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Nonlocal aspects of a quantum wave
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Various aspects of nonlocality of a quantum wave are discussed. In particular, the question of the possibility
of extracting information about the relative phase in a quantum wave is analyzed. It is argued that there is a
profound difference in the nonlocal properties of the quantum wave between fermion and boson particles. The
phase of the boson quantum state can be found from correlations between results of measurements in separate
regions. These correlations are identical to the Einstein-Podolsky-Rosen~EPR! correlations between two en-
tangled systems. An ensemble of results of measurements performed on fermion quantum waves does not
exhibit the EPR correlations and the relative phase of fermion quantum waves cannot be found from these
results. The existence of a physical variable~the relative phase! that cannot be measured locally is the nonlo-
cality aspect of the quantum wave of a fermion.

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

There are literally thousands of papers about nonloca
in quantum theory. However, there are still some aspect
nonlocality that have not been fully explored and the conn
tion between various aspects has not been clarified. In
paper we will analyze particular nonlocal aspects that
different for quantum waves of bosons and fermions. Thi
a development of ideas originated in the works of one of
@1,2#. In order to put these nonlocality aspects in the pro
perspective we will give a brief review of other aspects
nonlocality of quantum theory.

An important nonlocality aspect that will not be discuss
in this paper is related to the concept ofnonlocal variables.
Measurements of nonlocal variables cannot be reduce
measurements of local variables@3#. Probably the simples
example of a nonlocal variable is the sum of spin com
nents of two separated spin-1

2 particles,sAz1sBz . Accord-
ing to the postulates of quantum theory, if a system is in
eigenstate of a measured variable, ideal measurement o
variable should not alter this eigenstate. For example,
singlet state of the two spins, frequently named the Einst
Podolsky-Rosen~EPR! state,

uC&EPR5
1

&
~ u↑&Au↓&B2u↓&Au↑&B), ~1!

is an eigenstate of the operatorsAz1sBz with an eigenvalue
0. Thus, measurement ofsAz1sBz must leave state~1! un-
changed. Note that measurements of local variablessAz and
sBz invariably change the state.

Some of the eigenstates of the nonlocal variablesAz
1sBz are entangled states. It is interesting that there
nonlocal variables which have only product-state eigensta
They are nonlocal in the sense of impossibility of their me
surement using only local measurements in the space-
regionsA andB @4#. Moreover, recently@5# there have been
found nonlocal variables with product-state eigenstates
cannot be measured even when measurements are perfo
1050-2947/2000/61~5!/052108~11!/$15.00 61 0521
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at different times in space locationsA and B and unlimited
classical communication between the sites is allowed.

Very important nonlocal variables aremodular variables
@6#. Many surprising effects related to the evolution of sp
tially separated systems can be effectively analyzed us
them. The dynamical equations of modular variables
nonlocal.

However, the nonlocality issues related to nonlocal va
ables are mingled: it is not easy to separate which part of
nonlocality in the dynamics is due to intrinsic nonlocality
the quantum world and which part is due to the nonloca
introduced by the definition of the variable. In this paper w
limit ourselves to analysis of relations between the results
measurements of local variables.

The plan of the paper is as follows. In Sec. II we intr
duce the basic framework of our analysis. In Secs. III–V
discuss three types of nonlocality. This discussion provi
the frame of reference for the analysis of nonlocality. In S
VI we give a more detailed explanation of the framewo
Following this preparatory introduction, we analyze the no
locality of the boson quantum wave in Sec. VII and the no
locality of the fermion quantum wave in Sec. VIII. Sectio
IX is devoted to an apparent causality paradox arising fr
nonlocality of the boson wave. In Sec. X we discuss a rela
issue of collective measurement which is relevant mostly
the fermion quantum wave. Finally, in Sec. XI we summ
rize the main results of the paper.

II. FRAMEWORK OF THE ANALYSIS

The formalism of nonrelativistic quantum theory allow
introduction of arbitrary Hamiltonians, in particular, Hami
tonians corresponding to nonlocal interactions. Howev
such interactions have not been observed in experiment
the framework of our analysis of nonlocality we will assum
that the Hamiltonian describes only local interactions. This
a basic assumption of our analysis.

Any wave in space is, in some sense, a nonlocal objec
classical wave, however, can be considered as a collectio
local properties. What makes the quantum wave genuin
©2000 The American Physical Society08-1
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nonlocal is that it cannot be reduced to a collection of lo
properties. In order to analyze this aspect of a quantum w
we will concentrate on a particular simple case: a quan
wave that is an equal-weights superposition of two localiz
wave packets in two separate locations:

uC&5
1

&
~ ua&1eifub&). ~2!

We will analyze various simultaneous~in a particular Lor-
entz frame! measurements performed in these two locatio
see Fig. 1. We will denote byA andB the space-time region
of these measurements. The wave packetua& is localized in-
side the spatial region ofA and the wave packetub& is local-
ized inside the spatial region ofB.

