation value:

Cw = Zlailc; = (T|C|P) . (13.30)

The weak value is obtained from statistical analysis of the readings of the
measuring devices of the measurements on an ensemble of identical quantum
systems. But it is different conceptually from the standard definition of ex-
pectation value which is a mathematical concept defined from the statistical
analysis of the ideal measurements of the variable C all of which yield one of
the eigenvalues c;. '

Now let us turn to the system described by the two-state vector (13.2). As
usual, the free Hamiltonian is assumed to be zero so it can be obtained by pre-
selection of |¥) at ¢; and post-selection of |®) at t5. The (weak) measurement
interaction of the form (13.8) takes place at time ¢, t; < t < t5. The state
of the measuring device after this sequence of measurements is given (up to
normalization) by

wMD(Q) = (Ble™ PO \p)e= /247 (13.31)

After simple algebraic manipulations we can rewrite it (in the P-representation)
as

FMP(P) = (B[ ¢iCwF =47 F/2 (L352)

> (iP)™ 2 p2
-A
W) Z T[(Cn)w —(Cw)"le P
n=2
If A is sufficiently large, we can neglect the second term of (13.32) when we
Fourier transform back to the Q-representation. Large A corresponds to weak
measurement in the sense that the interaction Hamiltonian (13.8) is small.
Thus, in the limit of weak measurement, the final state of the measuring
device (in the Q-representation) is

TMD(Q) = (A2)~1/4e=(Q=Cu)*/247 (13.33)

This state represents a measuring device pointing to the weak value (13.21).
Weak measurements on pre- and post-selected ensembles yield, instead of
eigenvalues, a value which might lie far outside the range of the eigenvalues.



382 Yakir Aharonov and Lev Vaidman

Although we have shown this result for a specific von Neumann model of
measurements, the result is completely general: any coupling of a pre- and
post-selected system to a variable C|, provided the coupling is sufficiently
weak, results in effective coupling to C,. This weak coupling between a single
system and the measuring device will not, in most cases, lead to a distinguish-
able shift of the pointer variable, but collecting the results of measurements
on an ensemble of pre- and post-selected systems will yield the weak values
of a measured variable to any desired precision.

When the strength of the coupling to the measuring device goes to zero,
the outcomes of the measurement invariably yield the weak value. To be
more precise, a measurement yields the real part of the weak value. Indeed,
the weak value is, in general, a complex number, but its imaginary part will
contribute only a (position dependent) phase to the wave function of the
measuring device in the position representation of the pointer. Therefore, the
imaginary part will not affect the probability distribution of the pointer po-
sition which is what we see in a usual measurement. However, the imaginary
part of the weak value also has physical meaning. It is equal to the shift of
the Gaussian wave function of the measuring device in the momentum rep-
resentation. Thus, measuring the shift of the momentum of the pointer will
yield the imaginary part of the weak value.

13.3.2 Examples: Measurements of Spin Components

Let us consider a simple Stern-Gerlach experiment: measurement of a spin
component of a spin—% particle. We shall consider a particle prepared in the
initial state spin “up” in the # direction and post-selected to be “up” in the 3
direction. At the intermediate time we measure, weakly, the spin component
in the £ direction which is bisector of £ and g, i.e., 0¢ = (0, + oy)/\/§. Thus
|¥) = |T2), |®) = |1y), and the weak value of ¢ in this case is:

et 1 (et oyl
O ="0 ) ~ V8 (hita) ve.

This value is, of course, “forbidden” in the standard interpretation where a
spin component can obtain the (eigen)values +1 only.
An effective Hamiltonian for measuring o¢ is

(13.34)

H =g(t)Po¢ . (13.35)

Writing the initial state of the particle in the o¢ representation, and assuming
the initial state (13.25) for the measuring device, we obtain that after the
measuring interaction the quantum state of the system and the pointer of
the measuring device is

cos (7T/8)‘T§>e_(Q“1)2/2A2 + sin (7r/8)|\|,,5>e"(Q+1)2/2A2 . (13.36)
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The probability distribution of the pointer position, if it is observed now
without post-selection, is the sum of the distributions for each spin value. It
is, up to normalization,

Prob(Q) = cos? (7r/8)e_(Q_1)2/A2 + sin? (7r/8)e_(Q+1)2/42 . (13.37)

In the usual strong measurement, A < 1. In this case, as shown on Fig.
2a, the probability distribution of the pointer is localized around —1 and +1
and it is strongly correlated to the values of the spin, o, = +1.

Weak measurements correspond to a A which is much larger than the
range of the eigenvalues, i.e., A > 1. Fig. 2b shows that the pointer dis-
tribution has a large uncertainty, but it is peaked between the eigenvalues,
more precisely, at the expectation value (4|o¢|tz) = 1/v/2. An outcome of
an individual measurement usually will not be close to this number, but it
can be found from an ensemble of such measurements, see Fig. 2c. Note, that
we have not yet considered the post-selection.

In order to simplify the analysis of measurements on the pre- and post-
selected ensemble, let us assume that we first make the post-selection of the
spin of the particle and only then look at the pointer of the device that weakly
measures g¢. We must get the same result as if we first look at the outcome
of the weak measurement, make the post-selection, and discard all readings
of the weak measurement corresponding to the cases in which the result is
not oy = 1. The post-selected state of the particle in the o, representation is
(ty| = cos (7/8)(te| — sin (w/8)(le|. The state of the measuring device after
the post-selection of the spin state is obtained by projection of (13.36) onto
the post-selected spin state:

Q) = ./\/(cos2 (7r/8)e“(Q_1)2/2A2 — sin? (7T/8)e~(Q+1)2/2A2)) , (13.38)

where NV is a normalization factor. The probability distribution of the pointer
variable is given by

2 2 2 2
Prob(Q) = N2 (cos2 (m/8)e(@~17/287 _ gin? (7r/8)e_(Q+1)2/2A ))

(13.39)

If the measuring interaction is strong, A <« 1, then the distribution is
localized around the eigenvalues £1 (mostly around 1 since the pre- and
post-selected probability to find o¢ = 1 is more than 85%), see Figs. 3a, 3b.
But when the strength of the coupling is weakened, i.e., A is increased, the
distribution gradually changes to a single broad peak around /2, the weak
value, see Figs. 3¢ — 3e.

The width of the peak is large and therefore each individual reading of
the pointer usually will be far from /2. The physical meaning of the weak
value can, in this case, be associated only with an ensemble of pre- and post-
selected particles. The accuracy of defining the center of the distribution goes
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Fig. 13.2. Spin component measurement without post-selection. Probability distri-
bution of the pointer variable for measurement of o when the particle is pre-selected
in the state |Tz). (a) Strong measurement, A = 0.1. (b) Weak measurement, A = 10.
(¢) Weak measurement on the ensemble of 5000 particles. The original width of the
peak, 10, is reduced to 10/1/5000 =~ 0.14. In the strong measurement (a) the pointer
is localized around the eigenvalues +1, while in the weak measurements (b) and (c)
the peak is located in the expectation value (g|o¢|tz) = 1/v/2.
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as 1/\/N, so increasing N, the number of particles in the ensemble, we can
find the weak value with any desired precision, see Fig. 3f.

