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Abstract
A description of quantum systems at the time interval between two suc-
cessive measurements is presented. Two wave functions, the Ðrst pre-
selected by the initial measurement and the second post-selected by the
Ðnal measurement describe quantum systems at a single time. It is shown
how this approach leads to a new concept : a weak value of an observable.
Weak values represent novel characteristics of quantum systems between
two measurements. They are outcomes of a standard measuring procedure
that fulÐlls certain requirements of ““weaknessÏÏ. We call it weak measure-
ment. Physical meaning and underlying mathematical structure of weak
measurements are explored.

1. Introduction

In this paper we discuss a new formulation of quantum
mechanics (QM) which is time symmetric. The basic idea is
that at any moment of time a quantum system can be
described by two wave-functions, the usual one evolving
from past to future as well as a second wave-function evolv-
ing from future to past. Although this new formulation
reproduces all the predictions of standard QM È (that is, the
unusual e†ects that we predict can be explained in the stan-
dard formulation of QM) È our formulation has several
advantages : it provides a new conceptual framework which
suggests possible modiÐcations to QM and it allows one to
ask and solve new interesting questions which are hidden in
the old viewpoint.

In 1964 Aharonov, Bergmann and Lebowitz (ABL) [1]
investigated the claim that fundamental time asymmetry
was introduced by quantum measurement theory and its
assumed collape of the wave-function. They found, however,
that QM does not itself introduce an asymmetry but that
the asymmetry is a result of the way in which the statistical
ensemble is created. This apparently was a habit carried
over from classical determinism which allowed predictions
of future events based solely on a single complete set of
initial conditions. ABL showed that if the ensembles are
created time-symmetrically, by specifying both initial and
Ðnal boundary conditions, then the intermediate probability
distributions are also time-symmetric. Indeed, in QM
boundary conditions speciÐed at di†erent times are not
equivalent to and cannot in general be mapped to boundary
conditions speciÐed at one time. For example, suppose we
know the state of a particle at time to be and wet1 oW1T
also know all the interactions which occur between and at1
later time In general, we cannot know with certainty thet2 .
result of another measurement at Actually performingt2 .
the measurement and obtaining an answer provides new
information. ABL suggested that this could be described by
a fundamentally new kind of ensemble. ABL did this by

considering measurements performed on a quantum system
between two other measurements, the results of which were
given. They proposed describing the quantum system
betweem two measurements by using two states : the usual
one, evolving towards the future from the time of the Ðrst
measurement, and a second state evolving backwards in
time, from the time of the second measurement. If a system
has been prepared at time in a state and is found att1 oW1T
time in a then at time t, the system ist2 oW2T, t1\ t \ t2 ,
described by

SW2 oUs(t, t2) and U(t1, t) oW1T. (1)

In order to obtain such a system we prepare an ensemble of
systems in the state perform measurement of a desiredoW1T,
variable using separate measuring devices for each system in
the ensemble, and perform the post-selection measurement.
If the outcome of the post-selection was not the desired
result, we discard the system and corresponding measuring
device. We look only on measuring devices corresponding
to the systems post-selected in the state andSW2 o. SW2 o

therefore, deÐne the pre- and post-selected sub-oW1T,
ensemble between the times and That is, we are nott1 t2 .
concerned with the probabilities of obtaining a given pre-
and post-selected system, but rather with the properties of
this particular sub-ensemble, assuming we are successful in
preparing it. ABL considered these properties by investigat-
ing the conditional probabilities for obtaining di†erent out-
comes for an observable A at the intermediate time t. The
probability for an outcome given just the initial stateA\ a

i
is If is obtained at time t,oW1T o Sa

i
oU(t, t1) oW1T o2. A\ a

i
then the state of the particle can be replaced by andA\ a

i
the probability to obtain at time given is :SW2 o t2 A\ a

i
Therefore, the probability to obtaino SW2 oU(t2 , t) o a

i
T o2.

followed by is :A\ a
i

SW2 o

P(a
i
o SW2 o, oW1T)

\ o SW2 oU(t2 , t) o a
i
T o2 o Sa

i
oU(t, t1) oW1T o2

;
j
o SW2 oU(t2 , t) o a

j
T o2 o Sa

j
oU(t, t1) oW1T o2 . (2)