In this paper we will show that there is a profound diffe
ence in the nonlocal properties of the quantum wave of
form ~2! between fermion and boson particles. The bos
state leads to statistical correlations between results of m
surements inA and in B that cannotbe explained by loca
classical physics. The fermion state does not lead to s
correlations but it has a different nonlocality aspect. The f
mion quantum state cannot be measured using only l
measurements inA andB even if we are given an ensemb
of results of measurements performed on identical parti
in the state~2!. In particular, the relative phasef of the
fermion state does not lead to locally measurable effe
This phase has a physical meaning: it influences the resu
interference experiments in which the parts of the quan
state inA and inB are brought together. The existence o
physical quantity that does not manifest itself through lo
measurements is the nonlocality aspect of a fermion wave
contrast, a boson state can be found from the ensemb
results of local measurements: it can be identified from
nonlocal correlations mentioned above.

III. NONLOCALITY OF THE COLLAPSE OF A
QUANTUM STATE

In a situation in which a particle~boson or fermion! is
described by the state~2!, each region,A or B separately,
cannot be described by a pure quantum state. By introdu
the vacuum statesu0&A and u0&B which describe the region
A andB without the particle, we can rewrite the state~2! in
the form

FIG. 1. Space-time diagram of the measurements performe
the quantum wave~2!.
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uC&5
1

&
~ u1&Au0&B1eifu0&Au1&B), ~3!

whereu1&A[ua& andu1&B[ub&. This form allows us to write
down the complete quantum description of regionB ~as well
as regionA! by means of the density matrix

r05S 1

2
0

0
1

2

D . ~4!

In the framework of standard quantum theory, a measu
ment instantaneously collapses the quantum state of a
tem. Thus, an action inA can change the density matrix inB.
After a measurement of the projection operator inA, i.e.,
after observing whether the particle is inA, the density ma-
trix in B is changed instantaneously to the density matrix
one of the pure states:

S 1 0

0 0D or S 0 0

0 1D , ~5!

in anticorrelation to the corresponding density matrices inA.
According to the collapse interpretation, the measurem

in A changes the state of affairs inB. Before the action inA
the outcome of a possible measurement of the projec
operator inB was undetermined not only to the observer
B, but to all. Nothing in nature could give an indication abo
the outcome of the experiment. The outcome is genuin
random with probability1

2 both for finding regionB empty
and for finding the particle there. After the measuremen
A, the observer inB still does not know the outcome, bu
nature~in particular, the observer inA! has this information:
the probabilities for the results of the measurement inB
change to either 1 and 0 or to 0 and 1 according to
outcome inA.

There is no other example in physics in which a loc
action changes the state of affairs in a spacelike separ
region. Thus, this aspect of nonlocality provides an argum
in favor of adopting one of the interpretations that does
have the collapse of a quantum state. We now briefly
scribe these interpretations.

According to the pragmatic approach@7#, quantum theory
is limited to providing a recipe for predicting probabilities
quantum experiments, i.e., frequencies of the outcome
experiments. In this approach the density matrix is a stat
cal concept. An observer inB, who does not know which
outcome is obtained inA, considers the mixture of the two
possibilities~5! as described by the statistical density mat
r0 even after the measurement inA.

The causal interpretation of Bohm@8,9# has no collapse
and therefore it lacks the nonlocality aspect of instantane
change of a quantum state. The result of the measureme
projection operators on regionB is predetermined by a ‘‘Bo-
hmian position’’ and, therefore, the measurement inA
changes nothing inB. For a single particle, Bohmian theor
is a local hidden variable theory which completes quant

on
8-2
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NONLOCAL ASPECTS OF A QUANTUM WAVE PHYSICAL REVIEW A61 052108
mechanics without contradicting statistical predictions of
latter. However, for systems consisting of more than o
particle, the evolution of ‘‘Bohmian positions’’ of the par
ticles is nonlocal. The Bohmian theory is nonlocal in a rob
sense: action inA can change the outcome inB. For example,
consider the EPR state of two spin-1

2 particles~1!. Consider
Bohmian positions which are such that if a particularsz
measurement is performed on either particle, it must yi
sz51. However, if thesesz measurements are performed
both particles, the results will be different: the earlier me
surement ofsz in A will change the outcome of the cons
quent measurement inB to sz521. The details of this ex-
ample are given in Ref.@10#.

The noncollapse interpretation which one of us~L.V.!
finds most appealing@11# is the many-worlds interpretatio
~MWI ! @12#. In the physical universe, due to the measu
ment in A, the quantum state of the two particles and t
measuring device inA changes in the following way:

1

&
~ u1&Au0&B2u0&Au1&B)uready&MDA

→ 1

&
~ u1&Au0&Buclick&MDA

2u0&Au1&Buno click&MDA
),

~6!

but the density matrix inB is still r0 . Note that, relative to
an observer inA, who belongs to a world with a particula
reading of the measuring device, the density matrix of
particle inB is that of one of the pure states~5!. Only from
the point of view of an external observer, who is not cor
lated to a particular outcome inA, remains the density matrix
in A unchanged.

If we now add an observer inB who measures the projec
tion operator there, then inA there is a mixture of two worlds
with and without the particle inA and, similarly, inB there is
a mixture of two worlds with and without the particle inB.
These mixtures were created locally by the decisions of
observers to make these particular measurements. Wha
mains nonlocal in this picture are the ‘‘worlds:’’ the observ
in A who found the particle, in his travel toB, will meet there
the observer that has not found the particle, and vice vers
the other world.