In our example, the weak value of the spin component is v/2, which is only
slightly more than the maximal eigenvalue, 1. By appropriate choice of the
pre- and post-selected states we can get pre- and post-selected ensembles with
arbitrarily large weak value of a spin component. One of our first proposals
[6] was to obtain (o¢), = 100. In this case the post-selected state is nearly
orthogonal to the pre-selected state and, therefore, the probability to obtain
appropriate post-selection becomes very small. While in the case of (o¢),, =
V2 the pre- and post-selected ensemble was about half of the pre-selected
ensemble, in the case of (0¢)w = 100 the post-selected ensemble will be
smaller than the original ensemble by the factor of ~ 1074,

13.3.3 Weak Measurements Which Are Not Really Weak

We have shown that weak measurements can yield very surprising values
which are far from the range of the eigenvalues. However, the uncertainty of
a single weak measurement (i.e., performed on a single system) in the above
example is larger than the deviation from the range of the eigenvalues. Each .
single measurement separately yields almost no information and the weak
value arises only from the statistical average on the ensemble. The weakness
and the uncertainty of the measurement goes together. Weak measurement
corresponds to small value of P in the Hamiltonian (13.8) and, therefore,
the uncertainty in P has to be small. This requires large A, the uncertainty
of the pointer variable. Of course, we can construct measurement with large
uncertainty which is not weak at all, for example, by preparing the measuring
device in a mixed state instead of a Gaussian, but no precise measurement
with weak coupling is possible. So, usually, a weak measurement on a single
system will not yield the weak value with a good precision. However, there
are special cases when it is not so. Usual strength measurement on a single
pre- and post-selected system can yield “unusual” (very different from the
eigenvalues) weak value with a good precision. Good precision means that
the uncertainty is much smaller than the deviation from the range of the
eigenvalues.

Our example above was not such a case. The weak value (0¢),, = V2 is
larger than the highest eigenvalue, 1, only by ~ 0.4, while the uncertainty,
1, is not sufficiently large for obtaining the peak of the distribution near the
weak value, see Fig. 3c. Let us modify our experiment in such a way that
a single experiment will yield meaningful surprising result. We consider a
system of NV spin—% particles all prepared in the state |1,) and post-selected

in the state |1,), i.e., |¥) = HZALI [T2): and (@] = Hil(Tyh. The variable
which is measured at the intermediate time is C = (Zﬁvzl(ai)f)/N. The
operator C has N + 1 eigenvalues equally spaced between —1 and +1, but
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Fig. 13.3. Measurement on pre- and post-selected ensemble. Probability distribu-
tion of the pointer variable for measurement of o when the particle is pre-selected
in the state |T.) and post-selected in the state {Ty). The strength of the measure-
ment is parameterized by the width of the distribution A. (¢) A = 0.1; (b) A = 0.25;
(e) A=1;(d) A=3; (¢) A=10. (f) Weak measurement on the ensemble of 5000
particles; the original width of the peak, A = 10, is reduced to 10/\/5000 ~ 0.14. In
the strong measurements (a)-(b) the pointer is localized around the eigenvalues =1,
while in the weak measurements (d)-(f) the peak of the distribution is located in
the weak value (0¢)w = (Ty|oeltz)/(1y[T=) = V2. The outcomes of the weak mea-
surcment on the ensemble of 5000 pre- and post-selected particles, (f), are clearly
outside the range of the eigenvalues, (-1, 1).
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Fig. 13.4. Measurement on a single system. Probability distribution of the pointer
variable for the measurement of 4 = (Zfﬁl (0:)¢)/20 when the system of 20 spin-3
particles is pre-selected in the state |¥1) = Hfol I172): and post-selected in the state

[W2) = [122, ). While in the very strong measurements, A = 0.01 — 0.05, the
peaks of the distribution located at the eigenvalues, starting from A = 0.25 there

is essentially a single peak at the location of the weak value, A, = V2.
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the weak value of C' is

[Ty (e S (002 + (03)y) TI, 1e);

Chw = =2 13.40
VI N1 (13.40)
The interaction Hamiltonian is
gt) &

=1

The initial state of the measuring device defines the precision of the mea-
surement. When we take it to be the Gaussian (6), it is characterized by the
width A. For a meaningful experiment we have to take A small. Small A
corresponds to large uncertain P, but now, the strength of the coupling to
each individual spin is reduced by the factor 1/N. Therefore, for large N,
both the forward-evolving state and the backward-evolving state are essen-
tially not changed by the coupling to the measuring device. Thus, this single
measurement yields the weak value. In Ref. 7 it is proven that if the measured
observable is an average on a large set of systems, C' = (Ziv Ci)/N, then we
can always construct a single, good-precision measurement of the weak value.
Here let us present just numerical calculations of the probability distribution
of the measuring device for N pre- and post-selected spln— particles. The
state of the pointer after the post-selection for this case is

NZ (cos? 7r/8)) - (sin2(7r/8))i e (@247 (13.42)
The probability distribution for the pointer variable @ is

N
prob(Q) = N*? (Z(—l)i(cos2(7r/8))N_1 (sing(ﬂ/S))Ze’(Q_@N:Q)z/QAz)2 .
i=1
(13.43)
The results for N = 20 and different values of A are presented in Fig. 4.
We see that for A = 0.25 and larger, the obtained results are very good:
the final probability distribution of the pointer is peaked at the weak value,
((Z£1(0i)f)/N)w = /2. This distribution is very close to that of a mea-
suring device measuring operator O on a system in an eigenstate |O=\/§).
For N large, the relative uncertainty can be decreased almost by a factor
1/+/N without changing the fact that the peak of the distribution points to
the weak value.

Although our set of particles pre-selected in one state and post-selected
in another state is considered as one system, it looks like an ensemble. In
quantum theory, measurement of the sum does not necessarily yield the same
result as the sum of the results of the separate measurements, so conceptually
our measurement on the set of particles differs from the measurement on an
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ensemble of pre- and post-selected particles. However, in our example of weak
measurements, the results are the same.

A less ambiguous case is the example considered in the first work on weak
measurements [2]. In this work a single system of a large spin IV is considered.
The system is pre-selected in the state {¥) = |S,=N) and post-selected in the
state |P) = |S,=N). At an intermediate time the spin component S is weakly
measured and again the “forbidden” value V2N is obtained. The uncertainty
has to be only slightly larger than v/N. The probability distribution of the
results is centered around V2N, and for large N it lies clearly outside the
range of the eigenvalues, (=N, N). Unruh [24] made computer calculations
of the distribution of the pointer variable for this casc and got results which
are very similar to what is presented on Fig. 4.

An even more dramatic example is a measurement of the kinetic energy of
a tunneling particle [8]. We consider a particle pre-selected in a bound state
of a potential well which has negative potential ncar the origin and vanishing
potential far from the origin; |¥) = |E=FE)). Shortly later, the particle is
post-selected to be far from the well, inside a classically forbidden tunneling
region; this state can be characterized by vanishing potential [@) = |U=0).
At an intermediate time a measurement of the kinetic energy is performed.
The weak value of the kinetic energy in this case is
(U=0|K|[l=FEy) (U=0|E - U|E=Ey)

(U=0[E=Eq) (U=0Fi=Eq)
The encrgy of the bound state, Ejy, is negative, so the weak value of the kinetic
energy is negative. In order to obtain this negative value the coupling to the
measuring device need not be too weak. In fact, for any finite strength of the
measurement we can choose the post-selected state sufficiently far from the
well to ensure the negative value. Therefore, for appropriate post-selection,
the usual strong measurement of a positive definite operator invariably yiclds
a negative result! This weak value predicted by the two-state vector formal-
ism demonstrates a remarkable consistency: the value obtained is exactly the
value that we would expect a particle to have when the particle is charac-
terized in the intermediate times by the two wave-functions, one in a ground
state, and the other localized outside the well. Indeed, we obtain this result
precisely when we post-select the particle far enough from the well that it
could not have been kicked there as a result of the intermediate measurement.
A peculiar interference effect of the pointer takes place: destructive interfer-
ence in the whole “allowed” region and constructive interference of the tails
in the “forbidden” negative region. The initial statc of the measuring device
&((Q), duc to the measuring interaction and the post-selection, transforms
into a superposition of shifted wave functions. The shifts are by the (possi-
bly small) eigenvalues, but the superposition is approximately equal to the
original wave function shifted by a (large and/or forbidden) weak value:

> antMP(Q — o) »UMP(Q - C) . (13.45)

Ky = = Ey. (13.44)
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These surprising, even paradoxical effects are really only gedanken exper-
iments. The reason is that, unlike weak measurements on an ensemble, these
are extremely rare events. For yielding an unusual weak value, a single pre-
selected system needs an extremely improbable outcome of the post-selection
measurement. Let us compare this with a weak measurement on an ensemble.
In order to get N particles in a pre- and post-selected ensemble which yield
(0¢)w = 100, we need ~ N10* particles in the pre-selected ensemble. But, in
order to get a single system of N particles yielding (S¢),, = 100N, we need
~ 10N systems of N pre-selected particles. In fact, the probability to obtain
an unusual value by error is much larger than the probability to obtain the
proper post-selected state. What makes these rare effects interesting is that
there is a strong (although only one-way) correlation: for example, every time
we find in the post-selection measurement the particle sufficiently far from
the well, we know that the result of the kinetic energy is negative, and not
just negative: it is equal to the weak value, K, = Ejy, with a good precision.

