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Systems evolving according to effective non-Hermitian Hamiltonians are considered. To
eigenvalue of the effective Hamiltonian is associated two eigenstateskc j and jfl which evolve
backward and forward in time, respectively. Adiabatic measurements on such systems are an
The outcome of the adiabatic measurement of an observableA is the weak valuekcjAjflykcjfl
associated with the two-state vectorkcjjfl. The possibility of performing such measurements in
laboratory is discussed. [S0031-9007(96)00787-9]
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Any interaction between two systems can be regard
in a very wide sense, as a “measurement” since the s
of one of the systems, the measuring device, is affec
by the state of the other one, the measured system.
general, however, this interaction is not very “clean,” th
is, the information about the properties of the measu
system cannot be read easily from the final state of
measuring device. Only some very particular classes
interactions are clean enough and are called measurem
in the usual, more restricted, sense.

The best known type of quantum measurement is
von Neumann ideal measurement wherein the sys
is coupled impulsively to the measuring device. T
Hamiltonian describing such a measurement is

H ­ H0 1 gstdPA 1 HMD , (1)

whereH0 is the free Hamiltonian of the system,HMD is
the free Hamiltonian of the measuring device,P is the
momentum conjugate to the position variableQ of the
pointer of the measuring device, andA is the observable to
be measured. The coupling parametergstd is normalized
to

R
gstd dt ­ 1 and is taken to be nonvanishing durin

a very small intervalDt. Thus, the interaction term
dominates the rest of the Hamiltonian duringDt, and
the time evolutione2iPA leads to a correlated state
eigenstates ofA with eigenvaluesan are correlated to
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measuring device states in which the pointer is shif
by these valuesan (we use units such that̄h ­ 1). Thus
in an ideal measurement the final state of the measu
device is very simply related to the state of the measu
system. The properties of ideal measurements are
follows: (a) The outcome of the measurement can o
be one of the eigenvaluesai . (b) A particular outcome
ai appears at random, with probability that depen
only on the initial state of the measured system and
independent of the details of the measurement. (c) T
measurement leads to the (true or effective, depend
on one’s preferred interpretation) collapse of the wa
function of the measured system on the eigenstatejail.
Subsequent ideal measurements of the same observaA
invariably yield the same eigenvalueai.

The opposite limit of extremely weak and long in
teraction is also clean enough to be called a meas
ment [1,2] (whether it should be called a measurem
of an observable is discussed in [3,4]). In such an ad
batic (or protective) measurement, the coupling is ve
small: gstd ­ 1yT for most of the interaction timeT and
gstd goes to zero gradually before and after the per
T . In order that the measurement be as clean as p
sible, we also impose that the initial state of the meas
ing device is such that the momentumP is bounded, that
the momentumP is a constant of motion of the whole
© 1996 The American Physical Society 983
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Hamiltonian equation (1) (but we shall only consider th
simpler case whereHMD vanishes), and that the free
HamiltonianH0 has nondegenerate eigenvaluesEi. For
gstd smooth enough we then obtain an adiabatic proc
in which the system cannot make a transition from o
energy eigenstate to another, and, in the limitT ! `, the
interaction Hamiltonian changes the energy eigenstate
an infinitesimal amount. If the initial state of the sys
tem is an eigenstatejEil of H0 then, for any given value
of P, the energy of the eigenstate shifts by an infinites
mal amount given by the first order perturbation theor
dE ­ kEijHintjEil ­ kEijAjEilPyT . The corresponding
time evolutione2iPkEi jAjEil shifts the pointer by the expec
tation value ofA in the statejEil. The main properties of
adiabatic measurements are as follows: (a) The outco
of the measurement can only be the expectation va
kAli ­ kEi jAjEil. (b) A particular outcomekAli appears
at random, with a probability which depends only on th
initial state of the measured system and is independ
of the details of the measurement. (c) The measurem
leads to the collapse of the wave function of the measu
system on the energy eigenstatejEil corresponding to the
observed expectation valuekAli [5]. Subsequent adia-
batic measurements of the same observableA invariably
yield the expectation value in the same eigenstatejEil.
(d) Simultaneous measurements of different observab
yield the expectation value in the same energy eige
statejEil.

