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The Aharanov-Casher effect is manifested in a (2+ 1)-dimensional model that screens the elec-
tromagnetic fields, in order to demonstrate that the effect is essentially nonlocal in its nature. The
question of nonlocality is discussed by means of a nonrelativistic model for a superconductor. It is
demonstrated that although the superconductor screens the electric field generated by an external
charge it does not screen the modular electric field which is a constant of motion of the system.
Consequently, a magnetic fluxon will accumulate the same phase as if the electric field were un-
screened and the Aharonov-Casher effect will exist even in a force-free region.

I. INTRODUCTION

The work of Aharonov and Casher! reveals a new as-
pect of the Aharonov-Bohm effect.> Aharonov and Cash-
er suggest that a neutral particle with a magnetic moment
p may exhibit a topological force-free interference effect,
as a result of an interaction with a charged wire.> Conse-
quently, the Aharonov-Bohm effect admits a duality,
meaning that we can reverse the roles of the charged par-
ticle and the solenoid in the Aharonov-Bohm effect and
still get a force-free interference effect.

Let us consider the duality in 2+ 1 dimensions more
explicitly. Both effects are related to a two-particle sys-
tem consisting of one particle with a charge g and loca-
tion r, and a second particle with a magnetic moment u
and location R. In the nonrelativistic limit when
F/c :1 § /¢ << 1 the corresponding two-particle Lagrang-
ian is"

L=1mi>+1MR 2+%A(r—R)-i‘

+fci><1-:(R—r)~R, (1.1
where A(r—R) is the vector potential generated by the
magnetic moment at the location of the charged particle,
and E(R —r) is the electric field generated by the charged
particle at the location of the magnetic moment.

The duality is manifested by the numerical equality of
the interaction terms

g A(r—R)=E(R—r1)Xpu . (1.2)
As a result of the equality, two observers O’ and 0", situ-
ated at the rest frame of the magnetic moment and the
rest frame of the charge, respectively, will calculate the
same phase accumulated as a result of relative motion of
the particles, but may interpret the nature of the interac-
tion in a completely different way. While observer O’ re-
lates the phase (Q'/#c) [ A-dl to the interaction of the
charged particle with the vector potential generated by
the magnetic moment, observed O'’ will relate the phase
(1/%ic )fEX[t dl to the interaction of the magnetic mo-
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ment with a “vector potential” EXpu generated by a
charged stationary particle. Hence, according to ob-
server O’, the system accumulates phase as a result of a
force-free interaction of the Aharonov-Bohm type which
will be interpreted as a nonlocal effect; while, according
to observer O, although the interaction EXpu does not
generate a dynamical force (there is however a nonvan-
ishing hidden momentum, see Ref. 4) on the magnetic
moment, the accumulated phase can be interpreted as a
result of a local interaction with a nonvanishing electric
field.

According to the Galilean invariance of the interac-
tion, both approaches are permitted and indeed give the
same result. However, the resulting interpretations are
not compatible. This suggests two possibilities: either
the Aharonov-Bohm effect resulting from the interaction
term g A(r—R) is a result of a local interaction, or the
interaction term E Xy, although it appears as a local in-
teraction, also represents a nonlocal interaction and, con-
sequently, the Aharonov-Casher effect must be interpret-
ed as a nonlocal force-free effect* (here and in the follow-
ing the term force-free is related to the situation where all
the classical field strengths vanish).

The purpose of this work is to show that the second
possibility is the correct one. We demonstrate that in
2+1 dimensions it is possible to arrange both the
charged particle and the magnetic moment to be in
force-free regions, and yet get the usual phase shift and
interference as if the electric field were unscreened. Con-
sequently, we conclude that the concept of duality does
not contradict the nonlocality of the Aharonov-Bohm
effect and that its dual Aharonov-Casher effect is also
essentially nonlocal in its nature.’

The plan of this paper is as follows. In Sec. II the
effect is discussed in the context of a superconductor. We
realize that in order to understand how the effect occurs
in a force-free region we must examine the quantum be-
havior of the superconductor. The effective Hamiltonian
will be derived in Sec. III. In Sec. IV we discuss the
correct limit for the model to be a faithful description of
a superconductor and find in this limit the ground state
of the system. Section V will present the modular vari-
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ables, and discuss their importance. In Sec. VI the mag-
netic fluxons will be included and demonstrated to accu-
mulate the correct phase.