13.3.4 Relations Between Weak and Strong Measurements

In general, weak and strong measurements do not yield the same outcomes.
The outcomes of strong measurements are always the eigenvalues while the
outcomes of weak measurements, the weak values, might be very different
from the eigenvalues. However, there are two important relations between
them [4].

(i) If the description of a quantum system is such that a particular eigen-
value of a variable is obtained with certainty in case it is measured strongly,
then the weak value of this variable is equal to this eigenvalue. This is correct
in all cases, i.e., if the system described by a corresponding single (forward
or backward evolving) eigenstate, or if it is described by a two-state vector,
or even if it is described by a generalized two-state vector.

(ii) The inverse of this theorem is true for dichotomic variables such as
projection operators of spin components of spin—% particles. The proofs of
both statements are given in [4].

Let us apply the theorem (i) for the example of 3 boxes when we have
a large number of particles all pre- and post-selected in the two-state vector
(13.15). The actual story is as follows: a macroscopic number N of particles
(gas) were all prepared at ¢; in a superposition of being in three separated
boxes (13.13). At later time #5 all the particles were found in another super-
position {13.14) (this is an extremely rare event). In between, at time ¢, weak
measurement of a number of particles in each box, which are, essentially, usual
measurements of pressure in each box, have been performed. The readings of

the measuring devices for the pressure in the boxes 1, 2 and 3 were
pr=p,

P3 = —D, . . .
where p is the pressure which is expected to be in a box with N particles.
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We are pretty certain that this “actual” story never took place because
the probability for the successful post-sclection is of the order of 3=%; for a
macroscopic number NN it is too small for any real chance to sec it happening.
However, given that the post-selection does happen, we are safe to claim
that the results (13.46) are correct, i.e., the measurements of pressure at the
intermediate time with very high probability have shown these results.

Indeed, the system of all particles at time ¢ (signified by index ¢} is de-
scribed by the two-state vector

11N i=

@HW'—*vIIJW+2h* I[ Yo 4 12)i + 13)4) (13.47)

Then, intermediate measurements yield, for each particle, probability 1 for
the the following outcomes of measurements:

P, =1,
Po=1, (13.48)
P +Py+Py=1,

where P is the projection operator on the state of the particle in box 1, etc.
Thus, from (13.48) and theorem (i) it follows:

(Pl)w =1 s
(Pa)w = 1, (13.49)
(P, +Pe+P3), =1.

Since for any variables, (X +Y),, = Xu,+ Y. we can deduce that (P3),, = —1.
Similarly, for the “number operators” such as Ay = ZZ-A;IPY), where PEL)
is the projection operator on the box 1 for a particle 4, we obtain:

(Afl)w =N y
(N2)w = N, (13.50)
(,/\/-3),“) =—-N.

In this rare situation the “weak measurcment” need not be very weak:
a usual measurement of pressurc is a weak measurement of the number op-
erator. Thus, the time-symimetrized formalism yields the surprising result
(13.46): the result of the pressure measurement in box 3 is negative! It equals
minus the pressure measured in the boxes 1 and 2.

Another example of a relation between strong and weak measurements is
Hardy’s paradox [21]. The analysis of strong measurcments appears in [18]
and the weak measurements are analyzed in detail in [25].

An application of the inverse theorem yiclds an alternative proof of the
results regarding strong measurements of spin components of a spin—% particle
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described by the generalized two-state vector (13.20). Indeed, the linearity
property of weak measurements yields a “geometrical picture” for weak values
of spin components of a spin—% particle. The operators o4, oy, and o, are a
complete set of spin operators and they yield a geometry in the familiar three-
dimensional space. Each generalized two-state vector of a spin—% particle
corresponds to a vector in this three-dimensional space with components
equal to the weak values of o, oy, and o,. We call it “weak vector”. The
weak value of a spin component in an arbitrary direction, then, is given by
the projection of the weak vector on this direction. If the weak vector is real
and its value larger than 1, then there is a cone of directions the projection
on which is equal 1. This yields an alternative proof that in some situations
there is a continuum of directions forming a cone in which the result of a
spin-component measurements are known with certainty, see 13.2.5.

13.3.5 Experimental Realizations of Weak Measurements

Realistic weak measurements (on an ensemble) involve preparation of a large
pre-selection ensemble, coupling to the measuring devices of each element of
the ensemble, post-selection measurement which, in all interesting cases, se-
lects only a small fraction of the original ensemble, selection of corresponding
measuring devices, and statistical analysis of their outcomes. In order to ob-
tain good precision, this selected ensemble of the measuring devices has to be
sufficiently large. Although there are significant technological developments
in “marking” particles running in an experiment, clearly the most effective
solution is that the particles themselves serve as measuring devices. The in-
formation about the measured variable is stored, after the weak measuring
interaction, in their other degree of freedom. In this case, the post-selection
of the required final state of the particles automatically yields the selection of
the corresponding measuring devices . The requirement for the post-selection
measurement is, then, that there is no coupling between the variable in which
the result of the weak measurement is stored and the post-selection device.

An example of such a case is the Stern-Gerlach experiment where the
shift in the momentum of a particle, translated into a spatial shift, yields
the outcome of the spin measurement. Post-selection measurement of a spin
component in a certain direction can be implemented by another (this time
strong) Stern-Gerlach coupling which splits the beam of the particles. The
beam corresponding to the desired value of the spin is then analyzed for
the result of the weak measurement. The requirement of non-disturbance of
the results of the weak measurement by post-selection can be fulfilled by
arranging the shifts due to the two Stern-Gerlach devices to be orthogonal
to each other. The details are spelled out in [6].

An analysis of a realistic experiment which can yield large weak value @Q,,
appears in [26]. Duck, Stevenson, and Sudarshan [27] proposed a slightly dif-
ferent optical realization which uses a birefringent plate instead of a prism. In
this case the measured information is stored directly in the spatial shift of the
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beam without being generated by the shift in the momentum. Ritchie, Story,
and Hulet adopted this scheme and performed the first successful experiment
measuring the weak value of the polarization operator {28]. Their results are
in very good agreement with theoretical predictions. They obtained weak
values which are very far from the range of the eigenvalues, (—1,1), their
highest reported result is Q,, = 100. The discrepancy between calculated
and observed wecak value was 1%. The RMS deviation from the mean of 16
trials was 4.7%. The width of the probability distribution was A = 1000 and
the number of pre- and post-selccted photons was N ~ 10%, so the theoretical
and experimental uncertainties were of the same order of magnitude. Their
other run, for which they showed experimental data on graphs (which fitted
very nicely theoretical graphs), has the following characteristics: @, = 31.6,
discrepancy with calculated value 4%, the RMS deviation 16%, A = 100,
N ~ 10°. Recently, another optical experiment has been successfully per-
formed [29].