One of us~Y.A.! strongly prefers an interpretation whic
does not require a multitude of worlds. The two-state vec
formalism of quantum theory@13,14# allows covariant de-
scription of the collapse. This picture suggests radical cha
in the concept of time which will avoid statements ma
above such as: ‘‘According to the collapse interpretation,
measurement inA changes the state of affairs inB.’’ These
ideas will be presented elsewhere.

IV. NONLOCALITY OF CORRELATIONS

In the framework of standard quantum theory the~anti!
correlations between finding particles in the two regionsA
and B described above are nonlocal in the sense that
theory does not yield a causal explanation for them. T
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complete quantum description does not specify the result
measurements and it does not yield a local causal expl
tion for these correlations. One might imagine that quant
theory can be completed by a deeper theory which will p
vide a local causal explanation for the results of measu
ments. In fact, the Bohmian theory mentioned above p
vides a local explanation for the anticorrelations in findi
the particle in the regionsA and B, but for some other ex-
periments performed in these spacelike separated regions
impossible to find a local hidden variable theory. In partic
lar, statistics of the results of spin measurements perform
on two separated spin-1

2 particles in a singlet state~the setup
for which Bohmian theory is not local! cannot be explained
by a local hidden variables theory. This is the content of
celebrated Bell inequalities paper@15#.

There are numerous proofs that quantum correlations c
not have local causes. We present here one more argume
this kind inspired by the work of Mermin@16#. However, the
reader can choose any other proof of this statement in o
to proceed with the line of argumentation of this paper.

The argument presented here assumes the principl
counterfactual definiteness@17#, i.e., that in any physica
situation the result of any experiment which can be p
formed has a definite value. We will analyze again the E
state~1!. Consider measurements of the spin component
N11 directions for the particle inA and in N different di-
rections for the particle inB. These directions are in thex̂- ẑ
plane and they are characterized by the angleu i with respect
to the ẑ axis,

u i[
ip

2N
, i 50,1, . . . ,2N. ~7!

Note that the measurement in the directionu2N (5p) is
physically equivalent to the measurement in the direct
u0 (50), but the result has to be multiplied by21, i.e.,
s(p)52s(0).

Spin measurement of one particle in a given direct
~effectively! collapses the spin state of the other particle
the opposite direction and, therefore, quantum theory p
dicts the same probability for all the following relations b
tween the results of measurements, if performed:

sA~u2n!52sB~u2n11!, ~8!

sA~u2n12!52sB~u2n11!, ~9!

wheren50,1,. . . , N21. The probability is

p5cos2S u i 112u i

2 D5cos2S p

4ND . ~10!

From the principle of counterfactual definiteness and
locality assumption, according to which local measureme
yield the same outcomes independently of what has b
measured in the other location, it follows that identical e
pressions in the equations~8! and ~9! must correspond to
equal values. Thus, we can use all these 2N equations to-
gether. The correctness of all the equations leads to a
tradiction. Indeed, we obtainsA(u0)5sA(u2N), contrary to
8-3
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Y. AHARONOV AND L. VAIDMAN PHYSICAL REVIEW A 61 052108
the fact that these expressions represent the same mea
ment in opposite directions:sA(0)52sA(p). Therefore, at
least one out of 2N equations~8! and ~9! must fail to be
satisfied. On the other hand, irrespective of what correlati
~compatible with quantum mechanics! follow from a hidden
variable theory, the probability that at least one of these
lations fails to be satisfied cannot be more than the proba
ity that one fails multiplied by the number of equations:

prob~fail!<2N~12p!52NF12cos2S p

4ND G . ~11!

This expression, however, is smaller than 1 even forN52
and for largeN it goes to zero asp2/8N.

Recently, Greenberger, Horne, and Zeilinger~GHZ! @18#
have found an even more robust example~improved by Mer-
min @19#! of such nonlocality. While in our example we hav
several relations that have to be true according to quan
theory with high probability, in spite of the fact that they a
cannot be true, in the GHZ example we have four relatio
that must be true with probability 1, but, nevertheless, th
cannot all be true together. However, in the GHZ~Mermin!
example we have to consider three, instead of two, space
separated regions.

Note that the Bell and the GHZ arguments do not h
without the principle of counterfactual definiteness, i.e., th
are not applicable in the framework of the many-worlds
terpretation in which, in general, quantum measurements
not possess single outcomes.

V. AHARONOV-BOHM TYPE NONLOCALITY

Another nonlocality aspect of quantum theory is related
the Aharonov-Bohm~AB! effect. The effect has a topolog
cal basis. The wave function of a particle enters two sp
regions tracing out trajectories in space-time which start
end together. An interference pattern that depends upo
field is observed in spite of the fact that locally, inside the
regions, it is impossible to make measurements that
specify the result of the interference experiment. The m
aspect of the effect is that it exists even when there is no fi
inside the regions during the whole time of the experime

In this paper we consider measurements in two space-
regions. This is different from the AB effect for which
closed trajectory in space is required. What is relevant to
discussion is the feature of a particle inside the two spa
time regionsA andB which will eventually be manifested in
the results of the interference experiment. The AB nonloc
ity is the existence of a physical property~a property that has
observable consequences! which does not have any manife
tation in local measurements.

