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Systems evolving according to effective non-Hermitian Hamiltonians are considered. To each
eigenvalue of the effective Hamiltonian is associated two eigenstgtesand |¢) which evolve
backward and forward in time, respectively. Adiabatic measurements on such systems are analyzed.
The outcome of the adiabatic measurement of an obsendlike the weak valug(|A|d)/(¥|d)
associated with the two-state vect@¥||¢). The possibility of performing such measurements in a
laboratory is discussed. [S0031-9007(96)00787-9]

PACS numbers: 03.65.Bz

Any interaction between two systems can be regardedneasuring device states in which the pointer is shifted
in a very wide sense, as a “measurement” since the stat®/ these valueg, (we use units such thdt = 1). Thus
of one of the systems, the measuring device, is affecteth an ideal measurement the final state of the measuring
by the state of the other one, the measured system. laevice is very simply related to the state of the measured
general, however, this interaction is not very “clean,” thatsystem. The properties of ideal measurements are as
is, the information about the properties of the measuredbllows: (a) The outcome of the measurement can only
system cannot be read easily from the final state of thbe one of the eigenvalues. (b) A particular outcome
measuring device. Only some very particular classes of; appears at random, with probability that depends
interactions are clean enough and are called measurememtsly on the initial state of the measured system and is
in the usual, more restricted, sense. independent of the details of the measurement. (c) The

The best known type of quantum measurement is theneasurement leads to the (true or effective, depending
von Neumann ideal measurement wherein the systeron one’s preferred interpretation) collapse of the wave
is coupled impulsively to the measuring device. Thefunction of the measured system on the eigensiate
Hamiltonian describing such a measurement is Subsequent ideal measurements of the same obsewable

invariably yield the same eigenvalug.

H = Ho + g()PA + Hup (1) The opposite limit of extremely weak and long in-
where H, is the free Hamiltonian of the systerfly;p is  teraction is also clean enough to be called a measure-
the free Hamiltonian of the measuring devide,is the ment [1,2] (whether it should be called a measurement
momentum conjugate to the position varialgle of the  of an observable is discussed in [3,4]). In such an adia-
pointer of the measuring device, aAds the observable to batic (or protective) measurement, the coupling is very
be measured. The coupling parametén is normalized small: g(z) = 1/T for most of the interaction tim& and
to [g(t)dt = 1 and is taken to be nonvanishing during g(r) goes to zero gradually before and after the period
a very small intervalAr. Thus, the interaction term 7. In order that the measurement be as clean as pos-
dominates the rest of the Hamiltonian duridg, and sible, we also impose that the initial state of the measur-
the time evolutione 4 leads to a correlated state: ing device is such that the momentutnis bounded, that
eigenstates ofA with eigenvaluesa, are correlated to the momentumP is a constant of motion of the whole
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Hamiltonian equation (1) (but we shall only consider theeigenstates of the effective Hamiltonian (see below) [10].
simpler case wherddy;p vanishes), and that the free The main properties of adiabatic measurements carried
Hamiltonian Hy has nondegenerate eigenvalugs For  out on a system evolving according to an effective non-
g(¢) smooth enough we then obtain an adiabatic procesdermitian Hamiltonian are as follows: (a) The only
in which the system cannot make a transition from ongossible outcomes of the measurement are the weak
energy eigenstate to another, and, in the lifhit> «, the  values A!, corresponding to one of the pairs of states
