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We show that it is possible to measure the Schrodinger wave of a single quantum system. This provides a strong argument for
associating physical reality with the quantum state of a single system, and challenges the usual assumption that the quantum state

has physical meaning only for an ensemble of identical systems.

While the Schrédinger wave is a basic element of
quantum theory, it is generally believed that one
cannot associate physical reality to the wave of a sin-
gle particle. Rather, the Schrédinger wave is often
viewed as a mathematical tool for calculating the
probabilities of various outcomes of certain experi-
ments when many such experiments are performed
on an ensemble of identical systems, all in the same
quantum state. Several arguments seem to support
this point of view.

(1) We have never seen the quantum state of a sin-
gle particle in a laboratory. Indeed, while a wave is
typically spread over a region of space, we never see
a particle simultaneously in several distinct locations.

(i1) If we could see a quantum state, we could pre-
sumably distinguish it from any other quantum state,
but the unitary time evolution of states in quantum
mechanics implies that it is impossible to distinguish
between two different nonorthogonal states. Differ-
ent outcomes of a measurement to distinguish these
two states correspond to orthogonal quantum states
of the composite system (measuring device plus par-
ticle). But, the initial scalar product between the
states was not zero and remains nonzero under uni-
tarity time evolution.

(1i1) If we associate physical reality with a spread-
out wave then the instantaneous “‘collapse” of the
wave to a point during a position measurement seems
to conflict with relativity [1].

In this Letter we demonstrate how the density
p="¥Y*¥ and the current

j= -ﬁ— (P*VP_Pvy*)
2m

of a Schrodinger wave of a single particle can be
measured. The usual measurements assumed in ar-
gument (1) alter the Schriodinger wave and are not
adequate; rather, here we will describe special pro-
tective measurements allowing us to measure p and
J without changing the Schréodinger wave. In some
cases energy conservation provides protection for the
state, while in other cases we need a special protec-
tion procedure.

Let us consider a particle in a discrete nondege-
nerate energy eigenstate ¥(x). The standard von
Neumann procedure for measuring the value of an
observable 4 in this state involves an interaction
Hamiltonian,

H=g(1)pA, (1)

coupling our system to a measuring device, or
pointer, with coordinate and momentum denoted
respectively by ¢ and p. The time-dependent cou-
pling g(¢) is normalized to [ g(¢) d¢= 1. The initial
state of the pointer is taken to be a Gaussian cen-
tered around zero.

In standard impulsive measurments, g(¢) # 0 only
for a very short time interval. Thus, the interaction
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term dominates the rest of the Hamiltonian, and the
time evolution exp(—ipA/#) leads to a correlated
state: eigenstates of 4 with eigenvalues a, are cor-
related to measuring device states in which the
pointer is shifted by these values a,. By contrast, the
protective measurements of interest here utilize the
opposite limit of extremely slow measurement. We
take g(¢t)=1/T for most of the time 7 and assume
that g(¢) goes to zero gradually before and after the
period T. We choose the initial state of the meas-
uring device such that the canonical conjugate p (of
the pointer variable ¢) is bounded. For g(¢) smooth
enough we obtain an adiabatic process in which the
particle cannot make transition from one energy ei-
genstate to another, and, in the limit 7- oo, the in-
teraction Hamiltonian does not change the energy
eigenstate. For any value of p, the energy of the ei-
genstate shifts by an infinitesimal amount given by
first order perturbation theory,

SE=(Hin ) =<A4>p/T. (2)

The corresponding time evolution exp(—ip{4>)
shifts the pointer by the average value (A4). (Here
and below we will take #=1.) This result contrasts
with the usual (strong) measurement in which the
pointer shifts by one of the eigenvalues of 4. By
measuring the averages of a sufficiently large num-
ber of variables A4,, the full Schrédinger wave ¥(x)
can be reconstructed to any desired precision.

As a specific example we take the 4, to be (nor-
malized) projection operators on small regions V,,
having volume v,

1
A,=—, ifxeV,,

=0, ifx¢V,. (3)

The measurement of A4, yields

A= [ 1#1ra=18,12, )
"Vn

where | %,|? is the average of the density p(x)=
| ¥(x)|? over the small region V,,. Performihg mea-
surements in sufficiently many regions V,, we can re-
construct p(x) everywhere in space. (Simultaneous
measurement of all the variables 4,, requires slower
and weaker interactions, and thus takes more time. )
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For a real state the density p(x) is itself enough to
reconstruct the Schrédinger wave; we can fix the sign
by flipping it across nodal surfaces.

In the general case, however, in addition to mea-
surements of the density p(x), we have to measure
current density. This time we also adiabatically mea-
sure the averages of

1
B,,=Z(A,,V+VA,,). (3)
Indeed, (B,) are the average values of the current,

1
= ——— “Vy-_yvy*
J= 5 (P*VP-_pvy*)
in the region V,. Writing ¥(x)=r(x) exp[if(x)]
with r(x)=,/p(x), we find that

mj(x)/p(x)=V0, (6)

and the phase 6(x) can be found by integrating j/p.