A simple example is a particle wave packet that splits i
a superposition of two wave packets~2! and is later brought
back again to the same region for an interference experim
This can be achieved in a one-dimensional model of a w
packet arriving at a barrier at timet0 ; see Fig. 2~a!. The
barrier is such that the particle has the probability1

2 to pass
through and the probability12 to be reflected. Two reflecting
walls at equal distance from the barrier return the two wa
05210
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packets back to the barrier at the same time, and the resu
the interference experiment is observed by finding the p
ticle on the left or on the right side of the barrier at a la
time. The time-dependent~scalar! AB effect is obtained by
changing the relative potential between the two parts of
wave during the time they are separated. For a charged
ticle this can be achieved by moving two large opposit
charged parallel plates located between the wave packets
Fig. 2~b!. The two plates are placed originally one on top
the other, i.e., there is no charge distribution and, theref
there is no electric field anywhere. The plates are then mo
a short distance apart and then they are brought back.
will call such an operation ‘‘opening a condenser.’’

A naive answer to the question, ‘‘What is the nonloc
feature of the two regionsA andB?’’ ~the feature of the two
parts of the wave after they are separated! would be the
quantum phasef appearing in Eq.~2!. Indeed, we will ar-
gue, discussing fermions in Sec. VIII, that in certain circu
stances the quantum phase is a nonlocal feature in the s
that it cannot be found through local experiments inA andB.
However, the statement is not correct for bosons. Moreo
the phase is not a gauge invariant concept. The physica
fect of interference is of course gauge invariant since it i
topological property of the whole trajectory. Still, there is
property of the system inA and B that specifies the fina
outcome of the interference experiment given fixed circu
stances. The quantum phase does characterize this prop

FIG. 2. Scalar Aharonov-Bohm effect interference experime
~a! One-dimensional interference experiment. The particle in
wave packetuin& splits at the barrier into a superposition of the tw
wave packetsua& and ub&, which are reflected from the walls an
reunited to interfere at the barrier.~b! Parallel-plate condenser with
charged plates, originally one on top of the other, is opened~by
moving the plates apart! for a short time while the wave packetsua&
andub& are far apart. This operation introduces change in the elec
potentials between the locations ofua& and ub&, which generates the
AB phase.
8-4
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NONLOCAL ASPECTS OF A QUANTUM WAVE PHYSICAL REVIEW A61 052108
provided we are careful enough to fix the gauge in the pr
lem.

This and preceding sections described nonlocality asp
which are very different: here we discuss an observa
property of a system in two locations which does not ha
any local manifestation, while in the previous section
discussed results of local measurements which do not a
local-cause explanation. It is possible to perform analysis
these nonlocalities using different terms, such aslocal ac-
tion, separability, etc. Then the differences between the no
localities discussed in the two sections might not be as sh
as stated above@20#. However, such analysis strongly d
pends on the interpretation of quantum theory and is
helpful for the purpose of the present paper.

VI. DETAILED FRAMEWORK OF THE ANALYSIS

Our goal in this paper is to perform an analysis of non
cal aspects of the quantum state~2!. The main question is
‘‘What are the physical consequences of the presence of
quantum wave in the space-time regionsA andB?’’ One of
the questions is ‘‘Can we find the quantum phasef through
local measurements inA andB?’’ In order to be able to make
such analysis we have to specify exactly the meaning
space-time regionsA and B. Are the positions ofA and B
fixed relative to each other or are they fixed relative to
external reference frame? Are there fixed directions inA and
B such that measuring devices can be aligned accordin
them? Is the time inA andB defined relative to local clocks
or relative to an external clock? What are the measur
devices that are available inA andB? All these questions ar
relevant. We have to specify what is given inA andB prior
to bringing the quantum wave there in order to distingu
effects related to the quantum wave from the effects aris
from our preparation and/or definition of the sitesA andB.

We make the following assumptions.
~i! There is an external inertial frame which is mass

enough so that it can be considered classical.
~ii ! There is no prior entanglement of physical syste

between the sitesA andB. The two laboratories inA andB
are also massive enough so that the measurements perfo
on the quantum wave can be considered measurements
formed with classical apparatuses. However, for various
pects of our analysis we will have to consider the two lab
ratories as quantum systems. We assume that relative to
external reference frame the two laboratories are initially
scribed by a product quantum stateuCA&uCB&.

~iii ! There is no entanglement between location of
apparatuses inA and the wave packetua& ~nor between loca-
tion of the apparatuses inB and the wave packetub&!. Instead,
the fact that apparatusA measuresua& and apparatusB mea-
suresub& is achieved via localization relative to the extern
frame. The measuring devices and the wave packets are
localized at the same place. This can be expressed in
equations

^aux̂ua&5^x̂MDA
&, ~12!

^bux̂ub&5^x̂MDB
&, ~13!
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wherexMDA
(xMDB

) is the variable that describes the loc
tion of the interaction region of the measuring devices inA
~in B!. It is assumed that the wave packetua& remains in the
space regionA ~and ub& remains inB! during the time of
measurements.