interaction Hamiltonian changes the energy eigenstate b, ||¢;) associated with the non-Hermitian Hamiltonian.
an infinitesimal amount. If the initial state of the sys- (b) A particular outcomet!, appears at random, with a
tem is an eigenstati®;) of H, then, for any given value probability which depends only on the initial state of the
of P, the energy of the eigenstate shifts by an infinitesi-measured system and is independent of the details of the
mal amount given by the first order perturbation theory:measurement. (c) The measurement leads to an effective
SE = (E;|H|E;) = (E;|A|E;)P/T. The corresponding collapse to the two-state vectdi;||¢;) corresponding
time evolutione ~P{EilAIE) shifts the pointer by the expec- to the observed weak valug’,. Subsequent adiabatic
tation value ofA in the statdE;). The main properties of measurements of the same observabliavariably yield
adiabatic measurements are as follows: (a) The outconmée same weak value. (d) Simultaneous measurements of
of the measurement can only be the expectation valudifferent observables yield the weak values corresponding
(A); = (E;|A|E;). (b) A particular outcoméA); appears to the same two-state vectop;|| ;).
at random, with a probability which depends only on the Although the Hamiltonian of a quantum system is
initial state of the measured system and is independertiways a Hermitian operator, under suitable conditions
of the details of the measurement. (c) The measuremeiat subsystem may evolve according to an effective
leads to the collapse of the wave function of the measuredon-Hermitian Hamiltonian. A well known case is the
system on the energy eigenstdie) corresponding to the description of metastable states [11]. If the system is
observed expectation valug); [5]. Subsequent adia- initially in the metastable staté(0), after a timer it
batic measurements of the same observadblavariably ~ will be in the statay(r) = e #«t'(0) + decay products
yield the expectation value in the same eigenstaig. where H.; is the effective non-Hermitian Hamiltonian.
(d) Simultaneous measurements of different observables celebrated example where this description has proved
yield the expectation value in the same energy eigenextremely useful is the kaon system. Another case
state|E;). in which a system evolves according to an effective
The aim of the present Letter is to consider measurenon-Hermitian Hamiltonian is when it is coupled to a
ments on systems which evolve according to an effectivsuitably preselected and postselected system [10]. As
non-Hermitian Hamiltonian. While ideal (impulsive) an example, consider a spi2 particle coupled to a
measurements on such systems lead to no surpriggeselected and postselected systgénof large spinN
(since in an impulsive measurement the unperturbethrough the Hamiltonian
Hamiltonian of the measured system plays no role),
adiabatic measurements yield as outcomes some new Hy=AS -o. 3
type of values associated with the measured observable,
namely, the “weak values” [6] Weak values WereThe |al’ge Spin is preselected at to be in the state
originally introduced in the context of the two-state |Sx = N) and postselected to be atin the statg(s, =
formalism [6—9] wherein a preselected and postselectely | (When dealing with spin systems we use unitsigg).
system is described at timeby two states, the usual one The coupling constani is chosen in such a way that the
|'W,) evolving towards the future from the preselection/ntéraction with our spin-A2 particle cannot change sig-
measurement, and a second St@el evolving towards n|f|Cant|y the two-state vector of the SyStém Indeed, the
the past from the postselection measurement. If at tim&ystem with the spir§ can be considered a¢ spin-1/2
t a sufficiently weak measurement is carried out on suciparticles all preselected ih1.) state and postselected in
a system, the state of the measuring device after thkly) state. Since the strength of the coupling to each spin-
postselection is shifted t&Fyp(Q) — Ymp(Q — A,), 1/2 particle isA < 1, during the time of the measurement