The aim of the present Letter is to consider measu
ments on systems which evolve according to an effect
non-Hermitian Hamiltonian. While ideal (impulsive
measurements on such systems lead to no surp
(since in an impulsive measurement the unperturb
Hamiltonian of the measured system plays no role
adiabatic measurements yield as outcomes some n
type of values associated with the measured observa
namely, the “weak values” [6]. Weak values wer
originally introduced in the context of the two-stat
formalism [6–9] wherein a preselected and postselec
system is described at timet by two states, the usual one
jC1l evolving towards the future from the preselectio
measurement, and a second statekC2j evolving towards
the past from the postselection measurement. If at ti
t a sufficiently weak measurement is carried out on su
a system, the state of the measuring device after
postselection is shifted toCMDsQd ! CMDsQ 2 Awd,
whereAw is the weak value of the observableA,

Aw ­
kC2jAjC1l
kC2jC1l

. (2)

Note that weak values can take values which lie outs
the range of eigenvalues ofA and are in general complex
Under appropriate conditions, their real and imagina
parts affect the position and momentum of the pointe
respectively. Weak values are associated with two sta
which in the present context are the left and rig
984
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eigenstates of the effective Hamiltonian (see below) [1
The main properties of adiabatic measurements car
out on a system evolving according to an effective no
Hermitian Hamiltonian are as follows: (a) The on
possible outcomes of the measurement are the w
values Ai

w corresponding to one of the pairs of stat
kci jjfil associated with the non-Hermitian Hamiltonia
(b) A particular outcomeAi

w appears at random, with
probability which depends only on the initial state of th
measured system and is independent of the details of
measurement. (c) The measurement leads to an effec
collapse to the two-state vectorkci jjfil corresponding
to the observed weak valueAi

w . Subsequent adiabati
measurements of the same observableA invariably yield
the same weak value. (d) Simultaneous measuremen
different observables yield the weak values correspond
to the same two-state vectorkcijjfil.

Although the Hamiltonian of a quantum system
always a Hermitian operator, under suitable conditio
a subsystem may evolve according to an effect
non-Hermitian Hamiltonian. A well known case is th
description of metastable states [11]. If the system
initially in the metastable statecs0d, after a timet it
will be in the statecstd ­ e2iHefftcs0d 1 decay products
where Heff is the effective non-Hermitian Hamiltonian
A celebrated example where this description has pro
extremely useful is the kaon system. Another ca
in which a system evolves according to an effecti
non-Hermitian Hamiltonian is when it is coupled to
suitably preselected and postselected system [10].
an example, consider a spin-1y2 particle coupled to a
preselected and postselected systemS of large spinN
through the Hamiltonian

H0 ­ lS ? s . (3)

The large spin is preselected att1 to be in the state
jSx ­ Nl and postselected to be att2 in the statekSy ­
Nj (when dealing with spin systems we use units ofh̄y2).
The coupling constantl is chosen in such a way that th
interaction with our spin-1y2 particle cannot change sig
nificantly the two-state vector of the systemS. Indeed, the
system with the spinS can be considered asN spin-1y2
particles all preselected inj "xl state and postselected i
j "yl state. Since the strength of the coupling to each sp
1y2 particle isl ø 1, during the time of the measureme
their states cannot change significantly. (However,lN
must be large so that the effective Hamiltonian is sign
cant.) Thus, the forward evolving statejSx ­ Nl and the
backward evolving statekSy ­ Nj do not change signifi-
cantly during the measuring process. Hence, effective
the spin-1y2 particle is coupled to the weak value ofS,

Sw ­
kSy ­ Nj sSx , Sy , Szd jSx ­ Nl

kSy ­ NjSx ­ Nl
­ sN, N, iNd ,

(4)
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and the effective non-Hermitian Hamiltonian is given by

Heff ­ lNssx 1 sy 1 iszd . (5)

The non-Hermiticity ofHeff is due to the complexity of
Sw . A detailed discussion of this example is given belo

Note that the effective non-Hermitian Hamiltonian
only arise due to a partial postselection. In the sp
example it only applies if the large spin is found in th
statekSy ­ Nj. In the case of metastable states it on
applies to the metastable states so long as they h
not decayed.

We now analyze the general properties of a no
Hermitian HamiltonianHeff which has nondegenerat
eigenvaluesvi . In general the eigenvalues are comple
Denote the eigenkets and the eigenbras ofHeff by jfil
andkci j,

Heffjfil ­ vi jfil, kcijHeff ­ vikci j . (6)

Contrary to the case whereHeff is Hermitian, thejfil
are not orthogonal to each other, nor are thekci j, and
furthermore jcil fi jfil. However, thejfil and kci j

each form a complete set, and they obey the mut
orthogonality condition

kci jfjl ­ kcijfildij , (7)

which follows from subtracting the two identitie
kci jHeffjfjl ­ vjkcijfjl, kci jHeffjfjl ­ vikcijfjl for
i fi j. Equation (7) enables us to rewriteHeff as

Heff ­
X

i

vi
jfil kcij

kci jfil
, (8)

which generalizes the diagonalization of Hermitian ope
tors. The eigenkets ofHeff are the natural basis in which
to decompose a forward evolving statejFl. Indeed, using
the decomposition of unityI ­