II. THE EFFECT IN THE PRESENCE
OF A SUPERCONDUCTOR

It is well known that a superconductor screens all the
electromagnetic fields exponentially; hence it is suitable
as a force-free medium. A type-2 superconductor may
support quantized localized magnetic fluxons with a flux
®=hc /q which pertains to the medium’s unit charge
g =2e (the Cooper pair). If we introduce into the super-
conductor an external particle with charge @', that
moves along a path enclosing a fluxon, it will accumulate
the Aharonov-Bohm phase (Q’/#ic) f A-dl, where A4 is

the vector potential generated by the fluxon,

_ZXr

— +0 (—Irh/a .
RE (e )

g Alr) @.1)

Here r is a two-dimensional vector, z is a unit vector per-
pendicular to the x-y plane, and A is the penetration
depth. The phase will be nontrivial only for Q' which is
unquantized with respect to g, Q’'modq+0.

It is possible to realize also the Aharonov-Casher effect
by changing the roles of the charge and fluxon? On first
observation it appears that the answer should be nega-
tive. The electric field generated by the external charge is
screened; hence, the fluxon interacts locally with a field
strength of exp(—r/A), which cannot lead to the correct
result. Nevertheless, there is the possibility that some
part of the electric field still penetrates the superconduc-
tor, does not generate any dynamical force, but still is
sufficient to cause the fluxon to accumulate the correct
phase. Such a delicate effect cannot occur in a classical
system, but is possible in a quantum system.

In order to understand the mechanism that makes the
effect possible, we must include the quantum behavior of
the shielder. This will be done in the following by means
of a simple model for a superconductor in 2+ 1 dimen-
sions (Fig. 1). Let us imagine a spherical superconductor
with an external radius R,; (and the corresponding

boundary S,). Insert the external charge Q' into a hole

of radius R, (with a corresponding inner surface S,) in
the center of the superconductor. We assume that
R, <<R . In the following section we shall rely on the
following assumptions and simplifications.

(1) The electric field inside the superconductor for
R, <<r <<R,; depends on the induced charge (Cooper
pairs) near the inner surface S,, through the Gauss law.
We shall neglect any dependence on local fluctuations in-
side the superconductor. This can be justified by noticing
that time averaging over a short time (relative to the time
scale of the interference effect) leads to a cancellation of
the local fluctuations. Hence, it will be sufficient for our
purpose to formulate the quantum behavior of the in-
duced charge.

(2) The origin of the nonlocal behavior is related to the
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FIG. 1. Schematic description of the Aharonov-Casher effect
in the presence of a superconductor.

fluctuation of the induced charge Q on S,. A change in
Q corresponds to a ‘“jump” of a unit charge g from S, to
S, and vice versa. This can be described as a collective
radial fluctuation of the “macroscopic wave function” of
the superconductor.®

III. THE EFFECTIVE HAMILTONIAN

The first step is to establish the effective Hamiltonian
and the corresponding Hilbert space. At first the contri-
bution of the fluxon is neglected. To this end, let us ex-
amine the energy dependence of the superconductor on
the induced surface charge, E=E(Q). This function
must have a minimum at the value Q = —Q’, where Q' is
the external charge. Hence, it is most likely to be of the
form

L

E=
2C

(Q +Q')*+other contributions . (3.1)

The superconductor can be described as a spherical capa-
citor, where the inner and outer surfaces S, and S, play
the role of the capacitor plates. The constant C plays the
role of “capacitance” and is expected to depend on the
geometry of the superconductor, C=C(R,R,).

Let g be the charge of a Cooper pair (g =2e), and let n
be the number of Cooper pairs near S, (n is negative for
Cooper holes). Using these definitions, we can write the
energy related to the induced charge Q in the form

— (ng+Q')?

E 2C

(3.2)

Proceeding to a quantized theory we define first the
corresponding Hilbert space. The most natural choice is
to use the states |n ), which correspond to n Cooper pairs
on the surface S,. By Eq. (3.2) the matrix element of the
Hamiltonian is given by

(,,|1](|n)=_(£1+_Q'_)2

2C (3.3a)
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and also

(n|H|n")=0 (3.3b)

for n#n’. This is not satisfactory since we expect to get
fluctuations in # and therefore a nonvanishing ‘‘tunnel-
ing” amplitude. Hence, define the nondiagonal matrix
element as

A A
(n’IH|n)=78n,n,+1+—i—8n+l,n. s (3.4)

where we have included only the first-order ‘“‘tunneling”
effect, and neglected higher orders. The coefficient A4 is
unknown, but as we shall see, knowledge of its numerical
value is unnecessary for our needs.