~iv! Measurements inA and inB are performed by loca
measuring devices activated by local clocks, say, at the
ternal time tA5tB50. The clocks are well synchronize
with the timet of the external~classical! clock:

^tA~ t !&5^tB~ t !&5t, ~14!

and the spreads of the clock pointer variablesDtA ,DtB are
small during the experiment. Again, as stated in~ii !, there is
no entanglement between clocks inA and inB.

The assumptions can be summarized as follows: a m
surement inA, the space-time point relative to an extern
classical frame, means a measurement performed by l
apparatuses inA triggered by the local clock. The appara
tuses and clocks inA are not entangled with the apparatus
and clocks inB.

Given all apparatuses inA andB, but without the quantum
particle~2!, it is impossible to observe the nonlocality of th
collapse described in Sec. III. Since the quantum state o
systems~measuring apparatuses, clocks, etc.! is the product
state of a quantum state in spatial locationA times a quantum
state in spatial locationB, there are no correlations betwee
the results of measurements inA and inB. This requirement
need not be so strong: the crucial feature is the absenc
quantum correlations~following from entanglement betwee
the systems inA and inB!. Here, for simplicity of the analy-
sis, we forbid any initial correlation between measuring d
vices in the two sites.

There is a somewhat more complicated situation in re
tion to the nonlocality discussed in Sec. V. Clearly there
no quantum phase that characterizes the devices inA andB:
these systems are in the product state. But the operati
definition of the AB nonlocality of Sec. V was a feature th
cannot be found through local experiments inA and B, the
feature that leads to observable effects when the syst
from locationsA and B are brought together. If we restric
ourselves to measurements using local measuring dev
then there are many features which cannot be found loca
for example, the relative orientation of the measuring devi
in A and inB. The observer inA ~or in B! making measure-
ments using local devices cannot find out his~or her! orien-
tation. However, if we have other observers in the prod
state in regionsA andB with well defined known orientation
they can measure locally the orientation of the system inA
and orientation of the system inB. The question of what can
and what cannot be measured from within the system itse
interesting@21,22#, but we will not discuss it here. Here w
allow all possible measuring devices provided that they
not possess entanglement betweenA andB.

In our discussion we assume that measurements are
formed on a single system. But, for the question of findi
the phase, the question of obtaining nonclassical correlati
etc., we assume that we have an ensemble of experimen
identical single systems. Collective measurements on the
8-5
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Y. AHARONOV AND L. VAIDMAN PHYSICAL REVIEW A 61 052108
semble of particles are not allowed: clearly, the results
such experiments can manifest properties of the compo
system of many particles which are not intrinsic properties
each particle.~We will briefly discuss collective measure
ments in Sec. X.!

After stating here precisely the ‘‘rules of the game’’ w
now proceed to discuss the nonlocality of the quantum w
~2! for various particles.

VII. SINGLE-PHOTON NONLOCALITY

Let us start by considering a photon in a state~2!. There
have been several proposals@23–26# for how to obtain quan-
tum correlations based on such and similar systems@27#. The
photon in a state~2! exhibits nonlocality of the EPR corre
lations described in Sec. IV. The state of the photon, if
write it in the form ~3!, is isomorphic to the EPR state~1!.

In order to get EPR-type correlations we must be able
perform measurements on the photon analogous to the
measurements in arbitrary direction. The analog of the s
measurement in theẑ direction is trivial: it is observing the
presence of the photon in a particular location. A gedan
experiment yielding the analog of the spin measurements
the EPR pair in arbitrary directions is as follows@28#. Let us
consider, in addition to the photon, a pair of spin-1

2 particles,
one located inA and one inB; see Fig. 3. Both particles ar
originally in a spin ‘‘down’’ state in theẑ direction. In the
locationsA andB there are magnetic fields in theẑ direction
such that the energy difference between the ‘‘up’’ a
‘‘down’’ states equals exactly the energy of the photon. Th
we construct a physical mechanism of absorption and em
sion of the photon by the spin which is described by
unitary transformation in each site:

u1&u↓&↔u0&u↑&,

u1&u↑&↔u1&u↑&, ~15!

u0&u↑&↔u0&u↓&.

This transformation swaps the quantum state of the pho
and the quantum state of the pair of spin-1

2 particles as fol-
lows:

FIG. 3. Swapping of the single-photon state with the entang
state of two spin-12 particles.
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1

&
~ u1&Au0&B1eifu0&Au1&B)u↓&Au↓&B

→ 1

&
u0&Au0&B~ u↑&Au↓&B1eifu↓&Au↑&B). ~16!

Thus, we can obtain nonlocal correlations of the EPR s
starting with a single photon, swapping its state to the s
of the pair of spin-12 particles, and then making appropria
spin component measurements. Statistical analysis of
correlations between the results of spin measurementsA
and in B allows us to find the phasef. For example, the
probabilities for coincidence and anticoincidence in thex
spin measurements are given by

prob~ u↑x&u↑x&)5prob~ u↓x&u↓x&)5 1
4 u11eifu2, ~17!

prob~ u↑x&u↓x&)5prob~ u↓x&u↑x&)5 1
4 u12eifu2. ~18!