P
i jfil kcijykcijfil one

obtains

jFl ­
X

i

kcijFl
kcijfil

jfil ­
X

i

aijfil . (9)

(On the other hand, a backward evolving state sho
be decomposed into the eigenbras ofHeff as kCj ­P

i bikcij.) The formal solution of Schrödinger’s equa
tion with the effective HamiltonianHeff is

jFstdl ­ e2iHefftjFl ­
X

i

aie
2ivi tjfil . (10)

Note that the normN of jFstdl is not equal to 1 but
is time dependent. Formally, there are two causes
not conserving the norm in time evolution due to th
effective Hamiltonian. The first is that the eigenvalu
vi may be complex. The second is that the eigenk
are not necessarily orthogonal. This nonconservation
probability by non-Hermitian Hamiltonians has a natur
.
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interpretation when one recalls that we are describ
partially postselected systems. In the case of metasta
statesN std is the probability for the states not to hav
decayed. In the spin exampleN std describes corrections
to the probability of finding the statekSy ­ Nj.

Let us illustrate this general formalism by considerin
the kaon system. The two eigenkets of the effecti
Hamiltonian are traditionally denotedjKLl and jKSl.
Similarly, one can define the eigenbras of the effecti
kaon HamiltoniankK 0

Lj andkK 0
S j. The particular features

of the non-Hermitian Hamiltonian are controlled by th
CP violation parametere . 1023. The nonorthogonality
of the eigenkets iskKS jKLl ­ Osed and the nonequality
of the right and left eigenstates iskK 0

LjKLl ­ 1 2 Ose2d.
In view of the smallness ofe the adiabatic measurement
which we propose below may be difficult to impleme
in the kaon system. However, other metastable syste
may display much stronger nonorthogonality and be mo
amenable to experiment.

In the spin example, the effective Hamiltonian equ
tion (5) has two eigenvalues1lN and2lN with eigen-
kets (eigenbras)j "xl (k"yj) and j #yl (k#xj), respectively.
Thus,Heff can be rewritten as

Heff ­ lN
j "xl k"yj

k"yj "xl
2 lN

j #yl k#xj

k#xj #yl
. (11)

In this example the eigenkets and eigenbras associ
with the same eigenvalue are very different. Thus, we
values associated with these two states can have surpr
values. For example,k#xjszj #ylyk#x j #yl ­ 2i, which
is pure imaginary andk#xjssx 1 sydy

p
2 j #ylyk#x j #yl ­

2
p

2, which lies outside the range of eigenvalues
s ? n.

Now we can discuss adiabatic measurements perform
on a system evolving according toHeff. The Hamiltonian
describing such a measurement is given by Eq. (1) w
H0 replaced byHeff. The coupling parametergstd equals
1yT for most of the interaction timeT and goes to zero
gradually before and after the periodT . In order that
the measurement be as clean as possible we also im
that Heff has nondegenerate eigenvalues, that the ini
state of the measuring device is such that the momen
P is bounded, and that the momentumP is a constant
of motion of the whole Hamiltonian equation (1). Fo
gstd smooth enough, and in the limitT ! `, we obtain
once more an adiabatic process such that if the system
initially in an eigenketjfil, it will still be in the same
eigenket after the measurement. Furthermore, in t
limit, the interaction Hamiltonian changes the eigenk
during the interaction by an infinitesimal amount.

If we take the initial state of the system to be an eige
ket jfil, then for any given value ofP, the eigenvalue of
the eigenstate shifts by an infinitesimal amount which c
985



VOLUME 77, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 5 AUGUST 1996

f

h

n
e

k
i

t

i

s

r

l

e

e

i

o
d
ed

m
n
is
ate

n
he
n

hat

g

f

nt,
lue

tes

o

m
at
is
e

e

s
in

g

-

nts
n-

an
al

e

be obtained using first order perturbation theory as
lows. The perturbed eigenstates are solutions of√

Heff 1
P
T

A

! √
jfil 1

X
jfii

cijjfjl

!