(The denominator is the normalization, which is the total
probability to obtain given that A was measuredSW2 o

during the intermediate time.) Several features of this result
are evident upon inspection : (1) the statistics of A depends
on the particular pre- and post-selected ensemble, (2) the
statistics for A does not depend on how the pre- and post-
selected ensemble was obtained, and (3) once a complete set
of observables is ascertained at and the statistics fort1 t2 ,
intermediate times does not depend on measurements made
before or after This formula can be rewritten to bet1 t2 .
manifestly time-symmetric by applying the time evolution
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operatore to instead of to the eigenstates of A,SW2 o,
since and thereforeU(t2 , t)\ exp[[iH(t2[ t)]\ Us(t, t2)SW2 oUs(t2 , t)\ [U(t2 , t) oW2T]s,

P(a
i
o SW2 o, oW1T)

\ o S a
i
oU(t, t2) oW2T o2 o Sa

i
oU(t, t2) oW1T o2

;
j
o Sa

j
oU(t, t2) oW2T o2 o Sa

j
oU(t, t1) oW1T o2 . (3)

This form of the ABL probability is also better from a com-
putational standpoint since it is easier to evolve a single
Ðnal state backwards in time than it is to evolveSW2 o

forward many intermediate states o a
i
T.

The basic concepts of the two-state approach, weak mea-
surement and weak values, were developed several years ago
[2È4]. The weak value of any physical variable A in the
time interval between pre-selection of the state andoW1T
post-selection of the state is given byoW2T

A
w

4
SW2 oA oW1T
SW2 oW1T

. (4)

Let us present the main idea by way of a simple example.
We consider, at time t, a quantum system which was pre-
pared at time in the state oB\ bT and was found at timet1

in the state oC\ cT, The measurements att2 t1\ t \ t2 .
times and are complete measurements of, in general,t1 t2
non-commuting variables B and C. In this example, the free
Hamiltonian is zero, and therefore, the Ðrst quantum state
at time t is oB\ bT. In the two-state approach we character-
ize the system at time t by backwards-evolving state
SC\ c o as well. Our motivation for including the future
state is that we know that if a measurement of C has been
performed at time t then the outcome is C\ c with prob-
ability 1. This intermediate measurement, however, destroys
our knowledge that B\ b, since the coupling of the measur-
ing device to the variable C can change B. The idea of weak
measurements is to make the coupling with the measuring
device sufficiently weak so that the change in B can be
neglected. In fact, we require that both quantum states do
not change signiÐcantly, neither the usual one oB\ bT
evolving towards the future nor SC\ c o evolving back-
wards.

During the whole time interval between and botht1 t2 ,
B\ b and C\ c are true (in some sense). But then,
B] C\ b ] c must also be true. The latter statement,
however, might not have meaning in the standard quantum
formalism because the sum of the eigenvalues b ] c might
not be an eigenvalue of the operator B] C. An attempt to
measure B] C using a standard measuring procedure will
lead to some change of the two quantum states and thus the
outcome will not be b ] c. A weak measurement, however,
will yield b ] c.

When the ““strongÏÏ value of an observable is known with
certainty, i.e., we know the outcome of an ideal (inÐnitely
strong) measurement with probability 1, then the weak
value is equal to the strong value. Let us analyze the
example above. The strong value of B is b, its eigenvalue.
The strong value of C is c, as we know from retrodiction.
From the deÐnition (4) immediately follows : andBw \ b

But weak values, unlike strong values are deÐnedCw \ c.
not just for B and C but for all operators. The strong value
of the sum B] C when [B, C] is not certain, but theD 0
weak value of the sum is : (B] C)w \ b ] c.

2. Quantum measurements

In the standard approach to measurements in quantum
theory, we measure observables which correspond to Her-
mitian operators. The latter have eigenvalues and a (““goodÏÏ)
measurement must yield one of these eigenvalues. If the
state of a quantum system is not an eigenstate of the mea-
sured operator, then one can predict only probabilities for
di†erent outcomes of the measurement. The state of the
system invariably ““collapsesÏÏ to an outcome corresponding
to one eigenvalue. A standard measurement of a variable A
is modeled in the von Neumann theory of measurement [5]
by a Hamiltonian