We have shown that, in principle, the nonlocality of
single photon is equivalent to the nonlocality of the EP
pair. Now we will turn to discussion of the possibilities o
manifestation of this nonlocality in real experiments and w
try to explore the nature of this equivalence.

We are not aware of experiments in which a spin in
magnetic field absorbs a photon with high efficiency. Ho
ever, there is an equivalent operation that is performed
laboratories. Recently, there has been very signific
progress in microwave cavity technology and there are
periments in which Rydberg atoms which operate as tw
level systems absorb and emit photons into a microw
cavity with a very high efficiency@30#. The excited stateue&
and the ground stateug& of the atom are isomorphic tou↑& and
u↓& states of a spin-1

2 particle. For the atom, measuring th
analog of thez spin component is trivial: it is the tes
whether the atom is in the excited state or the ground st
For measurements analogous to the spin measuremen
other directions there is an experimental solution too. Us
appropriate laser pulses the atom state can be ‘‘rotated
the two-dimensional Hilbert space of ground and exci
states in any desired way. Thus, any two orthogonal st
can be rotated to theue& and ug& states and then a measur
ment that distinguishes between the ground and exc
states distinguishes, in fact, between the original orthogo
states.

The Hamiltonian which leads to the required interactio
can be written in the following form:

H5a†ug&^eu1aue&^gu, ~19!

where a†,a are creation and annihilation operators of t
photon. This Hamiltonian is responsible for the two need
operations. First, such coupling between the photon in
cavity in A and the atom inA together with similar coupling
in B swaps the state~3! to the state of two Rydberg atoms

d

8-6
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1

&
~ u1&Au0&B1eifu0&Au1&B)ug&Aug&B

→ 1

&
u0&Au0&B~ ue&Aug&B1eifug&Aue&B). ~20!

The same Hamiltonian can also lead to an arbitrary rota
of the atomic state. To this end the atom has to be couple
a cavity with acoherent stateof photons,

ua&5e2uau2/2(
n50

`
an

An!
un&. ~21!

The phase ofa specifies the axis of rotation and the absolu
value of a specifies the rate of rotation. For example, t
time evolution of an atom starting att50 in the ground state
is

uC~ t !&5cos~ uaut !ug&1
a

i uau
sin~ uaut !ue&. ~22!

This is correct when we make the approximationa†ua&
.a* ua&. This approximation becomes precise in the limit
large uau corresponding to a classical electromagnetic fie
The Hamiltonian~19! is actually implemented in laser-aide
manipulations of Rydberg atoms passing through microw
cavities.

Conceptually, the above scheme can be applied to
type of bosons~instead of photons!, even charged bosons
An example of a~gedanken! Hamiltonian for this case de
scribes a protonup& which creates a neutronun& by absorbing
a negatively charged meson:

H5am
† up&^nu1amun&^pu, ~23!

wheream
† ,am are creation and annihilation operators of t

meson. This Hamiltonian swaps the state of the meson@now
written in the form~3!# and the state of the nucleon pair:

1

&
~ u1&Au0&B1eifu0&Au1&B)up&Aup&B

→ 1

&
u0&Au0&B~ un&Aup&B1eifup&Aun)B). ~24!

Since there is no direct measurement of a superpositio
proton and neutron, we need again a procedure that ro
the superposition states of a nucleon to a neutron or pro
state. This rotation requires coherent states of mesons, w
would be, in this case, a coherent superposition of states
different charge. Due to strong electromagnetic interact
the coherent state will decohere very fast. This is essent
an environmentally induced ‘‘charge superselection ru
which prevents stable coherent superpositions of states
different charge. It is important that there is noexactcharge
superselection rule which would prevent, in principle, p
forming the experimental scheme presented above. Ind
Aharonov and Susskind~AS! @31# proposed a method fo
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measuring the relative phase between states with diffe
charge, thus showing that there is no exact charge supe
lection rule. In their method one can measure the phase e
if the whole system~the observed particle and the measuri
device! is in an eigenstate of charge. This corresponds
initial entanglement between measuring devices inA and B
and thus will not be suitable for the present procedure. H
we assume the existence of superpositions of different ch
states: only then is it possible that the quantum state of m
suring devices inA andB is a product state.

There are some arguments that the total charge of
universe is zero and therefore we cannot have a produc
coherent states of charged particles inA and in B. More
sophisticated analysis has to be performed: since the obs
able variables are only relative variables, the final conclus
will be as in the AS paper@31#: conceptually, there is no
constraint on a measurement of the relative phase o
charged boson, but decoherence will prevent constructio
any realistic experiment. See also the very different ar
ments against an exact superselection rule by Giulini@32#.

VIII. NONLOCALITY OF A FERMION QUANTUM WAVE

As we have shown above, the nonlocality properties
the boson quantum state~2! are equivalent to the nonlocalit
of the EPR pair. In contrast, the nonlocality properties of
fermion quantum state~2! are very different from those o
the EPR pair. We cannot generate quantum correlations
tween results of local measurements performed inA and in
B, the correlations which violate Bell inequalities.

The reason why the method that was applicable to bos
fails for fermions is that there is no coherent state of ferm
ons. The number stateun& exists only forn50 and n51
@33#.