There are many experiments measuring escape time of tunneling particles.
Tunneling is a pre- and post-selection experiment: a particle is pre-selected
inside the bounding potential and post-sclected outside. Recently, Steinberg
[30] suggested that many of these experiments are indced weak measurements.

13.4 The Quantum Time-Translation Machine

13.4.1 Introduction

To avoid possible misinterpretations due to the name “time machine,” let us
explain from the outset what our machine [7] can do and how it differs from
the familiar concept of “time machine.” Our device is not for time travel. All
that it can accomplish is to change the rate of time flow for a closed quantum
system. Classically, one can slow down the time flow of a system relative to
an external observer, for example, by fast travel. Our quantum time machine
is able to change the rate of time f{low of a systemn for a given period by
an arbitrary, even negative, factor. Therefore, our machine, contrary to any
classical device, is capable of moving the system to its “past.” In that case,
at the moment the machine completes its operation the system is in a state
in which it was some time before the beginning of the operation of the time
machine. Our machine can also move the system to the future, i.e., at the end
of the operation of the time machine the system is in a state corresponding
to some later time of the undisturbed evolution.

A central role in the operation of our time machine is played by a pe-
culiar mathematical identity which we discuss in Sect. 13.4.2. In order to
obtain different time evolutions of the system we use the gravitational time
dilation effect which is discussed in Sect. 13.4.3. In Sect. 13.4.4 we describe
the design and the operation of our time machine. The success of the oper-
ation of our time machine depends on obtaining a specific outcome in the
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post-selection quantum measurement. The probability of the successful post-
selection measurement is analyzed in Sect. 13.4.5. The concluding discussion

of the limitations and the advantages of our time machine appear in Sect.
13.4.6.

13.4.2 A Peculiar Mathematical Identity

The peculiar interference effect of weak measurements (13.45), that a partic-
ular superposition of identical Gaussians shifted by small values yields the
Gaussian shifted by a large value occurs not just for Gaussians, but for a
large class of functions. Consider now that the system is described by such a
wave function and the shifts are due to the time evolutions for various peri-
ods of time. Then, this effect can be a basis of a (gedanken) time-machine. A
specific superposition of time evolutions for short periods of time dt,, yields
a time evolution for a large period of time At

N
> anlU(6tn) ) ~ U(AL)| @) . (13.51)

n=0

This approximate equality holds (with the same 4t,, and At) for a large class
of states [¥) of the quantum system, and in some cases even for all states of
the system.

In order to obtain different time evolutions U (8t,,) we use the gravitational
time dilation effect. For finding the appropriate 6t, and o, we will rely on
the identity (13.45) for a particular weak measurement. We choose

NI

Cn=n/N, anZWﬂ

-, (13.52)
where n = 0, 1,..., N. Note, that the coefficients «,, are terms in the binomial
expansion of [n+(1—n)]" and, in particular, Zi\;o o, = 1. The corresponding
“weak value” in this case is 77 and for a large class of functions (the functions

with Fourier transform bounded by an exponential) we have an approximate
equality

N
D anflt—cn)~ flt—m). (13.53)
n=0

The proof can be found in Ref. [31]. Here we only demonstrate it on a nu-
merical example, Fig. 5. Even for a relatively small number of terms in the
sum (14 in our example), the method works remarkably well. The shifts from
0 to 1 yield the shift by 10. The distortion of the shifted function is not very
large. By increasing the number of terms in the sum the distortion of the
shifted function can be made arbitrarily small.
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Fig. 18.5. Demonstration of an approximate equality given by (13.53). The sum
of a function shifted by the 14 values ¢, between 0 and 1 and multiplied by the
coefficients an (cn and a, are given by (13.52) with N = 13, n = 10) yields
approximately the same function shifted by the value 10. The dotted line shows
f(t); the dashed line showsf(t — 10), the RHS of (13.53); and the solid line shows
the sum, the LHS of (13.53).

13.4.3 Classical Time Machines

A well-known example of a time machine is a rocket which takes a system
to a fast journey. If the rocket is moving with velocity V and the duration
of the journey (in the laboratory frame) is T, then we obtain the time shift
(relative to the situation without the fast journey):

§t="T <1 —4/1- —> . (13.54)

For typical laboratory velocities this effect is rather small, but it has been ob-
served experimentally in precision measurements in satellites and, of course,
the effect is observed on decaying particles in accelerators. In such a “time
machine,” however, the system necessarily experiences external force, and we
consider this a conceptual disadvantage.

In our time machine we use, instead of the time dilation of special relativ-
ity, the gravitational time dilation. The relation between the proper time of
the system placed in a gravitational potential ¢ and the time of the external
observer { ¢ = 0) is given by dr = dt/1 + 2¢/c?. We produce the gravita-
tional potential by surrounding our system with a spherical shell of mass M
and radius R. The gravitational potential inside the shell is ¢ = —GM/R.
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Therefore, the time shift due to the massive shell surrounding our system, i.e.,
the difference between the time period T' of the external observer at a large
distance from the shell and the period of the time evolution of the system
(the proper time), is

2GM
ot =T (1— 1— W) . (13.55)
This effect, for any man-made massive shell, is too small to be observed by
today’s instruments. However, the conceptual advantage of this method is
that we do not “touch” our system. Even the gravitational field due to the
massive spherical shell vanishes inside the shell.

The classical time machine can only slow down the time evolution of the
system. For any reasonable mass and radius of the shell the change of the rate
of the time flow is extremely small. In the next section we shall describe our
quantum time machine which amplifies the effect of the classical gravitational
time machine (for a spherical shell of the same mass), and makes it possible
to speed up the time flow for an evolution of a system, as well as to change
its direction.

13.4.4 Quantum Gravitational Time Machine

In our machine we use the gravitational time dilation and a quantum interfer-
ence phenomenon which, due to the peculiar mathematical property discussed
in Sect. 13.4.2, amplifies the time translation. We produce the superposition
of states shifted in time by small values 6t,, (due to spherical shells of differ-
ent radii) given by the left-hand side of (13.51). Thus, we obtain a time shift
by a possibly large, positive or negative, time interval At.

The wave function of a quantum system ¥(q, ), considered as a function
of time, usually has a Fourier transform which decreases rapidly for large
frequencies. Therefore, the sum of the wave functions shifted by small periods
of time dt,, = étc,,, and multiplied by the coefficients «,,, with ¢,, and a, given
by (13.52), is approximately equal to the wave function shifted by the large
time At = §tn. Since the equality (13.53) is correct with the same coefficients
for all functions with rapidly decreasing Fourier transforms, we obtain for
each ¢, and therefore for the whole wave function,

N
> 0nW(q,t — 5tn) = W(q,t — At) . (13.56)
=0

Thus, a device which changes the state of the system from ¥(q,t) to the state
given by the left-hand side of (13.56) generates the time shift of At. Let us
now present a design for such a device and explain how it operates.

Our machine consists of the following parts: a massive spherical shell, a
mechanical device - “the mover” - with a quantum operating system, and
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a measuring device which can prepare and verify states of this quantum
operating system.

The massive shell of mass M surrounds our system and its radius R can
have any of the values Ry, Ry, ..., Ry. Initially, R = Ry.

The mover changes the radius of the spherical shell at time ¢ = 0, waits
for an (external) time T, and then moves it back to its original state, i.e., to
the radius Ry.

The quantum operating system (QOS) of the mover controls the radius to
which the shell is moved for the period of time 7". The Hamiltonian of the
QOS has N + 1 non-degenerate eigenstates [n), n == 0,1,..., N. If the state of
the QOS is |n), then the mover changes the radius of the shell to the value
R,.