H \ g(t)PA, (5)

where P is a canonical momentum, conjugate to the pointer
variable Q of the measuring device. The function g(t) is
nonzero only for a very short time interval corresponding to
the measurement, and is normalized so that / g(t)dt \ 1.
During the time of this impulsive measurement, the Hamil-
tonian (5) dominates the evolution of the measured system
and the measuring device. Since [A, H]\ 0, the variable A
does not change during the measuring interaction. If ini-
tially the position Q of the measuring device is precisely
deÐned, then in the Heisenberg representation, the pointer
shifts its value by This measurement of AQfin [ Qin\ A.
disturbs any other observable B which does not commute
with A, i.e. and since [A, B] B changesB0 \ g(t)P[A, B] D 0,
during the measurement. If is precisely Ðxed, then itsQin
conjugate variable P is completely uncertain, thus implying
that any variable B that does not commute with A will be
uncontrollably disturbed during the measurement of A.
However, by allowing for inaccuracies in Q, thereby
weakening the interaction, we can decrease the disturbance
in non-commuting observables. These inaccuracies can be
modeled by introducing a spread of D in the Gaussian dis-
tribution of Q, thereby producing errors in the measurement
of A of order D, The initial state of the pointer variable is
thus modeled by a Gaussian centered at zero :

Uin(Q) \ (D2n)~1@4 e~Q2@2D2. (6)

Therefore, if the initial state of the system is a superposition
then after the interaction (5) the state ofoW1T \ ; a

i
o a

i
T,

the system and the measuring device is :

(D2n)~1@4 ; a
i
o a

i
T e~(Q~ai)2@2D2. (7)

If the separation between various eigenvalues is mucha
i

larger than the width of the Gaussian D, we obtain strict
correlation between the values of the variable A and nearly
orthogonal states of the measuring device. The measuring
procedure continues with an ampliÐcation scheme which
yields e†ective (or, according to some physicists, real) col-
lapse to one of the pointer positions and the corresponding
eigenstate In this model the only possible outcomes ofo a

i
T.

the measurement of the quantum variable A are the eigen-
values This fact perfectly matches the premise that thea

i
.

only values which can be associated with A are the a
i
.

In the two-state vector formalism the system at time t in a
pre- and post-selected ensemble is deÐned by two states, the
usual one evolving from the time of the preparation and the
state evolving backwards in time from the post-selection.
We may neglect the free Hamiltonian if the time between
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the pre-selection and the post-selection is very short. Con-
sider a system which has been pre-selected in a state oW1T
and shortly afterwards post-selected in a state TheoW2T.
weak value of any physical variable A in the time interval
between the pre-selection and the post-selection is given by
eq. (4). Let us show brieÑy how weak values emerge from a
measuring procedure with a sufficiently weak interaction.

We consider a sequence of measurements : a pre-selection
of a (weak) measurement interaction of the form of eq.oW1T,
(5), and a post-selection measurement Ðnding the state oW2T.
The state of the measuring device after this sequence is given
(up to normalization) by

U(Q)\ SW2 o e~iPAoW1T e~Q2@2D2. (8)

After simple algebraic manipulation we can rewrite it (in the
P-representation) as

U3 (P)\ SW2 oW1T e~iAwP e~D2P2@2

] SW2 oW1T ;
n/2

= (iP)n
n !

[(An)w [ (Aw)n] e~D2P2@2. (9)

If D is sufficiently large, we can neglect the second term of
(9) when we Fourier transform back to the Q-representation.
Large D corresponds to weak measurement in the sense that
the interaction Hamiltonian (5) is small. Thus, in the limit of
weak measurement, the Ðnal state of the measuring device
(in the Q-representation) is

U(Q)\ (D2n)~1@4 e~(Q~Aw)2@2D2, (10)

This state represents a measuring device pointing to the
weak value, Aw .

Weak measurements on pre- and post-selected ensembles
yield, instead of eigenvalues, a value which might lie far
outside the range of the eigenvalues. This suggests that
quantum observables may have a richer structure than sug-
gested by standard QM. Although we have shown this
result for a speciÐc von Neumann model of measurements,
the result is completely general : any coupling of a pre- and
post-selected system to a variable A, provided the coupling
is sufficiently weak, results in e†ective coupling to ThisAw .
weak coupling between a single system and the measuring
device will not, in most cases, lead to a distinguishable shift
of the pointer variable, but collecting the results of measure-
ments on an ensemble of pre- and post-selected systems will
yield the weak values of a measured variable to any desired
precision.

When the strength of the coupling to the measuring
device goes to zero, the outcomes of the measurement
invariably yield the weak value. To be more precise, a mea-
surement yields the real part of the weak value. Indeed, the
weak value is, in general, a complex number, but its imagin-
ary part will contribute only a (position dependent) phase to
the wave function of the measuring device in the position
representation of the pointer. Therefore, the imaginary part
will not a†ect the probability distribution of the pointer
position which is what we see in a usual measurement.
However, the imaginary part of the weak value also has
physical meaning. It expresses itself as a change in the con-
jugate momentum of the pointer variable [3].