The Schrodinger equation in the energy representation
is

H|E)=E|E) . (3.5)

Multiplying from the left by the vector {n/|, and substi-
tuting to the right of H the unity operator 3 |n ){n’|, we
reach

S{n|H|n'){(n'|EY=E(n|E) . (3.6)

Define now the wave function u, as u, ={n|E), i.e., the
amplitude of the superconductor to have energy E and n
Cooper pairs on the inner surface. Then the Schrodinger
equation for the wave function reads

L0 1
i EY ZEE(nq +Q')2un~—§—
The last term on the right is of special significance since
it represents the nonlocal jumps that were suggested in
the previous section. Consequently, the stationary state
of the superconductor will be an infinite superposition of
the wave functions u, and hence represents a state with
an undefined induced charge.

In order to get a representation which diagonalizes the
Hamiltonian, it is necessary to transform from the u, to
another basis. This can be done by the transformation

(U g+, ) . (3.7)

— 1 T —itn+a)8
(1= == J e U6,1)de , (3.82)
UO,1)=—L= 3 eitn ey (1), (3.8b)

where a is an arbitrary constant, and 6 takes the value
6E(— o0, + o). By definition U(0) is a periodic func-
tion up to a phase

U(9+2m)=e?™2U(0h) . (3.9)

If we choose the normalization of the wave function u,, to
be

Slu,(0)]*=1, (3.10a)
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E(Q)=E(Q'+q) or E=f
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we get, for the normalization of U(,t),

[ Tut6,0U6,1)d0=1. (3.10b)
Substituting Eq. (3.8) into (3.7), and using the periodicity
of the wave functions U(6,t), gives the Schrodinger equa-
tion in the 6 representation:

2

au(6,t) _ 1

i
Y 2C

) ,
Tighy TaqtQ J

— AcosO | U(O,t) . (3.11)

Define charge and number operators:

ﬁz—iaa—e , (3.12a)
Q=—iq£ ) (3.12b)

The operator Q is the canonical conjugate momentum of
0. The physical meaning of Q becomes clear if we calcu-
late its expectation value

(0)=ga+q3Snlu,l*. (3.13)

Clearly, Q represents the induced charge on S, plus a
constant charge. If we choose the constant a to take the
value a=Q'/q, the operator represents the total charge
Q; =Qinduced T Qexternal» and the Hamiltonian takes its
simplest form

Heff:?lEQl—A cosf . (3.14)

The last specific representation (“gauge’’) of the Hamil-
tonian emphasizes the role of the external charge in the
model. The external charge does not appear in the classi-
cal equations of motion as is evident from Eq. (3.14) (or
by constructing the effective Lagrangian and noticing
that the effect of Q' for any a is to introduce a total time
derivative d 0/dt which does not change the equations of
motion). Its only effect is to change the structure of the
state of the system. From Eq. (3.9) we see that in this
“gauge” the external charge determines the phase of
the wave function resulting from the transformation
60— 6+2.

However, in the following we choose to use the value
a=0 for which there is a clear distinction between the in-
duced fluctuating superconductor’s charge and the exter-
nal charge. Hence, for the rest of the paper Q, =Q +Q'".

Another consequence of the nature of the eigenfunc-
tion and of the symmetry of the Hamiltonian under
6— 6+ 21 is that the energy must be a periodic function

of Q":
27 Q’

cos (3.15)

This means that energetically the superconductor does
not distinguish between Q' and Q'+gq. Consequently,
since the external electric field is screened, the most the
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fluxon can sense is some modular function cos(27Q’/q).
We shall see that indeed this is the case.

IV. THE GROUND STATE

The operators O and 6 satisfy the usual canonical com-
mutation relation

[0,01=—ig .1)
and therefore obey an uncertainty relation
ABAQ =~ ¢q (4.2)

The last relation is analogous to the phase-charge uncer-
tainty in the BCS model. According to this theory, the
wave function is the ground state of the system and obeys
the relations A8—0, and AQ >>q. Hence, we shall re-
quire the ground state of the effective Hamiltonian to
satisfy the same relations.