The measuring device preselects and post-selects the state of the QOS. Tt
prepares the QOS before the time ¢ = 0 in the initial state

N
Win)gos =N anln) (13.57)

n=0
with the normalization factor

Ne— (13.58)

~ .
\/ Zn:O |a’ﬂ'2

After the mover completes its operation, i.e., after the time ¢t = T', we
perform another measurement on the QOS. One of the non-degenerate eigen-
states of this measurement is the specific “final state”

1 N
|¥s)qos = \/_N:H;W . (13.59)

Our machine works only if the post-selection measurement yields the state
(13.59). Unfortunately, this is a very rare event. We shall discuss the proba-
bility of obtaining the appropriate outcome in the next section.

Assume that the post-selection measurement is successful, i.e., that we do
obtain the final state (13.59). We will next show that in this case, assuming
an appropriate choice of the radii R,, our “time machine” shifts the wave
function of the system by the time interval At. The time shift is defined
relative to the situation in which the machine has not operated, i.e., the
radius of the shell was not changed from the initial value Ry. In order to
obtain the desired time shift At = §tn we chose the radii R, such that

sty =00 _p <\/1 M QGM> . (13.60)

N 2Ry 2R,

The maximal time shift in the different terms of the superposition (the left-
hand side of (13.51)) is dty = Jt. The parameter 7 is the measure of the
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“quantum amplification” relative to the maximal (classical) time shift §z. If
the radius Ry of the shell is large cnough that the time dilation due to the
shell in its initial configuration can be neglected, (13.60) simplifies to

<5t,L:T<1— 1 QGM> . (13.61)

c*R,,

Let us assume then that we have arranged the radii according to Eq.
(13.61) and we have prepared the quantum operating system of the mover in
the state (13.57). Then, just prior to the operation of the time machine the
overall state is the direct product of the corresponding statcs of the system,
the shell, and the mover,

1\7
N (g,0))|Ro) > anln) (13.62)

7t=0

where |Rg) signifies that the shell, together with the mechanical part of the
mover, is at the radius Rg. Although these are clearly macroscopic bodies.
we assume that we can treat them quantum-mechanically. We also make an
idealized assumption that these bodies do not interact with the environment,
i.c.. no element of the environment becomes correlated to the radius of the
shell.

Once the mover has operated, changing the radius of the spherical shell,
the overall state becomes

N
N&(g,0) Y anlRy)|n) - (13.63)

For different radii R,,, we have different gravitational potentials inside the
shell and, therefore, different relations between the flow of the proper time of
the system and the flow of the external timne. Thus, after the external time T’
has elapsed, just before the mover takes the radii R, back to the value Ry,
the overall state is

N
N anl¥(q, T — 6t,)) | Rn)ln) . (13.64)

n=0

Note that now the system, the shell, and the QOS are correlated: the system
is not in a pure quantum state. After the mover completes its operation, the
overall state becomes

N

N " en|(q, T ~ 6ta)) | Ro)in) (13.65)

n=0

There is still a correlation between the system and the QOS.
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The last stage is the post-selection measurement performed on the QOS.
It puts the QOS and, consequently, our quantum system, in a pure state.
After the successful post-selection measurement, the overall state is

1\'
<nz;;an‘!p(q7T—(5tn)>> [Ro) <\/WZI ) (13.66)

We have shown that the wave function of the quantum system ¥ (g, t) is
changed by the operation of the time machine into Zﬁ[:o on|¥(q, T —6t,). Up
to the precision of the approximate equality (13.53) (which can be arbitrarily
improved by increasing the number of terms /V in the sum), this wave function
is indeed |¥ (g, T — At))! Note that for At > T, the state of the system at the
moment the time machine has completed its operation is the state in which

the system was before the beginning of the operation of the time machine.

13.4.5 The Probability of the Success
of the Quantum Time Machine

The main conceptual weakness of our time machine is that usually it does
not work. Successful post-selection measurements corresponding to large time
shifts are extremely rare. Let us estimate the probability of the successful
post-selection measurement in our example. The probability is given by the
square of the norm of the vector obtained by projecting the state (13.66) on
the subspace defined by state (13.59) of the QOS:

N & ,
\/N:H(; (g, T — 6t,))| Ro)l[% . (13.67)

In order to obtain a time shift without significant distortion, the wave
functions shifted by diffcrent times d¢,, have to be such that the scalar prod-
ucts between them can be approximated by 1. Taking then the explicit form
of av,, from (13.52), we evaluate the probability (13.67), obtaining

Prob =]

N? ‘
Prob o~ N (13.68)
The normalization factor A given by (13.58) decrcases very rapidly for large
N. Even if we use a more efficient choice of the initial and the final states of
the QOS (sce Ref. [3]) for the amplification, > 1, the probability decreases
with N as 1/(2n — 1)V,

The small probability of the successful operation of our time machine is,
in fact, unavoidable. At the time just before the post-selection measurement,
the system is in a mixture of states correlated to the orthogonal states of the
QOS [see (13.65)]. The probability of finding the system at that time in the
state |W(q, T — At)), for At which differs significantly from the time periods
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6ty is usually extremely small. This is the probability to find the system,
by a measurement performed “now,” in the state in which it was supposed
to be at some other time. For any real situation this probability is tiny but
not equal precisely to zero, since all systems with bounded energies have
wave functions with non-vanishing tails. The successful operation of our time
machine is a particular way of “finding” the state of the quantum system
shifted by the period of time A = nd. Therefore, the probability for success
cannot be larger than the probability of finding the shifted wave function by
direct measurement.

One can wonder what has been achieved by all this rather complicated
procedure if we can obtain the wave function of the system shifted by the
time period At simply by performing a quantum verification measurement
at the time T of the state |¥(q, T — At)). There is a very small chance for
the success of this verification measurement, but using our procedure the
chance is even smaller. What our machine can do, and we are not aware of
any other method which can achieve this, is to shift the wave function in
time without knowing the wave function. If we obtain the desired result of
the post-selection measurement (the post-selection measurement performed
on the measuring device), we know that the wave function of the system,
whatever it is, is shifted by the time At. Not only is the knowledge of the wave
function of the system inessential for our method, but even the very nature
of the physical system whose wave function is shifted by our time machine
need not be known. The only requirement is that the energy distribution of
the system decreases rapidly enough. If the expectation value of the energy
can be estimated, then we can improve dramatically the probability of the
success of our procedure. The level of difficulty of the time shift without
distortion depends on the magnitude of the energy dispersion AE and not
on the expectation value of energy (F). For quantitative analysis of this
requirement see [31].

The operation of our time machine can be considered as a superposition
of time evolutions [7] for different periods of time 6t,,. This name is especially
appropriate if the Hamiltonian of the system is bounded, since in this case
the approximate equality (13.51) is correct for all states |&).

13.4.6 Time Translation to the Past and to the Future

Let us spell out again what our machine does. Assume that the time evolution
of the state of the system is given by |¥(t)). By this we mean that this is
the evolution before the operation of the time machine and this is also the
evolution later, provided we do not operate the time machine. The state
|&(t)) describes the actual past states of the system and the counterfactual
future states of the system, i.e., the states which will be in the case we do not
disturb the evolution of the system by the operation of our time machine.
Define “now,” t = 0, to be the time at which we begin the operation of
the time machine. The time interval of the operation of the time machine
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is T. Moving the system to the past means moving it to the state in which
the system actually was at some time ¢ < 0. Moving the system to the
future means moving it to the state in which it would have wound up after
undisturbed evolution at some future time ¢ > T. Evidently, the classical
time machine does neither of these, since all it can achieve is that at time T
the system is in the state corresponding to the time ¢, 0 < ¢ < T.