3. An example : spin measurement

Let us consider a simple Stern-Gerlach experiment : mea-
surement of a spin component of a spin-1/2 particle. We

shall consider a particle prepared in the initial state spin
““upÏÏ in the direction and post-selected to be ““upÏÏ in thexü yü
direction. At the intermediate time we measure, weakly, the
spin component in the direction which is bisector of andmü xü

i.e., Thusyü , pm\ (p
x
] p

y
)/J2. oW1T \ o C

x
T, oW2T \ o C

y
T,

and the weak value of in this case is :pm

(pm)w \SC
y
o pm o C

x
T

SC
y
o C

x
T

\ 1

J2

SC
y
o (p

x
] p

y
) o C

x
T

SC
y
o C

x
T

\ J2. (11)

This value is, of course, ““forbiddenÏÏ in the standard inter-
pretation where a spin component can obtain the
(eigen)values ^1 only.

An e†ective Hamiltonian for measuring ispm
H \ g(t)Ppm . (12)

Writing the initial state of the particle in the representa-pm
tion, and assuming the initial state (6) for the measuring
device, we obtain that after the measuring interaction the
quantum state of the system and the pointer of the measur-
ing device is

cos (n/8) o CmT e~(Q~1)2@2D2 ] sin (n/8) o BmT e~(Q`1)2@2D2. (13)

The probability distribution of the pointer position, if it is
observed now without post-selection, is the sum of the dis-
tributions for each spin value. It is, up to normalization,

prob (Q) \ cos2 (n/8) e~(Q~1)2@D2 ] sin2 (n/8) e~(Q`1)2@D2. (14)

In the usual strong measurement D> 1. In this case, as
shown on Fig. 1(a), probability distribution of the pointer is
localized around [1 and ]1 and it is strongly correlated to
the values of the spin, p

z
\^1.

Weak measurements correspond to a D which is much
larger than the range of the eigenvalues, i.e., D? 1. Fig. 1(b)
shows that the pointer distribution has a large uncertainty,
but it is peaked between the eigenvalues, more precisely, at
the expectation value An outcome ofSC

x
o pm o C

x
T \ 1/J2.

an individual measurement usually will not be close to this
number, but it can be found from an ensemble of such mea-
surements, see Fig. 1(c). Note, that we have not yet con-
sidered the post-selection.

In order to simplify the analysis of measurements on the
pre- and post-selected ensemble, let us assume that we Ðrst
make the post-selection of the spin of the particle and only
then look at the pointer of the device that weakly measures

We must get the same result as if we Ðrst look at thepm .
outcome of the weak measurement, make the post-selection,
and discard all readings of the weak measurement corre-
sponding to the cases in which the result is not Thep

y
\ 1.

post-selected state of the particle in the representation ispm
The state of the mea-o C

y
T \ cos (n/8) o CmT[ sin (n/8) o BmT.

suring device after the post-selection of the spin state is
obtained by projection of (13) onto the post-selected spin
state :

U(Q) \N(cos2 (n/8) e~(Q~1)2@2D2 [ sin2 (n/8) e~(Q`1)2@2D2),

(15)

where N is a normalization factor. The probability distribu-
tion of the pointer variable is given by

prob (Q) \N2(cos2 (n/8) e~(Q~1)2@2D2

[ sin2 (n/8) e~(Q`1)2@2D2)2. (16)
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Fig. 1. Spin component measurement without post-selection. Probability
distribution of the pointer variable for measurement of when the particlepm
is pre-selected in the state (a) Strong measurement, D\ 0.1. (b) Weako C

x
T.

measurement, D\ 10. (c) Weak measurement on the ensemble of 5000 par-
ticles. The original width of the peak, 10, is reduced to In10/J5000 ^ 0.14.
the strong measurement (a) the pointer is localized around the eigenvalues
^1, while in the weak measurements (b) and (c) the peak is located in the
expectation value SC

x
o pm o Cx

T \ 1/J2.