For a charged particle the density p(x) times the
charge yields the effective charge density. In partic-
ular, it means that an appropriate adiabatic mea-
surement of the Gauss flux out of a certain region
must yield the expectation value of the charge inside
this region (the integral of the charge density over
this region ). Likewise, adiabatic measurement of the
Ampére contour integral yields the expectation value
of the total current flowing through this contour in
the stationary case.

Our discussion of the current of the particle is valid
only for a Hamiltonian without vector potential.
However, the eigenstates of such a Hamiltonian with
a nonvanishing current are necessarily degenerate due
to time reversal invariance. The method described
above is appropriate only for nondegenerate eigen-
states and, therefore, we have to consider problems
with a vector potential 4, for which we do have non-
degenerate stationary states with nonzero current
(e.g. the Aharonov-Bohm effect). Then, the defi-
nition of the (electric) current must be modified by
the replacement V-V —ied. This replacement has to
be done also for the definition of the observables B,,
(eq. (5)), and it leads to the obvious modification
of eq. (6).

We have shown that stationary quantum states can
be observed. This is our main argument for associ-
ating physical reality with the quantum state of a sin-
gle particle. Since our measurement lasts a long pe-
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riod of time we do not have a method for measuring
the Schrédinger wave at a given time. Thus, we have
a direct argument for associating physical reality with
stationary Schrédinger waves only over a period of
time. The reader may therefore suspect that our
measurements represent time-averaged physical
properties of the system. Let us now present a few
arguments explaining why, nevertheless, these mea-
surements reflect properties of the Schrédinger wave
at any given moment of time during the
measurement.

An essential feature of our adiabatic measurement
is that the state | %) does not change throughout the
experiment. Since the Schrodinger wave yields the
complete description of a system and the interaction
with the measuring device is constant throughout the
measurement, we conclude that the action of the sys-
tem on the measuring device is the same at any mo-
ment during the measurement.

The mathematical description of our measure-
ment tells us the same: for any, even very short, pe-
riod of time, the measuring device shifts by an
amount proportional to (4>, the expectation value
of the measured variable, rather than to one of its
eigenvalues a,. Thus, expectation values, which
mathematically characterize Schrodinger waves, can
be associated with very short periods of time. In the
instantaneous limit, expectation values and, there-
fore, the quantum state manifest themselves as prop-
erties of a quantum system defined at a given time.
(Note, however, that pointer shifts during short time
intervals are unobservable since they are much
smaller than the uncertainty; only the total shift ac-
cumulated during the whole period of measurement
is much larger than the width of the initial distri-
bution, and therefore observable on a single particle. )

Moreover, suppose that (contrary to standard
quantum theory), a system has a complete descrip-
tion that does change during the measurement pro-
cess, and the (constant) Schrodinger wave we mea-
sure does not describe the system at a given time but
represents only a time average of some hidden vari-
ables over the period of the measurement. Consider
a model of a hydrogen atom in which the electron
performs very fast ergodic motion in the region cor-
responding to the quantum cloud. The charge den-
sity might be either zero (if the electron is not there )
or singular (if the electron is inside the infinitesi-
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mally small region including the space point in ques-
tion). In spite of this fact, the measurement we have
described will yield outcomes corresponding to a
nonsingular charge density cloud. What it measures
is the time average of the density, or how long a time
the electron spent in a given place.

In order to see that this picture is inappropriate
for the quantum case let us consider another ex-
ample: a particle in a one-dimensional box of length
L in the first excited state. The spatial part of the state
is

2/Lsin(2nx/L) .

The adiabatic measuring procedure described above
will yield the Schrédinger wave density,

(2/L) sin*(2rx/L) .

In particular, it equals zero at the center of the box.
If there is some hidden position of the electron which
changes in time such that the measured density is
proportional to the amount of time the electron
spends there, then half of the time it must be in the
left half of the box and half of the time in the right
half of the box. But it can spend no time at the center
of the box; i.e., it must move at infinite velocity at
the center. It is absolutely unclear what such an elec-
tron “position” would be. There is a theory [2] which
introduces a “position” for a particle in addition to
its Schrédinger wave; but according to this theory,
the “velocity” of the particle in the given energy ei-
genstate vanishes: it does not move at all. In the
quantum picture the eigenstate of the particle in the
box can be represented as a superposition of two
running waves moving in opposite directions. The
zero density at the center of the box is due to de-
structive interference — the phenomenon which can-
not be reproduced in a classical ergodic model of a
particle.