­ svi1dvid

0@jfil 1
X
jfii

cijjfjl

1A. (12)

Taking the scalar product withkcij, to first order inPyT
one obtains

dvi ­
P
T

kcijAjfil
kci jfil

­
P
T

Ai
w . (13)

If the initial state of the measuring device is
Gaussian e2Q2yD2

, then after the measurement t
state of the measuring device isCMDsQ 2 Ai

wd ­
Ce2sQ2ReAi

wd2yD2
e2i2Q ImAi

wyD. Thus reading the positio
(momentum) of the measuring device yields the r
(imaginary) part ofAi

w .
It is instructive to consider the case when the init

state is not an eigenket ofHeff. The initial state should
then be decomposed into a superposition of eigen
jFl ­

P
i aijfil, and its time evolution, up to normal

zation, will be given by

jFlcMDsQd !
X

i

aie
2iviT jfilcMDsQ 2 Ai

wd. (14)

During the measurement process, which includes fur
interactions, the states of the measuring device co
sponding to different values ofAi

w become macroscop
cally distinguishable. Then, effectively, a collapse tak
place to the reading of one of the weak valuesAi

w with the
relative probabilities given byjaij

2e2 Imsvi dT . We call the
collapse effective because it only occurs under the c
dition that a partial postselection is realized. A sub
quent adiabatic measurement of another observableB will
yield the weak value corresponding to the same two-s
kci jfil. Alternatively, one can carry out the measu
ments ofA and B simultaneously. This can always b
done by increasing the durationT of the measuremen
so that the interactionsP1A 1 P2BdyT remains a smal
perturbation. Thus, given a sufficiently long timeT , one
can obtain reliable measurements of any set of obs
ables by making measuring devices interact adiabatic
with a single quantum system. However, it should
noted that in any realistic implementation we will ne
ensembles of systems and measuring devices since
in the case of metastable states and in the spin ex
ple the probability of a successful partial postselect
(which gives rise to the effective non-Hermitian Ham
tonian) is very small. Indeed, the adiabatic measurem
will only be successful if the metastable states do not
986
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cay during the measurement, or if the spinS is found
in the statejSy ­ Nl. Nevertheless, there is a nonzer
probability that the first run with a single system an
a single set of measuring devices will yield the desir
outcomes.

Our general discussion was carried out for a syste
evolving according to an arbitrary effective non-Hermitia
Hamiltonian. The spin example presented above
amenable to exact treatment, and one can investig
in this case in what limit the effective non-Hermitia
Hamiltonian describes adequately the evolution of t
spin-1y2 particle. We recall that the effective Hamiltonia
equation (5) has two eigenketsj "xl and j #yl. That j "xl
should be an eigenket can easily be seen by noting t
the initial statejSx ­ Nl j "xl is an eigenstate of the free
HamiltonianH0 ­ lS ? s . That j #yl is an eigenket is a
nontrivial prediction which can be checked by calculatin
the probability for the small spin, initially in the state
j #yl, to be in the statej "yl at an intermediate time. One
finds that this probability is proportional to1yN2, thereby
confirming that it is indeed an eigenket in the limit o
largeN .

If the initial state of the small spin isj #yl, and an
adiabatic measurement ofsj ­ s ? ĵ is carried out, the
eigenketj #yl should be unaffected by the measureme
and the measuring device should register the weak va
ssjdw ­ k#xjsjj #ylyk#x j #yl. In order to verify this we
considered the particular case whenĵ ­ x̂, whereupon
the analysis simplifies considerably since only the sta
with Jx ­ Sx 1 sx ­ N 1 1, N 2 1, N 2 3 come up
in the calculation. Thus, we took the Hamiltonian t
beH ­ lS ? s 1 sPyTdsx during the intervalt1 , t ,

t2 ­ t1 1 T , with the initial statejSx ­ Nl j #yl and the
final state of the large spin postselected to bekSy ­ Nj.
Taking the measuring device to be in the momentu
eigenstateP, one finds that after the postselection,
t ­ t2, the state of the small spin plus measuring device
j #yleiP 1 error terms. The error terms are either of th
form j #yle2iP corresponding to a pointer shifted in th
wrong direction, or of the formfsPdj "yl corresponding
to the spin not having remained in the statej #yl. The
norm of the error terms is proportional to1yN , and in the
limit of large N they can be neglected. One then find
that after and during the measurement the spin is still
the eigenketj #yl and that the pointer of the measurin
device is shifted by the weak valuessxdw ­ k#xjsxj #yly
k#xj #yl ­ 21. Thus we confirm that in the limit of
large N , the evolution is given by the effective non
Hermitian Hamiltonian.

In this Letter we have analyzed adiabatic measureme
on systems which evolve according to an effective no
Hermitian Hamiltonian. The effective Hamiltonian only
arises when a partial postselection is realized. For
adiabatic measurement to yield a significantly unusu
result, the non-Hermiticity of the Hamiltonian must b



VOLUME 77, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 5 AUGUST 1996

s
,
in
n
o
s

n
is
es
n
o

A

s.

s.

v.
large, and in such cases the probability of a succes
partial postselection is very small. There is, however
reasonable hope of performing such a measurement
real laboratory. It is conceivable to build an experime
in which the measuring device is a particular degree
freedom of the measured particle itself, and in this ca
the postselection process is particularly simple [12].
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