If the measuring interaction is strong, D> 1, then the dis-
tribution is localized around the eigenvalues ^1 (mostly
around 1 since the pre- and post-selected probability to Ðnd

is more than 85%, see Figs 2(a), (b). But when thepm\ 1
strength of the coupling is weakened, i.e., D is increased, the
distribution gradually changes to a single broad peak
around the weak value, see Figs 2(c)È(e).J2,

The width of the peak is large and therefore each individ-
ual reading of the pointer usually will be far from TheJ2.
physical meaning of the weak value can, in this case, be
associated only with an ensemble of pre- and post-selected
particles. The accuracy of deÐning the center of the distribu-
tion goes as so increasing N, the number of particles1/JN,
in the ensemble, we can Ðnd the weak value with any
desired precision, see Fig. 2(f ).

In our example, the weak value of the spin component is
which is only slightly more than the maximal eigen-J2,

value, 1. By appropriate choice of the pre- and post-selected
states we can get pre- and post-selected ensembles with arbi-
trarily large weak value of a spin component. One of our
Ðrst proposals [6] was to obtain In this case the(pm)w \ 100.
post-selected state is nearly orthogonal to the pre-selected

Fig. 2. Measurement on pre- and post-selected ensemble. Probability dis-
tribution of the pointer variable for measurement of when the particle ispm
pre-selected in the state and post-selected in the state Theo C

x
T o C

y
T.

strength of the measurement is parameterized by the width of the distribu-
tion D. (a) D\ 0.1 ; (b) D\ 0.25 ; (c) D\ 1 ; (d) D\ 3 ; (e) D\ 10. (f ) Weak
measurement on the ensemble of 5000 particles ; the original width of the
peak, D\ 10, is reduced to In the strong measurements10/J5000 ^ 0.14.
(a)È(b) the pointer is localized around the eigenvalues ^1, while in the
weak measurements (d)È(f ) the peak of the distribution is located in the
weak value The outcomes of the weak(pm)w \ SC

y
o pm o Cx

T/SC
y
o C

x
T \ J2.

measurement on the ensemble of 5000 pre- and post-selected particles, (f ),
are clearly outside the range of the eigenvalues, ([1, 1).

state and, therefore, the probability to obtain appropriate
post-selection becomes very small. While in the case of

the (pre- and) post-selected ensemble was just(pm)w \ J2
half of the pre-selected ensemble, in the case of (pm)w \ 100
the post-selected ensemble will be smaller than the original
ensemble by the factor of D10~4.

4. Weak measurements on a single system

We have shown that weak measurements can yield very
surprising values which are far from the range of the eigen-
values. However, the uncertainty of a single weak measure-
ment (i.e., performed on a single system) in the above
example is larger than the deviation from the range of the
eigenvalues. Each single measurement separately yields
almost no information and the weak value arises only from
the statistical average on the ensemble. The weakness and
the uncertainty of the measurement goes together. Weak
measurement corresponds to small value of P in the Hamil-
tonian (5) and, therefore, the uncertainty in P has to be very
small. This requires large D, the uncertainty of the pointer
variable. Of course, we can construct measurement with
large uncertainty which is not weak at all, for example, by
preparing the measuring device in a mixed state instead of a
Gaussian, but no precise measurement with weak coupling
is possible. So, usually, a weak measurement on a single
system will not yield the weak values with a good precision.
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However. there are special cases when it is not so. Usual
strength measurement on a single pre- and post-selected
system can yield ““unusualÏÏ (very di†erent from the
eigenvalues) weak value with a good precision. Good preci-
sion means that the uncertainty is much smaller than the
deviation from the range of the eigenvalues.

Our example above was not such a case. The weak value
is larger than the highest eigenvalue, 1, only by(pm)w \ J2

D0.4, while the uncertainty, 1, is not sufficiently large for
obtaining the peak of the distribution near the weak value,
see Fig. 2(c). Let us modify our experiment in such a way
that a single experiment will yield a meaningful surprising
result. We consider a system of N spin-1/2 particles all pre-
pared in the state and post-selected in the stateo C

x
T o C

y
T,

i.e., and The vari-oW1T \<
i/1N o C

x
T
i

oW2T \ <
i/1N o C

y
T
i
.

able which is measured at the intermediate time is A4

The operator A has N]1 eigenvalues equally(;
i/1N (p

i
)m)/N.

spaced between [1 and ]1, but the weak value of A is

Aw \ <
k/1N SC

y
o
k
;

i/1N ((p
i
)
x
] (p

i
)
y
) <

j/1N o C
x
T
j

J2N(SC
y
o C

x
T)N

\ J2. (17)

The interaction Hamiltonian is

H \ g(t)
N

P ;
i/1

N
(p

i
)m . (18)