The procedure described above cannot measure
properties of a state obtained by superposing several
nondegenerate energy cigenstates. Applied to such a
state, a measurement of 4 will yield shifts of the
pointer corresponding to the expectation values of
the variable A4 in the various energy eigenstates. In
general, these values are distinct with differences
greater than the initial uncertainty of the pointer po-
sition. Thus, after the interaction, the system and the
measuring device are entangled. By “looking” at the
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measuring device we cause the Schridinger wave to
choose one of the energy cigenstates. Measurement
of the Schridinger wave — namely, measurement of
the expectation values of the projection operators —
causes collapse. A superposition of nondegenerate
energy eigenstates is not protected by energy con-
servation: unitary evolution during the measure-
ment leads to correlations between energy states and
the states of the measuring device without changing
the total energy, while collapse changes the energy
itself.

Nevertheless, we can measure even a superposi-
tion of energy eigenstates by a procedure similar to
the one described above. We just have to add an ap-
propriate protection mechanism. The simplest way
to protect a time-dependent Schrédinger wave is via
dense state-verification measurements that test (and
thus protect) the time evolution of the quantum state.
If we are interested in all the details of this time-de-
pendent state we cannot use measurements which are
too slow. Every measurement of the density and cur-
rent of a Schrédinger wave must last a period of time
which is smaller than the characteristic time of the
evolution of the state; and the time intervals between
consecutive protections must be even smaller. How-
ever, in principle, Schrodinger wave measurement to
any desired accuracy is possible: for any desired ac-
curacy there is a density of the state-verification
measurements that will protect the state from being
changed due to the measurement interaction. Ad-
ditional protection is necessary also for measure-
ment of stationary but degenerate states; and the
scheme of dense projection measurements is appli-
cable here too. Even for dense projective measure-
ments, most of the time the system evolves accord-
ing to its free Hamiltonian, so we are allowed to say
that what we measure is the property of the system
and not of the protection procedure.

When measurements involve the above kind of
protection, we have to know the state in order to pre-
scribe the proper protection. One might object,
therefore, that our measurement yields no new in-
formation, since the state is already known. How-
ever, we can separate the protection and measure-
ment procedures: one experimentalist provides
protection and the other measures the Schrodinger
wave itself. Then the second experimentalist does
obtain new information. The most important point,
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however, is that we directly measure properties of
the Schrédinger wave of a single system using a stan-
dard measuring procedure. Our direct measure-
ments of the density and the current of the Schro-
dinger wave challenge the commonly accepted notion
that quantum states can be fully observed only when
the measurement is performed on an ensemble of
identical systems.

Consider now an apparent paradox arising from
the measurement of the Schrédinger wave. It is well
known that even assuming instantaneous “collapse”
of a quantum state, one cannot use the collapse for
sending signals faster than light. At first, however,
the possibility of measuring the value of the Schro-
dinger wave at a given location seems to allow such
superluminal communication. Consider a particle in
a superposition (|1>+(2>) /ﬁ of being in two
boxes separated by a very large distance. For this
particle the expectation value of the projection onto
the first box is ( P, ) =1. This value must be the out-
come of a measurement performed on the first box.
If, however, just prior to a measurement of the
Schrédinger wave 1n the first box, someone opens
and looks into the second box, causing collapse to a
localized state | 1> or |2), then the outcome of the
measurement of the projection operator in the first
box will drastically change: we no longer find
(P> =1 but rather 0 or 1 (depending on what is
found in the second box). It seems, therefore, that
measurements on one box can influence measure-
ments on another box located arbitrarily far away.

However, this argument contains a flaw: the state
(J1>+12>) /\/5 is not a discrete nondegenerate ei-
genstate. Since there is no overlap between the states
[1> and |2), the orthogonal state (|1)—]2)>)/
\/5 has the same energy. Thus, there is no natural
protection due to the energy conservation, and an
additional protection is needed. This protection,
however, involves explicitly nonlocal interactions.
These nonlocal interactions are the source of the al-
leged superluminal signal propagation. (A more sub-
tle paradox of this sort is considered in another work
(31

Let us come back to the three arguments against
the realistic view of the Schrédinger wave presented
in the beginning of this Letter. First, we have shown
that we can observe a quantum state. Although our
discussion relied on Gedanken experiments, recent
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experimental work with so-called “weak links” in
quantum circuits shows that slow adiabatic mea-
surements of the Schrodinger wave can be per-
formed in the laboratory [4].

The second argument is a correct statement, but it
only implies that there is no single universal proce-
dure for observing states. It still allows for the pos-
sibility of an appropriate measuring procedure for
any given state.

The last argument (iii) is the most serious one.
Assume that the Schrédinger wave of a particle is
nonvanishing only inside two separate boxes, and we
find it in one of them. How did part of the wave move
instantaneously from one box to another? We be-
lieve that a full answer to this argument requires a
new approach to quantum theory [5].

We have shown that expectation values of quan-
tum variables and the quantum state itself have
physical meaning, i.e., they are measurable for in-
dividual quantum systems. This result stands in sharp
contrast to the standard approach in which the
Schrédinger wave and expectation values are statis-
tical properties of ensembles of identical systems.
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Note added in proof. We have completed, in col-
laboration with J. Anandan, an extension of this work
which includes a detailed analysis of protective mea-
surements of the spin-4 system {6].
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