WhereAw is the weak value of the observatAe their states cannot Change Significantly. (Howe\l)dV,
A must be large so that the effective Hamiltonian is signifi-
_ 2 1

A, = ) (2) cant) Thus, the forward evolving stdte, = N) and the
(| ¥y) backward evolving statés, = N| do not change signifi-
Note that weak values can take values which lie outsidéantly during the measuring process. Hence, effectively,
the range of eigenvalues afand are in general complex. the spin-¥2 particle is coupled to the weak value if
Under appropriate conditions, their real and imaginary

parts affect the position and momentum of the pointer, g — (Sy = NI(Ss.Sy.5:)1Sx = N) — (N, N,iN),
respectively. Weak values are associated with two states (S, = NI[S, =N)
which in the present context are the left and right 4)
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and the effective non-Hermitian Hamiltonian is given by interpretation when one recalls that we are describing
. partially postselected systems. In the case of metastable
Hep = AN(ox + 0y + i0). (5)  statesNV (¢) is the probability for the states not to have
¢ decayed. Inthe spin exampll (1) describes corrections

The non-Hermiticity ofH.¢ is due to the complexity o to the probability of finding the stat, = N|.

S... A detailed discussion of this example is given below. X . . .
Y b g Let us illustrate this general formalism by considering

Note that the effective non-Hermitian Hamiltonians the Kkaon svstem. The two eigenkets of the effective
only alrlse dule o a|1 parftuﬂ plostselecnon. f In (tjhe SEmHamiItoniany are .traditionally dgnotedeL> and [Ks)
example it only applies if the large spin is found in the =~ ) ) o
tat 2 = N| yl p?h f gt fbl tates it onl Similarly, one can define the eigenbras of the effective
state(s, = N|. In the case of metastable states it only on Hamiltonian(K} | and(K%|. The particular features

applies to the metastable states so long as they hav e oo
ngfdecayed 9 y of the non-Hermitian Hamiltonian are controlled by the

: CP violation parametee = 1073. The nonorthogonality
We now analyze the general properties of a non- . . - .
Hermitian Hamiltonian H.s which has nondegenerate of the eigenkets igKs|K;) = O(e) and the nonequality

. . / _ _ 2
eigenvaluesy;. In general the eigenvalues are complex.:)]c the rlg?tﬂ?nd Ieft"elgeniattﬁsdﬂt’jéllgi'— I = 0(e). ¢
Denote the eigenkets and the eigenbrastof by | ;) n view of the smallness e adiabatic measurements

which we propose below may be difficult to implement
and(y;l, -
in the kaon system. However, other metastable systems
Heitl i) = wildi), (YilHee = wi(;]. (6) may display much stronger nonorthogonality and be more
_ N amenable to experiment.
Contrary to the case wherl is Hermitian, the|;) In the spin example, the effective Hamiltonian equa-
are not orthogonal to each other, nor are {fiel, and tion (5) has two eigenvalues AN and —AN with eigen-

furthermore |i;) # |¢;). However, the|$;) and (il  kets (eigenbras) 1.) ((1,1) and | 1,) ({l.I), respectively.
each form a complete set, and they obey the mutuaihus, H., can be rewritten as
orthogonality condition

<¢1|¢/> = <‘r//i|¢i>5ijs (7) | Tx><Ty| | 1y><lx|
Heff = AN .
which follows from subtracting the two identities (REY el 1y
WilHete| ) = wi(@hild i), (WilHestldj) = wi{hilp;) for

i # j. Equation (7) enables us to rewritgs as

(11)

In this example the eigenkets and eigenbras associated

| i) (i with the same eigenvalue are very different. Thus, weak
Herr = Z Qi (8)  values associated with these two states can have surprising
(Wilbi)
! values. For example(l,|o| |,)/{«l l,) = —i, which

which generalizes the diagonalization of Hermitian operais pure imaginary andl,|(o, + (ry)/\/fl /AL L) =

tors. The eigenkets df.¢; are the natural basis in which —./2 which lies outside the range of eigenvalues of
to decompose a forward evolving st¢de). Indeed, using 4 . .

the decomposition of unity = > [¢:) (:l/(¢il#:) one Now we can discuss adiabatic measurements performed
obtains on a system evolving according ;. The Hamiltonian
(i D) describing such a measurement is given by Eq. (1) with
|D) = ) = D il (9)  Ho replaced byH.;;. The coupling parametey(r) equals
Wil i 1/T for most of the interaction tim& and goes to zero

(On the other hand, a backward evolving state shoul@radually before and after the peridd In order that
be decomposed into the eigenbras Ky as (V| = the measurement be as clean as possible we also impose

> B:(#:|) The formal solution of Schrodinger's equa- that H.¢y has nondegenerate eigenvalues, that the initial
tioln with the effective Hamiltonia, is state of the measuring device is such that the momentum
€

P is bounded, and that the momentumis a constant
 iHu B it of motion of the whole Hamiltonian equation (1). For
(1)) = e |®) = Z“ie pi)- (10) g(¢) smooth enough, and in the limit — o, we obtain
' once more an adiabatic process such that if the system is
Note that the normN" of |®(z)) is not equal to 1 but initially in an eigenket|¢;), it will still be in the same
is time dependent. Formally, there are two causes foeigenket after the measurement. Furthermore, in this
not conserving the norm in time evolution due to thelimit, the interaction Hamiltonian changes the eigenket
effective Hamiltonian. The first is that the eigenvaluesduring the interaction by an infinitesimal amount.
w; may be complex. The second is that the eigenkets If we take the initial state of the system to be an eigen-
are not necessarily orthogonal. This nonconservation dfet |¢;), then for any given value aP, the eigenvalue of
probability by non-Hermitian Hamiltonians has a naturalthe eigenstate shifts by an infinitesimal amount which can
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be obtained using first order perturbation theory as folcay during the measurement, or if the sginis found

lows. The perturbed eigenstates are solutions of in the state|S, = N). Nevertheless, there is a nonzero
probability that the first run with a single system and
P a single set of measuring devices will yield the desired

(Heff + 7A> (|¢,-> + ;Cij|¢j>> outcomes.