The initial state of the measuring device deÐnes the preci-
sion of the measurement. When we take it to be the Gauss-
ian (6), it is characterized by the width D. For a meaningful
experiment we have to take D small. Small D corresponds to
large uncertain P, but now, the strength of the coupling to
each individual spin is reduced by the factor 1/N. Therefore,
for large N, both the forward-evolving state and the
backward-evolving state are essentially not changed by the
coupling to the measuring device. Thus, this single measure-
ment yields the weak value. In Ref. [7] it is proven that if
the measured observable is an average on a large set of
systems, then we can always construct aA\ (;

i
N A

i
)/N,

single, good-precision measurement of the weak value. Here
let us present just numerical calculations of the probability
distribution of the measuring device for N pre- and post-
selected spin-1/2 particles. The state of the pointer after the
post-selection for this case is

N ;
i/1

N
([1)i(cos2 (n/8))N~i(sin2 (n/8))i e~(Q~*(2N~i)@N+)2@2D2.

(19)

The proability distribution for the pointer variable Q is

prob (Q)\N2
A

;
i/1

N
([1)i(cos2 (n/8))N~i

] (sin2 (n/8))i e~(Q~*(2N~i)@N+)2@2D2B2. (20)

The result for N \ 20 and di†erent values of D are presen-
ted in Fig. 3. We see that for D\ 0.25 and larger, the
obtained results are very good : the Ðnal probability dis-
tribution of the pointer is peaked at the weak value,

This distribution is very close to that((;
i/1N (p

i
)m)/N)w \ J2.

of a measuring device measuring operator O on a system in
an eigenstate For N large, the relative uncer-oO\ J2T.
tainty can be decreased almost by a factor without1/JN

Fig. 3. Measurement on a single system. Probability distribution of the
pointer variable for measurement of when the system ofA\ (;

i/120 (p
i
)m)/20

20 spin-1/2 particles is pre-selected in the state andoW1T \<
i/120 o C

x
T
i

post-selected in the state While in the very strongoW2T \ <
i/120 o C

y
T
i
.

measurements, D\ 0.01È0.05, the peaks of the distribution located at the
eigenvalues, starting from D\ 0.25 there is essentially a single peak at the
location of the weak value, Aw \J2.

changing the fact that the peak of the distribution points to
the weak value.

Although our set of particles pre-selected in one state and
post-selected in another state is considered as one system, it
looks very much as an ensemble. In quantum theory, mea-
surement of the sum does not necessarily yield the same
result as the sum of the results of the separate measure-
ments, so conceptually our measurement on the set of par-
ticles di†ers from the measurement on an ensemble of pre-
and post-selected particles. However, in our example of
weak measurements, the results are the same.

A less ambiguous case is the example considered in the
Ðrst work on weak measurements [2]. In this work a single
system of a large spin N is considered. The system is pre-
selected in the state and post-selected inoW1T \ o S

x
\ NT

the state At an intermediate time the spinoW2T \ o S
y
\ NT.

component is weakly measured and again the ““for-Sm
biddenÏÏ value is obtained. The uncertainty has to beJ2N
only slightly larger than The probability distributionJN.
of the results is centered around and for large N it liesJ2N,
clearly outside the range of the eigenvalues, ([N, N). Unruh
[8] made computer calculations of the distribution of the
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pointer variable for this case and got results which are very
similar to what is presented on Fig. 3.

An even more dramatic example is a measurement of the
kinetic energy of a tunneling particle [9]. We consider a
particle pre-selected in a bound state of a potential well
which has negative potential near the origin and vanishing
potential far from the origin ; ShortlyoW1T \ oE\ E0T.
later, the particle is post-selected to be far from the well,
inside a classically forbidden tunneling region ; this state can
be characterized by vanishing potential AtoW2T \ oU \ 0T.
an intermediate time a measurement of the kinetic energy is
performed. The weak value of the kinetic energy in this case
is

Kw \ SU \ 0 oK oE\ E0T
SU \ 0 oE\ E0T

\SU \ 0 oE[ U oE\ E0T
SU \ 0 oE\ E0T

\ E0 . (21)