The intuitive understanding of the role of the cohere
state is as follows. If, in addition to the measuring devic
there is an auxiliary identical particle in a known superpo
tion of localized wave packets inA andB, then the phasef
can be found using local measurements. We consider
superposition ofua8& and ub8& positioned nearua& and ub&,
respectively; see Fig. 4. We choose the phase of the auxi
particle to be equal to zero,

uC8&5
1

&
~ ua8&1ub8&), ~25!

FIG. 4. Space-time diagram of local measurements that al
finding the phasef of a quantum wave when an auxiliary identic
particle with known phase is given.
8-7
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Y. AHARONOV AND L. VAIDMAN PHYSICAL REVIEW A 61 052108
i.e., we have a composite system of two identical particle
the state

uC&uC8&5 1
2 ~ ua&1eifub&)~ ua8&1ub8&). ~26!

The phasef controls the rate of coincidence counting in t
measurements of a local variable inA with eigenstates

ua1&[
1

&
~ ua&1ua8&), ua2&[

1

&
~ ua&2ua8&), ~27!

and a local variable inB with eigenstates

ub1&[
1

&
~ ub&1ub8&), ub2&[

1

&
~ ub&2ub8&). ~28!

In the case that one particle was found on each side,
probabilities are@compare with Eq.~17!#

prob~ ua1&ub1&)5prob~ ua2&)5 1
4 u11eifu2, ~29!

prob~ ua1&ub2&)5prob~ ua2&ub1&)5 1
4 u12eifu2. ~30!

The method described in the previous paragraph is ap
cable for both bosons and fermions. However, the existe
of a particle described by Eq.~25! as a part of our measurin
devices contradicts our assumption that sitesA andB do not
possess an entangled physical system prior to bringing in
test particle. For bosons we can consider a coherent sta
particles described by state~25!; it is equal to the product o
local coherent states of bosons inA and inB:

e2uau2/2(
n50

`
an

An!

1

&n
~ ua8&1ub8&)n

5e2uau2/2(
n50

`
an

An!
ua8&e2uau2/2(

n50

`
an

An!
ub8&. ~31!

Thus, this state has no entanglement between the sites
provides the reference for measuring the phasef of the state
~2! via methods described in the previous section.

Again, if we assume that there is no prior entanglem
between the sitesA andB, the phasef of the fermion quan-
tum state~2! cannot be measured locally. Quantum corre
tions that break Bell’s inequality cannot be obtained. T
only type of nonlocality for a fermion wave~except the col-
lapse nonlocality! is the AB nonlocality. The quantum phas
manifests itself only in interference experiments in which
wave packetsua& and ub& are brought together.

The impossibility of local measurement of the phasef is
due to the anticommutation of fermion operators: the ope
tor aA

†1aA does not commute with the operatoraB
†1aB .

The eigenstates of the operatora†1a are (1/&)(u0&
6u1&); we have used measurements of such operators
finding the phasef of the boson wave in Sec. VII. A mea
surement in siteA of aA

†1aA leads to an observable chang
in the results of measurement ofaB

†1aB , whereaA
† , aA , and

aB
† , aB are creation and annihilation operators of the ferm
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in A and inB, respectively. This means that the possibility
such measurements would lead to superluminal commun
tion.

Another question which can be asked is ‘‘Can we me
sure locally the phasef of a superposition of a pair of fer
mions?’’ The quantum state is

uC&5
1

&
~ u2&Au0&B1eifu0&Au2&B), ~32!

where, for example,u2&A might represent two electrons i
identical spatial states insideA being in a singlet spin state
Since a↑A

† a↓A
† 1a↑Aa↓A commutes witha↑B

† a↓B
† 1a↑Ba↓B ,

the argument presented in the preceding paragraph for
measurability of the phase of a superposition of sing
fermion wave packets does not hold in this case. In fac
pair of fermions is, in a sense, a boson. We can constru
procedure for measuring the phasef of the state~32! similar
to the procedure that was previously described@for a photon
Eqs.~19!–~22! and for a charged meson Eqs.~23! and~24!#
in Sec. VII. A difficulty is that the coherent state of pairs
fermions which is required for our procedure can be co
structed only approximately.

IX. IS IT POSSIBLE TO CHANGE THE PHASE IN A
NONLOCAL WAY?

The main message of Sec. VII is that the phasef for
boson state~2! is locally measurable. Given an ensemble
bosons with identical phasef we can generate a set of num
bers~results of measurements! in A and another set of num
bers in B, such that the two sets together yieldf. This
sounds paradoxical, in particular, becausef is not a gauge
invariant parameter.

Moreover, it seems that this phase can be changed no
cally. Indeed, it has been described in Sec. VIII how open
a condenser for a period of time in the space between
locations of a charged particle,A andB, changes the phase
this is the scalar AB effect. Thus, it seems that by an act
in a localized region we can send information to a space
separated region. Opening or not opening a condenser ap
ently changes correlations in the results of measuremen
A andB; see Fig. 5.

It has been shown@34# that such an action, if possible
cannot lead to a paradoxical causal loop similar to the
generated by the possibility of sending signals from one
calized space-time region to another spacelike separatelo-
cal region. In our case the region to which we send t
information consists of two spacelike separated regio
There is no local observer who receives superluminal s
nals.