Our general discussion was carried out for a system
_ ‘ ‘ e evolving according to an arbitrary effective non-Hermitian
= (0itdw) (l(m * ;C”|¢’>>' (12) Hamiltonian. The spin example presented above is

amenable to exact treatment, and one can investigate

Taking the scalar product withy;|, to first order inP/T in this case in what limit the effective non-Hermitian

one obtains Hamiltonian describes adequately the evolution of the

spin-1/2 particle. We recall that the effective Hamiltonian
P (yilAl¢)y P 13 equation (5) has two eigenkeltg,) and| |,). That]| 1,)

T W - 7Aw~ (13)  should be an eigenket can easily be seen by noting that

the initial state|lS, = N)| 1) is an eigenstate of the free

If the initial state of the measuring device is aHamiltonianH, = AS - o. That| |,) is an eigenket is a

Gaussian e 274’ then after the measurement the nontrivial prediction which can be checked by calculating

state of the measuring device ¥yp(Q — Al) = the probability for the small spin, initially in the state

Ce(@-Red,)?/a% =20 ImAL /A - Thys reading the position | |,), to be in the staté1,) at an intermediate time. One

(momentum) of the measuring device yields the reafinds that this probability is proportional t/ N2, thereby

Sw

(imaginary) part ofA! . confirming that it is indeed an eigenket in the limit of
It is instructive to consider the case when the initiallargeN.
state is not an eigenket df.;s. The initial state should If the initial state of the small §pin i$],), and an

then be decomposed into a superposition of eigenketsdiabatic measurement of; = o - & is carried out, the
|®) = > a;l$;), and its time evolution, up to normali- eigenket| |,) should be unaffected by the measurement,
zation, will be given by and the measuring device should register the weak value
(oe)w = iloel L)/l L) In orde[ to verify this we
o, T Y considered the particular case whén= %, whereupon
|©)Ywn(Q) — 2 @ie [$0dmp(Q = Ay)- (A4 o analysis simplifies considerably since only the states
with J, =S, + o, =N+ I,N — 1,N — 3 come up
During the measurement process, which includes furthein the calculation. Thus, we took the Hamiltonian to
interactions, the states of the measuring device corrdseH = AS - o + (P/T)o, during the interval; < ¢ <
sponding to different values ofi, become macroscopi- t, = t; + T, with the initial statelS, = N)| ly) and the
cally distinguishable. Then, effectively, a collapse takedinal state of the large spin postselected to(Bg = N|.
place to the reading of one of the weak valuéswith the  Taking the measuring device to be in the momentum
relative probabilities given bje;|2e2™@)T e call the eigenstateP, one finds that after the postselection, at
collapse effective because it only occurs under the cone = r,, the state of the small spin plus measuring device is
dition that a partial postselection is realized. A subse] ly>e”° + error terms. The error terms are either of the
guent adiabatic measurement of another obsenid| form | |,)e ¥ corresponding to a pointer shifted in the
yield the weak value corresponding to the same two-statarong direction, or of the formy(P)| 1,) corresponding
(yilg:). Alternatively, one can carry out the measure-to the spin not having remained in the statg). The
ments of A and B simultaneously. This can always be norm of the error terms is proportional tgN, and in the
done by increasing the duratich of the measurement limit of large N they can be neglected. One then finds
so that the interactiodP;A + P,B)/T remains a small that after and during the measurement the spin is still in
perturbation. Thus, given a sufficiently long tirfie one  the eigenket |,) and that the pointer of the measuring
can obtain reliable measurements of any set of obsendevice is shifted by the weak valde,),, = (|0l |,)/
ables by making measuring devices interact adiabaticallyi,| |,) = —1. Thus we confirm that in the limit of
with a single quantum system. However, it should belarge N, the evolution is given by the effective non-
noted that in any realistic implementation we will needHermitian Hamiltonian.
ensembles of systems and measuring devices since bothin this Letter we have analyzed adiabatic measurements
in the case of metastable states and in the spin exanon systems which evolve according to an effective non-
ple the probability of a successful partial postselectiorHermitian Hamiltonian. The effective Hamiltonian only
(which gives rise to the effective non-Hermitian Hamil- arises when a partial postselection is realized. For an
tonian) is very small. Indeed, the adiabatic measuremergdiabatic measurement to yield a significantly unusual
will only be successful if the metastable states do not deresult, the non-Hermiticity of the Hamiltonian must be
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