The energy of the bound state, is negative, so the weakE0 ,
value of the kinetic energy is negative. In order to obtain
this negative value the coupling to the measuring device
need not be too weak. In fact, for any Ðnite strength of the
measurement we can choose the post-selected state suffi-
ciently far from the well to ensure the negative value. There-
fore, for appropriate post-selection, the normal strong
measurement of a positive deÐnite operator invariably yields
a negative result ! This weak value predicted by the two-
state vector formalism demonstrates a remarkable con-
sistency : the value obtained is exactly the value that we
would expect a particle to have when the particle is charac-
terized in the intermediate times by the two wave-functions,
one in a ground state, and the other localized outside the
well. Indeed, we obtain this result precisely when we post-
select the particle far enough from the well that it could not
have been kicked there as a result of the intermediate mea-
surement. A peculiar interference e†ect of the pointer takes
place : destructive interference in the whole ““allowedÏÏ region
and constructive interference of the tails in the ““forbiddenÏÏ
negative region. The initial state of the measuring device
U(Q), due to the measuring interaction and the post-
selection, transforms into a superposition of shifted wave
functions. The shifts are by the (possibly small) eigenvalues,
but the superposition is approximately equal to the original
wave function shifted by a (large and/or forbidden) weak
value :

;
i

c
i
U(Q[ a

i
)^ U(Q[ Aw). (22)

The example of a single weak measurement on the system of
20 pre- and post-selected spin-1/2 which was considered
above demonstrates this e†ect for a Gaussian wave function
of the measuring device, but we have proved [7] that the
““miraculousÏÏ interference (22) occurs not just for the Gauss-
ians, but for a large class of functions. The only requirement
is that their Fourier transform must be essentially bounded.

It is possible to use this idea for constructing a quantum
time machine, a device which can make a cat out of a kitten
in a minute [7, 10]. The superposition of quantum states
shifted by small periods of time can yield a large shift in
time ; and it even can be a shift to the past.

These surprising, even paradoxical e†ects are really
gedanken experiments. The reason is that, unlike weak mea-
surements on an ensemble, these are extremely rare events.

For yielding an unusual weak value, a single pre-selected
system needs an extremely improbable outcome of the post-
selection measurement. Let us compare this with a weak
measurement on an ensemble. In order to get N particles in
a pre- and post-selected ensemble which yield (pm)w \ 100,
we need DN104 particles in the pre-selected ensemble. But,
in order to get a single system of N particles yielding

we need D104N systems of N pre-selected par-(Sm)w \ 100N,
ticles. In fact, the probability to obtain an unusual value by
error is much larger than the probability to obtain the
proper post-selected state. What makes these rare e†ects
interesting is that there is a strong (although only one-way)
correlation : for example, every time we Ðnd in the post-
selection measurement the particle sufficiently far from the
well, we know that the result of the kinetic energy is nega-
tive, and not just negative : it is equal to the weak value,

with a good precision.Kw \ E0 ,

5. Experimental realizations of weak measurements

Realistic weak measurements (on an ensemble) involve prep-
aration of a large pre-selection ensemble, coupling to the
measuring devices of each element of the ensemble, post-
selection measurement which, in all interesting cases, selects
only a small fraction of the original ensemble, selection of
corresponding measuring devices, and statistical analysis of
their outcomes. In order to obtain good precision, this selec-
ted ensemble of the measuring devices has to be sufficiently
large. Although there are signiÐcant technological develop-
ments in ““markingÏÏ particles running in an experiment,
clearly the most e†ective solution is that the particles them-
selves serve as measuring devices. The information about
the measured variable is stored, after the weak measuring
interaction, in their other degree of freedom. In this case, the
post-selection of the particles in the required Ðnal state
automatically yields selection of measuring devices. The
requirement for the post-selection measurement is, then,
that there is no coupling between the variable in which the
result of the weak measurement is stored and the post-
selection device.

An example of such a case is the Stern-Gerlach experi-
ment where the shift in the momentum of a particle, trans-
lated into a spatial shift, yields the outcome of the spin
measurement. Post-selection measurement of a spin com-
ponent in a certain direction can be implemented by
another (this time strong) Stern-Gerlach coupling which
splits the beam of the particles. The beam corresponding to
the desired value of the spin is then analyzed for the result
of the weak measurement. The requirement of non-
disturbance of the results of the weak measurement by post-
selection can be fulÐlled by arranging the shifts due to the
two Stern-Gerlach devices to be orthogonal to each other.
The details are spelled out in Ref. [6].