The ground state of the effective Hamiltonian can be
constructed easily as a linear combination of localized
wave functions at all the minima of the potential. First,
construct a ground-state wave function u,(6) in the well
around 8=0. The Hamiltonian can be approximated as a
harmonic oscillator

Hoo=55(0+0" 7+ 4.3)
and the solution is well known to be

uy(9)=e 1924 (9) , (4.4a)
where

ho(6)= l/;?—_é 1Me‘(‘/Fﬂfﬂf’z. (4.4b)

Second, construct a superposition of the unperturbed
wave functions at the separate wells

U(6)=, ug(0—27N)

i(0—27NIQ'/ap (0 —27N ) . 4.5)

The solution is periodic in 6, in agreement with Eq. (3.9).
Using this result we find for the uncertainties of the
canonical variables

(AB)?= 5 \/jc , (4.6a)
(AQ)Y=1gVAC . (4.6b)

Hence, taking the limit V' AC >>gq leads to the required
conditions A6—0 and AQ >>g¢.

V. MODULAR VARIABLES

Having derived the wave function of the system, we
can now examine the behavior of the total charge
Q, = Qinduced T Pexternal- FOr the expectation value of
(Q,)" we find
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(0= "TuO*@+0")U0)d6
-

- f +’)Th

—mT
Notice that only the part that is localized at the well
around 0=0 contributes to the integral. The contribu-
tion of the other parts can be neglected since according to
(4.6) the spread A6—0. Consequently, the expectation
value of the total charge is independent of the external
charge Q' (odd moments of Q, vanish). Applying the
Gauss law in two spatial dimensions we obtain the fol-

lowing operator equality for the radial electric field inside
the superconductor:

A 1
E=
2mr

o(8)*0 "h(6)d6 . (5.1

Q,=—1—(Q+Q') (5.2)
where 7 is a ¢ number. Since the last result for (Q,) ap-
plies also for the expectation value of E, we conclude that
in the superconductor (for R, <<r <<R,) the field
strength vanishes. Hence the interior of the supercon-
ductor can be regarded as a force-free region.

The expectation value of any moment of Q, is by the
right-hand side of Eq. (5.1 mdependent of Q'. Can we
construct a function of Q, that is sensitive to the external
charge? The ground state, in the required limit of
V' AC >>gq, is a superposition of orthogonal functions lo-
calized at 6=2wN. The dependence on the external
charge Q' appears only in the relative phase of these
functions. Hence, only functions with a nonvanishing
matrix element between u,(6) and uy(6+27) can have
an expectation value which depends on Q’. Any finite
polynomial will not do. Therefore, we are led to consider
a function of the form ezm(Q’ /q), which is a unitary shift-
ing operator of u(6) to u(6+2w). For this function

ezm'(Ql /q)U(e):ezm'Q'/qU(e) .

27i(Q, /q)

(5.3)

The operator e will be referred to as the modu-
lar operator’ of Q,. The corresponding expectation value
will be Q' dependent:

27i(Q ) Q'
(e (Q,/q >=e2mQ /q X (54)

The operator Q, (or E), or any moment of Q,, is not a
constant of motion since it does not commute with the
Hamiltonian. Nevertheless, the modular operator of Q,
satisfies’

[e
and hence

2mi(Q, /q)
[e "

27i(Q, /q)

,e'?1=0 (5.5)

H]1=0. (5.6)

The modular operator e PO s a _constant of motion.
Moreover, from Eq. (5.3) we have O modg =0. This is
not surprising since it means that the total induced
charge is quantized with respect to the charge of a Coop-
er pair, and by Eq. (5.6) this quantization is constant in
time. Consequently, although the induced charge screens
the external charge ((Q,)=0) it cannot screen the
modular charge (Q'modg) and the result is a nontrivial
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phase for the expectation value of the modular operator
in Eq. (5.4).

Similarly, define a quantum of electric field (a ¢ num-
ber) and a modular electric modular field operator as

27i(E /ey)
e0=—q— and e o

(5.7)
respectively, where e, pertains to the field generated by a
single particle of the medium. We obtain

(ezm(ﬁ/eo)>: <e21ri(Ql/q)>
:eiZ‘n-Q'/q

zel(l/cﬁ)fEXudl - (5.8)

Notice that the expectation value of the modular elec-
tric field on the left-hand side is equal numerically to the
phase shift in the unscreened Aharonov-Casher effect on
the right-hand side. The modular electric field will not
vanish if and only if Q' is unquantized, Q'modq+0,
which is the same condition for which Q’ displays the
Aharonov-Bohm effect. This transparency of the super-
conductor to the modular electric field is exactly the
property that enables the fluxon to accumulate the
correct phase, since as we shall see in the following sec-
tion the solution for the Shrodinger equation that in-
cludes the contribution of the fluxon involves a phase
which is proportional to the modular electric field.

VI. THE INTERACTION OF THE FLUXON

Finally we would like to demonstrate that the fluxon
accumulates the usual phase although its motion is en-
tirely confined to a force-free region R, <<r <<R; (Fig.
1).