When we speed up or slow down the rate of the time evolution, the system
passes through all states of its undisturbed evolution only once. More bizarre
is the situation when we reverse the direction of the time flow, thus ending up,
after completing the operation of the time machine, in the state in which the
system was before £ = 0. In this case the system passes three times through
some states during its evolution.

For our time machine to operate properly, it is essential that the system
is isolated from the external world. In the case of the time translation to
the state of the past, the system has to be isolated not only during the time
of the operation of the time machine, but also during the whole period of
intended time translation. If the system is to be moved to the state in which
it was at the time ¢, £ < 0, then it has to be isolated from the time ¢ until the
end of operation of the time machine. This seems to be a limitation of our
time machine. It leads, however, to an interesting possibility. We can send a
system to its counterfactual past, i.e., to the past in which it was supposed
to be if it were isolated (or if it were in any environment chosen by us).

Consider an excited atom which we isolate in the vacuum at time ¢ = 0
inside our time machine. And assume that our time machine made a successful
time translation to a negative time ¢, such that || is larger than the lifetime
of the excited atomic state. Since the atom, now, is not in the environment
it was in the past, we do not move the atom to its actual state in the past.
Instead, we move the atom to the state of its counterfactual past. By this
we mean the state of the isolated atom which, under its normal evolution in
the vacuum during the time period |t| winds up in the excited state. In fact,
this is the state of the atom together with an incoming radiation field. The
radiation field is exactly such that it will be absorbed by the atom. Although
our procedure is very complicated and only very rarely successful, still, it
is probably the easiest way to prepare the precise incoming electromagnetic
wave which excites a single atom with probability one.

13.4.7 Experimental Realization
of the Quantum Time-Translation Machine?!

Suter [32] has claimed to perform an experimental realization of the quantum
time-translation machine using a classical Mach-Zehnder interferometer. The
experimental setup of Suter, however, does not fall even close to the defini-
tion of the time machine. In his setup we know what is the system and what
is its initial state. What he shows is that if we send a single mode of a ra-
diation field through a birefringent retardation device which yields different
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retardations for two orthogonal polarizations, then placing the pre-selection
polarization filter and the post-sclection polarization filter will lead to a much
larger effect than can be achieved by pre-selection alone. Thus, it might seem
like speeding up the time cvolution, but this procedure fails all tests of uni-
versality. Different modes of radiation field speed up differently, an arbitrary
wave packet is usually distorted, and for other systems (other particles) the
device is not supposed to work at all.

Thus, the first basic requirement that the time machine has to work for
various systems is not fulfilled from the beginning. And it cannot be easily
modified sincc the “external” variable (which is supposed to be a part of
the time-machine) is the property of the system itself — the polarization of
the radiation field. The next necessary requirement, that it works for a large
class of the initial states of the systemn, cannot be fulfilled too. Indeed, he
considers a superposition of only two time evolutions. This superposition can
be identical to a longer evolution for a particular state, but not for a large
class of states. As it has been shown [7,31] a superposition of a large number
of time evolutions is necessary for this purpose.

Suter, together with R. Ernst and M. Ernst, performed in the past another
experiment which they called “An experimental realization of a quantum
time-translation machine” [33]. In this experiment a very different system
was uscd: the effect was demonstrated on the heteronuclear coupling between
two nuclear spins. But the experimental sctup was also applicable only to a
specific system and only for a certain state. Therefore, the same criticism
is applicable and, thercfore, one should not call it an implementation of the
time-translation machine.

Although the experiments of Suter are not implementations of the quan-
tum time machine, still, they are interesting as wesk measurements. The
experiment of Suter with a birefringent retardation device can be considered
as a weak measurement of a polarization operator. In fact, this is a variation
of the cxperiments which were proposed [26] and performed [28] previously.
The “weakness condition” of these two experiments follows from the localiza-
tion of the beam (which was sent through a narrow slit). The “weak” regimc
of the experiment of Suter is achieved by taking the retardation small. The
second experiment of Suter can be considered as the first weak measurement
of a nuclear spin component.

13.5 Time Symmetry

13.5.1 Time-Syminetric Aspects

In the TSVEFE the future and the past enter on equal footing: there are systems
described solely by forward evolving quantum states (13.1), there arc other
cascs in which the systemns are described solely by backward evolving state
(13.6). In more basic descriptions (which nced not be changed later, when
results of some new measurements will be obtained), the two-state vector
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(13.2) and generalized two-state vector (13.7) the backward-evolving states
enter on equal footing with the forward-evolving states. Note that the asym-
metry in the procedure for obtaining the state (13.7) is not essential: we can
start preparing 1/v/N 3, |$;)]i) instead.

We will analyze now the symmetry under the interchange (2| |&)«(¥| |$).
This will be considered as a symmetry under reversal of the direction of
the arrow of time. It is important to note that in general this interchange
is not equivalent to the interchange of the measurements creating the two-
state vector A = a and B = b. An example showing the non-equivalence
can be found in [34]. However, in order to simplify the discussion, we will
assume that the free Hamiltonian is zero, and therefore |¥) = |A = a) and
(@] = (B =1b|. In this case, of course, the reversal of time arrow is identical
to the interchange of the measurements at ¢; and ¢5. If the free Hamiltonian
is not zero, then an appropriate modification should be made [35].

The ABL rule for the probabilities of the outcomes of ideal measurements
(13.9) is also explicitly time-symmetric: first, both (@] and |¥) enter the
equation on equal footing. Second, the probability (13.9) is unchanged under
the interchange (®| |¥) « (U] ).

The ABL rule for a quantum system described by a generalized two-
state vector (13.7) is time-symmetric as well: (@;| and |¥;) enter the equa-
tion on equal footing. The manifestation of the symmetry of this formula
under the reversal of the arrow of time includes complex conjugation of
the coefficients. The probability (13.10) is unchanged under the interchange
2o ®i| W) & 30 0 (Tl @),

The outcomes of weak measurements, the weak values, are also symmetric
under the interchange (@] |¥) « (¥] |®) provided we perform complex con-
jugation of the weak value together with the interchange. This is similar to
complex conjugation of the Schréodinger wave function under the time rever-
sal. Thus, also for weak measurements there is the time reversal symmetry:
both (@] and |¥) enter the formula of the weak value on the same footing
and there is symmetry under the interchange of the pre- and post-selected
states. The time symmetry holds for weak values of generalized two-state
vectors (13.22): i.e., the interchange >, 0 (®;| &) < D, (¥, |D;) leads
to Cy & Cr.

13.5.2 The Time-Asymmetry

The symmetry is also suggested in using the language of “pre-selected” state
and “post-selected” state. In order to obtain the two-state vector (13.2) we
need to pre-select A = a at t; and post-select B = b at to. Both measurements
might not yield the desired outcomes, so we need several systems out of which
we pre- and post-select the one which is described by the two-state vector
(13.2). However, the symmetry is not complete and the language might be
somewhat misleading. It is true that we can only (post-)select B = b at to,
but we can prepare instead of pre-select A = a at t;. For preparation of |a) a
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single system is enough. If the measurement of A yields a different outcome
a’ we can perform a fast unitary operation which will change |4 = a’) to
|A = a) and then the time evolution to time ¢ will bring the system to the
state [¥). This procedure is impossible for creation of the backward evolving
state (@|. Indeed, if the outcome of the measurement of B does not yield b,
we cannot read it and then make an appropriate unitary operation before to
in order to get the state (@] at time ¢t. We need several systems to post-select
the desired result (unless by chance the first system has the desired outcome).
Although the formalism includes situations with descriptions by solely
forward evolving quantum state and by solely backward-evolving quantum
states, here also there is a conceptual difference. For obtaining backward
evolving state it was necessary to have a guarded ancilla in order to erase the
quantum state evolving from the past. Of course, there is no need for this
complication in obtaining forward-evolving quantum state. The difference is
due to fixed “memory” arrow of time: we know the past and we do not know
the future. This asymmetry is also connected to the concept of a measure-
ment. It is asymmetric because, by definition, we do not know the measured
value before the measurement and we do know it after the measurement.