An analysis of realistic experiment which can yield large
weak value appears in Ref. [11]. Duck, Stevenson andQw
Sudarshan [12] proposed slightly di†erent optical realiza-
tion which uses birefringent plate instead of a prism. In this
case the measured information is stored directly in the
spatial shift of the beam without being generated by the
shift in the momentum. Ritchie, Story and Hulet adopted
this scheme and performed the Ðrst successful experiment
measuring weak value of the polarization operator [13].
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Their results are in very good agreement with theoretical
predictions. They obtained weak values which are very far
from the range of the eigenvalues, ([1, 1), their highest
reported result is The discrepancy between calcu-Qw \ 100.
lated and observed weak value was 1%. The RMS deviation
from the mean of 16 trials was 4.7%. The width of the prob-
ability distribution was D\ 1000 and the number of pre-
and post-selected photons was N D 108, so the theoretical
and experimental uncertainties were of the same order of
magnitude. Their other run, for which they showed experi-
mental data on graphs (which Ðtted very nicely theoretical
graphs), has the following characteristics : dis-Qw \ 31.6,
crepancy with calculated value 4%, the RMS deviation
16%, D\ 100, N D 105.

Another system which is a good candidate for weak mea-
surements, due to a well developed technology of prep-
aration and selection of various quantum states, is a
Rydberg two-level atom. Between the pre- and post-
selection the atom can have weak coupling with a resonant
Ðeld in a microwave cavity [14, 15].

There are many experiments measuring escape time of
tunneling particles. Tunneling is a pre- and post-selection
experiment : a particle is pre-selected inside the bounding
potential and post-selected outside. Recently, Steinberg [16]
suggested that many of these experiments are indeed weak
measurements.

6. Conclusions

The two basic elements of our approach were investigated
separately. The theory of ““unsharpÏÏ measurements by Bush
[17] has the element of weakness of the interaction. Popular
today, the ““consistent historiesÏÏ approach [18], originated
by Griffiths [19], includes the idea of pre- and post-
selection. But it is the combination of the two which created
our formalism. It allowed us to see peculiar features of
quantum systems. The quantum time machine, the method
of increasing sensitivity using post-selection, and other sur-
prising phenomena were inaccessible within the framework
of the standard formalism. Neither consistent histories nor
unsharp measurements provided tools to see these e†ects,
although they might be helpful for analyzing these pheno-
mena [20]. The concept of weak values, however, is simple
and universal. Weak values are deÐned for all variables and
for all possible histories of quantum systems. They manifest
themselves in all couplings which are sufficiently weak. We
have also shown how certain systems in nature automati-
cally perform post-selections and thereby manifest the weak
values [21].

The formalism of weak measurement can also be helpful
in describing existing peculiar e†ects. The controversy of
superluminal motion of tunneling particles can be resolved
by recognizing that the experiments showing superluminal
motion are weak measurements [16]. We have shown how,
under conditions of weak measurements, the post-selection
leads to superluminal motion of light wave packets (Section
VIII of Ref. [3]).

Among applications of the weak value concept is a pro-
posal to study the back reaction of a quantum Ðeld on a
particle-antiparticle pair created by the Ðeld [22]. The weak
value of the Ðeld is considered between the (initial) vacuum
state and the (Ðnal) state which includes the particle-

antiparticle pair. The aim of this proposal is the analysis of
particle creation by a black hole and the problem of what
happens in the Ðnal stages of black hole evaporation [23,
24]. One key to this problem is the back reaction of the pair
to the gravitational Ðeld that created it, and here the appli-
cation of weak values signals the possibility of a major
breakthrough.

Another application is to use the weak measurement as
an ampliÐcation scheme for some parameter in the measur-
ing device, rather than as a measurement of the system [3].
Indeed, when we consider known initial state andoW1T
known Ðnal state the weak value (4) is known prior tooW2T,
the measurement, and our experiment yields no new infor-
mation. But we can perform the weak measuring procedure
when the strength of the weak coupling is not known. Then,
from the result of the weak measurement we can Ðnd the
strength of the coupling.

We would like to end the article with a more speculative
proposal for generalizing QM from the perspective of the
two-state vector theory. Up to now we have considered the
possibility of assigning two boundary conditions due to
selections made before and after a measurement. In stan-
dard QM, it is assumed that a wave-function for a system
exists even if we do not perform a measurement and there-
fore do not know what it is. In the same way, it is feasible
and even suggestive to consider an extension of QM to
include both a wave-function coming from the past and a
second wave-function coming from the future which are
determined by two boundary conditions, rather than a mea-
surement and selection. This proposal might solve the issue
of the ““collapseÏÏ of the wave-function in a new and more
natural way.
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