In order to include the contribution of the fluxon to the
effective Hamiltonian we shall assume that the fluxon has
an effective mass M and momentum P. Then, the in-
teraction with the electric field is given by the replace-
ment'

P—»P‘i"%EX[.L . (6.1)
Since the “vector potential” E Xy has only a nonvanish-
ing azimuthal component we can simplify the problem
and regard only the azimuthal motion of the fluxon de-
scribed by the angle ¢ E(—,7). Substituting the corre-
sponding operator for E [Eq. (5.2)] and the explicit value
for p, (lu|=hc/q), we reach the following effective
Hamiltonian:

2

A 1 h E
Heﬁz-ilz;Q?—A cos(0)+ S|Py =5 o 6.2)
Let us substitute a solution of the form
w(o,¢)=e""""*y0,4) . (6.3)

We find that the function ¥(6, ¢) satisfies the ““free” equa-
tion of motion
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02— A cos(0—¢)+ 311\7“’5 W6,6)=E6,6) .

(6.4)

There is a path dependence in the potential term, the
motion of the fluxon moves the location of the wells.

An explicit solution for 3 can be found in the adiabatic
approximation (#2/2Mr?>>¢2/2C is satisfied). The
wave function takes the form

P(0,6)=p(0)n(d) (6.5)

and the Schrodinger equation (6.4) separates into two
equations:

%Q 2 A cos(0—) |ps(0)=Esc(d)pg(6),  (6.6a)
1
53 PAn@)=(E —Escin(4) (6.6b)

In our approximation the motion of the fluxon is assumed
to be adiabatic [in accordance with assumption (1) of Sec.
IT], its corresponding wave function 7(¢) is well localized
and hence the angle ¢ in Eq. (6.6a) is regarded as a slowly
varying parameter. For ¢=0 the solution has already
been computed in Sec. IV. When the fluxon moves, the
solution [Eq. (4.5)] changes according to the shift of the
wells and takes the form

pO)=> uy(6—¢p—2aN) . (6.7)
N
Hence, the total wave function Eq. (6.3) is given by
w(0,0)=e""" S u(0—p—2aNm(4) . 6.8)

N

This is in general not a permissible solution for the
Schrodinger equation (6.2), since unless E mode,=0
(Q'modg=0) it is a nonsingle-valued function of ¢.
However, for a simply connected region it is still possible
to use this solution.

Consider a coherent beam of fluxons prepared at
¢=d¢,. The beam is split into two localized wave packets
V=W, +WV¥,, where ¥, represents the beam on one side of
the external charge and W, on the opposite side. Each of
the beams travels in a simply connected region and hence
can be described by the solution (6.8). Therefore we have

irg (E /e

(6.9a)

W =c "b(0— A, A0))

w,=e 2 E 0y (0— Mgy, AG,) | (6.9b)
where A¢, =¢; —¢,. The final wave function at the in-
terference region (A¢,=m for ¢,,Ad,=—m for 1, is

given by
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\I/1+‘P2=eiﬂ(E/60)1/’1(6_7T,77)
+€_imE/eo)¢2(9+7T,—7T)

2mi(E /ey ,, )

e

where ¢’ stands for evm(E/eo)df(B-i—w,#) and we have
used the single valuedness of .

Clearly, the interference between the two beams de-
pends on the value of the modular electric field. Accord-
ing to the discussion in Sec. V although the expectation
value of the electron vanishes, the modular electric field
is a constant of motion of the system and by Egs. (5.3)
and (5.8) takes the value ¢2™2'/9. Hence, the interference
between the two fluxon beams will depend of the phase

(6.10a)

(6.10b)
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difference 27Q’' /q.

In conclusion, we have shown that because of the tran-
sparency of the superconductor to the modular electric
field, the magnetic fluxon will accumulate the same phase
as if the electric field were unscreened. Hence, in this
case the Aharonov-Casher effect must also be interpreted
as a force-free nonlocal effect. We also note that the non-
triviality of the modular electric field [Eq. (5.8)] is a gen-
eral property that will occur whenever Q'modg+0
(where g is a unit charge of the medium and Q' is an
external charge); hence, we expect other models that
manifest the Aharonov-Bohm effect and screen the elec-
tromagnetic fields (e.g., Higgs model in 2+ 1 dimensions)
to manifest also the Aharonov-Casher effect through a
similar mechanism.

*Also at University of South Carolina, Columbia, S.C. 29208.
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