13.5.3 If Measurements Are Time-Asymmetric, How Is It That
the Outcomes of Measurements Are Time-Symmetric?

Taking this asymmetry of the concept of measurement into account, how one
can understand the time symmetry of the formulae for the probability of
an intermediate measurements (13.9), (13.10) and for the formulae of weak
values (13.21), (13.22)?

This is because these formulae deal with the results of the measurements
which, in contrast with the concept of measurement itself, are free from the
time-asymmetry of a measurement. The results of measurements represent
the way the system affects other systems (in this case measuring devices) and
these effects, obviously, do not exhibit the time asymmetry of our memory.
The time asymmetry of measurement is due to the fact that the pointer vari-
able of the measuring device is showing “zero” mark before the measurement
and not after the measurement. But the result of the measurement is repre-
sented by the shift of the pointer position. (If originally the pointer showed
“zero” it is also represented by the final position of the pointer.) This shift is
independent of the initial position of the pointer and therefore it is not sensi-
tive to the time-asymmetry caused by asymmetrical fixing of the initial (and
not final) position of the pointer. The relations described in the formulae of
the two-state vector formalism are related to these shifts and, therefore, the
time-symmetry of the formulae follows from the underlying time symmetry of
the quantum theory. The shifts of the pointer variable in weak measurements
were considered as “weak-measurements elements of reality” [36] where “el-
ements of reality” were identified with “definite shifts”. This approach was
inspired by the EPR elements of reality which are definite outcomes of ideal
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measurements, i.e., definite shifts in ideal measurement procedures. The next
section discusses a controversy related to ideal measurements.

13.5.4 Counterfactual Interpretation of the ABL Rule

Several authors criticized the TSVF because of the alleged conflict between
counterfactual interpretations of the ABL rule and predictions of quantum
theory {37,15,38]. The form of all these inconsistency proofs is as follows: the
probability of an outcome C' = ¢, of a quantum measurement performed on
a pre-selected system, given correctly by (13.12), is considered. In order to
allow the analysis using the ABL formula, a measurement at a later time, %2,
with two possible outcomes, which we denote by “1” and “2¢”, is introduced.
The suggested application of the ABL rule is expressed in the formula for the
probability of the result C' = ¢,

Prob(C = ¢,) = Prob(1y) Prob(C = ¢, ; 1y) (13.69)
+ Prob(25) Prob(C = ¢, ;2¢),

where Prob(C = ¢, ;15) and Prob(C = ¢, ; 2) are the conditional probabil-
ities given by the ABL formula, (13.9), and Prob(1) and Prob(2¢) are the
probabilities of the results of the final measurement. In the proofs, the au-
thors show that Eq. (13.69) is not valid and conclude that the ABL formula
is not applicable to this example and therefore it is not applicable in general.

One us (LV) has argued [39,40,16] that the error in calculating equality
(13.69) does not arise from the conditional probabilities given by the ABL
formula, but from the calculation of the probabilities Prob(1s) and Prob(2y)
of the final measurement. In all three alleged proofs the probabilities Prob(1y)
and Prob(2) were calculated on the assumption that no measurement took
place at time t. Clearly, one cannot make this assumption here since then
the discussion about the probability of the result of the measurement at time
t is meaningless. Thus, it is not surprising that the value of the probability
Prob(C' = ¢,) obtained in this way comes out different from the value pre-
dicted by the quantum theory. Straightforward calculations show that the
formula (13.69) with the probabilities Prob(1) and Prob(2y) calculated on
the condition that the intermediate measurement has been performed leads
to the result predicted by the standard formalism of quantum theory.

The analysis of counterfactual statements considers both actual and coun-
terfactual worlds. The statement is considered to be true if it is true in coun-
terfactual worlds “closest” to the actual world. In the context of the ABL
formula, in the actual world the pre-selection and the post-selection has been
successfully performed, but the measurement of C has not (necessarily) been
performed. On the other hand, in counterfactual worlds the measurement of
C has been performed. The problem is to find counterfactual worlds “closest”
to the actual world in which the measurement of C has been performed. The
fallacy in all the inconsistency proofs is that their authors have considered
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counterfactual worlds in which C has not been measured. (Note, however,
that Kastner, in spite of replies by one of us {39,41] continues to advocate
this approach [42-45] most recently commenting on Mohrhoff [46].)

Even if we disregard this fallacy there is still a difficulty in defining the
“closest” worlds in the framework of the TSVF. In standard quantum theory
it is possible to use the most natural definition of the “closest” world. Since
the future is considered to be irrelevant for measurements at present time ¢,
only the period of time before ¢ is considered. Then the definition is:

(i) Closest counterfactual worlds are the worlds in which the sys-
tem is described by the same quantum state as in the actual world.

In the framework of the TSVF, however, this definition is not acceptable.
In the time-symmetric approach the period of time before and after ¢ is
considered. The measurement of C constrains the possible states immediately
after ¢t to the eigenstates of C. Therefore, if in the actual world the state
immediately after t is not an eigenstate of C, no counterfactual world with
the same state exists. Moreover, there is the same problem with the backward
evolving quantum state (the concept which does not exist in the standard
approach) in the period of time before ¢. This difficulty can be solved by
adopting the following definition of the closest world [40]:

(i) Closest counterfactual worlds are the worlds in which the re-
sults of all measurements performed on the system (except the mea-
surement at time t) are the same as in the actual world.

For the pre-selected only situation, this definition is equivalent to (i), but it is
also applicable to the symmetric pre- and post-selected situation. The defini-
tion allows to construct time-symmetric counterfactuals in spite of common
claims that such concept is inconsistent [47].

An important example of counterfactuals in quantum theory are “ele-
ments of reality” which are inspired by the EPR elements of reality. The
modification of the definition of elements of reality applicable to the frame-
work of the TSVF [18] is:

(iii) If we can infer with certainty that the result of measuring at
time ¢ of an observable C is ¢, then, at time ¢, there exists an element
of reality C' = c.

The word “infer” is neutral relative to past and future. The inference about
results at time t is based on the results of measurements on the system
performed both before and after time ¢t. Note that there are situations (e.g.,
the three-boxes example) in which we can “infer” some facts that cannot be
obtained by neither “prediction” based on the past results nor “retrodiction”
based on the future results separately.

The theorem (i) of Sect. 13.3.4 now can be formulated in a simple way:
if A = a is an element of reality then 4,, = a is the weak-measurement of
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reality. The thcorem (ii) of Sect. 13.3.4 can be formulated as follows. If A
is a dichotomic variable, a is an eigenvalue of A, and if A,, = a is a weak-
measurement element of reality, then A = a is an elcment of reality.

13.6 Protective Measurements

Several years ago we proposed a concept of protective measurements [48,49]
which provides an argument strengthening the consideration of a quantum
state as a “reality” of some kind. We have shown that “protected” quantum
states can be observed just on a single quantum system. On the other hand,
if a single quantum state is “the reality” how can “the two-statc vector” be
“the reality”?

13.6.1 Protective Measurement of a Single Quantum State

In order to mcasure the quantum state of single system one has to mecasure
expectation values of various obscrvables. In gencral, the weak (expectation)
value cannot be measured on a single systerm. However, it can be done if
the quantum state is protected [48,49]. The appropriate measurement inter-
action is again described the Hamiltonian (13.8), but instead of an impulsive
interaction the adiabatic limit of slow and weak interaction is considered:
g(t) = 1/T for most of the interaction time T and g(t) goes to zero gradually
before and after the period T

In this case the interaction Hamiltonian does not dominate the time evo-
lution during the measurement, moreover, it can be considered as a perturba-
tion. The frce Hamiltonian Hy dominates the evolution. In order to protect a
quantum state this Hamiltonian must have the state to be a non-degenerate
energy eigenstate. For g(t) smooth enough we then obtain an adiabatic pro-
cess in which the system cannot make a transition from onec energy eigenstate
to another, and, in the limit T — oo, the interaction Hamiltonian changes
the energy eigenstate by an infinitesimal amount. If the initial state of the
system is an eigenstate |E;) of Hy then for any given valuc of P, the en-
ergy of the eigenstate shifts by an infinitesimal amount given by the first
order perturbation theory: 0F = (F;|H;n|E;) = (E;|AIE)P/T. The corre-
sponding time evolution e~ F{ElAIE) ghifts the pointer by the expectation
value of A in the state | F;). Thus, the probability distribution of the pointer
variable, e~ (Q=a*/A% roniaing unchanged in its shape, and is shifted by the
expectation value (A); = (E;|A|E;).

If the initial state of the system is a superposition of several non-degenerate
energy eigenstates |¥;)=X«a;|E;), then a particular outcome (A),=(F;|A|F;)
appears at random, with the probability |a;|? [24]. (Subsequent adiabatic
measurements of the same observable A invariably yield the expectation value
in the same eigenstate |£;).)
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13.6.2 Protective Measurement of a Two-State Vector

At first sight, it seems that protection of a two-state vector is impossible. In-
deed, if we add a potential that makes one state a non-degenerate eigenstate,
then the other state, if it is different, cannot be an eigenstate too. (The states
of the two-state vector cannot be orthogonal.) But, nevertheless, protection
of the two-state vector is possible [50].

The procedure for protection of a two-state vector of a given system is
accomplished by coupling the system to another pre- and post-selected sys-
tem. The protection procedure takes advantage of the fact that weak values
might acquire complex values. Thus, the effective Hamiltonian of the protec-
tion might not be Hermitian. Non-Hermitian Hamiltonians act in different
ways on quantuin states evolving forward and backwards in time. This al-
lows siinultaneous protection of two different states (evolving in opposite time
directions).

Let us consider an example [50] of a two-state vector of a spin—% particle,
(TylIT2). The protection procedure uses an external pre- and post-selected
system S of a large spin N that is coupled to our spin via the interaction

Hpror = =S - 0. (13.70)

The external system is pre-sclected in the state |.S, = N) and post-selected in
the state (S, = N|, that is, it is described by the two-state vector
(Sy = N||Sz = N). The coupling constant A is chosen in such a way that the
interaction with our spin—% particle cannot chanlge significantly the two-state

vector of the protective system S, and the spin-5 particle “feels” the effective

Hamiltonian in which S is replaced by its weak value,

<Sy = jvl(sl)‘syasz”‘sw - N>

Sy = =(N,N,iN). 13.71
Thus, the effective protective Hamiltonian is
Heps = —AN(0z + 0y +i02) . (13.72)

The state [1,) is an eigenstates of this (non-Hermitian) Hamiltonian (with
eigenvalue —AN). For backward evolving states the effective Hamiltonian
is the hermitian conjugate of (13.72) and it has different (non-degenerate)
eigenstate with this eigenvalue; the eigenstate is (1,].

In order to prove that the Hamiltonian (13.70) indeed provides the pro-
tection, we have to show that the two-state vector (T,]]1z) will remain essen-
tially unchanged during the measurement. We consider a measurement which
is performed during the period of time, between pre- and post-selection which
we choose to be equal one. The Hamiltonian

H=-\S- -0+ Po¢ (13.73)
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can be replaced by the effective Hamiltonian
Heff=~/\N(O”z+O'y+iO'z>+PO”E . (13.74)

Indeed, the system with the spin S can be considered as N spin 1/2 particles
all pre-selected in |1,) state and post-selected in |1,) state. The strength of
the coupling to each spin 1/2 particle is A <« 1, therefore during the time
of the measurement their states cannot be changed significantly. Thus, the
forward evolving state |S;=N) and the backward evolving state (S,=N| do
not change significantly during the measuring process. The effective coupling
to such system is the coupling to its weak values.

Good precision of the measurement of the spin component requires large
uncertainty in P, but we can arrange the experiment in such a way that
P <« AN. Then the second term in the Hamiltonian 13.74 will not change
significantly the eigenvectors. The two-state vector (1, ||1T,) will remain es-
sentially unchanged during the measurement, and therefore the measuring

device on this single particle will yield (o¢), = (T(’Tl;'ﬁ”)l—)
ylle

The Hamiltonian {13.73), with an external system described by the two-
state vector (S, = N||S, = N), provides protection for the two-state vector
(tyl[T<)- It is not difficult to demonstrate that any two-state vector obtained
by pre- and post-selection of the spin—% particle can be protected by the
Hamiltonian (13.73). A general form of the two-state vector is {1g||T«) where
& and /3 denote some directions. It can be verified by a straightforward cal-
culation that the two-state vector (1s||To) is protected when the two-state
vector of the protective device is (S = N||S, = N).

At least formally we can generalize this method to make a protective
measurement of an arbitrary two-state vector (¥s| |W1> of an arbitrary system.
Let us decompose the post-selected state {¥) = a|¥1) + bj&, ). Now we can
define “model spin” states: |#;) = |f,) and |¥,) = |],). On the basis of
the two orthogonal states we can obtain all other “model spin” states. For
example, [1.) = 1/v2 (|1,) + [,)), and then we can define the “spin model”
operator . Now, the protection Hamiltonian, in complete analogy with the
spin—% particle case is

Hppor = —AS -5 . (13.75)

In order to protect the state (¥»||¥), the pre-selected state of the external
system has to be |S,=N) and the post-selected state has to be (S, =N| where
the direction ¥ is defined by the “spin model” representation of the state |¥s),

Ity) = [8) = (@) [F,) + (FL|B)| 1) (13.76)

However, this scheme usually leads to unphysical interaction and is good
only as a gedanken experiment in the framework of non-relativistic quantum
theory where we assume that any hermitian Hamiltonian is possible.
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13.7 The TSVF and the Many-Worlds Interpretation
of Quantum Theory

The TSVF fits very well into the many-worlds interpretation (MWI) [51},
the preferred interpretation of quantum theory of one of us (LV) [52]. The
counterfactual worlds corresponding to different outcomes of quanturn mea-
surements have in the MWI an especially clear meaning: these are subjec-
tively actual different worlds. In each world the observers of the quantum
measurement call their world the actual one, but, if they believe in the MWI
they have no paradoxes about ontology of the other worlds. The apparent
paradox that a weak value at a given time might change fromn an expec-
tation value to a weak value corresponding to a particular post-selection is
solved in a natural way: in a world with pre-selection only (before the post-
sclection) the weak value is the expectation value; then this world splits into
several worlds according to results of the post-selection measurement and in
each of these worlds the weak value will be that corresponding to the par-
ticular post-sclection. The time-symmetric concepts of “elements of reality”,
“weak-measurcments elements of rcality” are consistent and meaningful in
the context of a particular world. Otherwise, at time ¢, before the “future”
measurements have becn performed, the only meaningful concepts are the
concepts of the standard, time-asymmetric approach.

One of us (YA) is not ready to adopt the far reaching consequences of the
MWI. He proposes another solution. It takes the TSVE even more seriously
than it was presented in this paper. Even at present, before the “future” mea-
surements, the backward evolving quantum state (or its complex conjugate
evolving forward in time) exists! It exists in the same way as the quantum
state evolving from the past exists. This state corresponds to particular out-
comes of all measurements in the future. An element of arbitrariness: “Why
this particular outcome and not some other?” might discourage, but the al-
ternative (without the many-worlds) - the collapse of the quantum wave — is
clearly worse than that.
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