In spite of the fact that we cannot reach a causality pa
dox if such operation is possible, it clearly contradicts t
spirit, if not the letter, of special relativity. And, in fact, it i
impossible. It is incorrect that the opening of a conden
will change correlations between results of measurement
A andB. It must be incorrect because we should be able
use a covariant gauge in which changes in the potentials
place only inside the light cone. However, we can expl
8-8
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NONLOCAL ASPECTS OF A QUANTUM WAVE PHYSICAL REVIEW A61 052108
this phenomenon also in a standard~Coulomb! gauge. In our
scheme the measurements in local sites include interac
with coherent states of auxiliary particles, particles which
identical to the particle in a superposition. Therefore, if t
particle in question is charged, the auxiliary particles are a
charged, and opening the condenser changes the phase
coherent state in such a way that the correlations are
changed. The gauge that we choose changes the descr
of auxiliary particles too, so that the probabilities for resu
of measurements remain gauge invariant.

Consider now a neutral boson state. A massive plate
tween the regionsA andB which we move or do not move
toward one of the sites will introduce a phase shift in co
plete analogy with the scalar AB effect.~The difference here
is that the gravitational fields in the regionsA andB are not
zero, but the fields are not affected by the motion of
plate.! In a scenario where the boson is absorbed by spin
a magnetic field and the correlations are obtained from
spin measurements, it is not obvious how the measuring
vices will be influenced by the movement of the mass
plate. The resolution of the paradox in this case is simila
the resolution of Einstein’s paradox of an exact energy of
exact clock@35#. The explanation is that the pointers of th
local clocks are shifted. Simultaneity betweenA and B is
altered due to the action of the massive plate. Since in
case local clocks activate the measurements, the shift in
pointer will lead to a change. This change compensates
actly the phase change of the boson.

X. COLLECTIVE MEASUREMENTS

In this paper we have considered the results of meas
ments on an ensemble of identical particles in an unkno
state. We allow measurements to be performed only
single members of the ensemble, so that we will have
ensemble of results of measurements performed on si
particles. We believe that this is the proper approach for

FIG. 5. Apparent sending signals to a spacelike separated
gion. Operation inO, opening the condenser for a period of tim
apparently changes the correlations between measurements inA and
B. No signal is sent fromO, either toA or to B, but the signalis sent
to the union ofA andB. The intersection of light cones originatin
at A and atB lies inside the light cone originating atO. Therefore,
the action of the condenser falls into the category of ‘‘jammer
considered in Ref.@34#.
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analysis of the nature of a quantum wave of a particle; ho
ever, it might be interesting to consider a related questi
‘‘Are there any changes to the questions posed in this pa
if collective measurements are allowed?’’ Note that there
recent result showing that collective measurements do m
a difference for similar questions regarding the nonloca
of an ensemble of pairs of spin-1

2 particles in a particular
mixed state@36#.

For bosons we do not expect any difference because, e
for single-particle measurements, we got the answers to
questions:~i! statistical analysis of the results of measu
ments allows us to find the phasef and ~ii ! there are mea-
surements inA and inB such that the results are characte
ized by correlations which cannot have local causes.
single-particle measurements on fermions both~i! and~ii ! are
not true and this raises the question of the status of~i! and
~ii ! when collective measurements are allowed.

Let us start this analysis by assuming that our particle
an electron and, contrary to the assumption of no prior
tanglement, we now have an auxiliary particle, a position
a known superposition inA andB, say, of the form~25!. In
this case both~i! and ~ii ! are true: the fermion stateis mea-
surable via local measurements, and some measuremen
A andB exhibit correlations that have no local causes.

Indeed, we can apply an interaction such that the posit
and the electron located in the same site annihilate and cr
a photon. Such interaction will lead to the following tran
formation:

1

&
~ ue2&A1eifue2&B)

1

&
~ ue1&A1ue1&B)

→ 1
2 ~ ue2&Aue1&B1eifue2&Bue1&A1ug&A1eifug&B).

~33!

After testing andnot finding the electron and the positron i
the sitesA andB the remaining state will be@37#

1

&
~ ug&A1eifug&B), ~34!

which is a different notation for a single-photon state of t
form ~2!. For a single photon we know that~i! and ~ii ! are
true: the phase of a single-photon state~which is the original
phasef of the fermion! can be found, and quantum correl
tions breaking Bell inequalities can be obtained.

However, we do not have a positron in a state~25!. In-
stead, we have an ensemble of electrons in a state~2!. So the
first step is to swap the state of the electron with the state
a positron@38#. If we have an entangled state of a compos
system which has two parts, one inA and another inB, such
as the EPR state of two spin-1

2 particles located inA andB,
and we want to transfer this entangled state to another pa
particles inA andB, then all we have to do is to perform
local operation in each site that swaps the local quan
states of one particle from one pair with one particle from
other pair located in the same site@3#. Linearity of quantum
mechanics will ensure that swapping of local states, i.e.,

e-

’
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Y. AHARONOV AND L. VAIDMAN PHYSICAL REVIEW A 61 052108
states of parts of the systems, will lead to swapping of
quantum state of the whole systems.

In this paper we are interested in the swapping of a n
local state of a single particle with another single partic
The method described above cannot be applied directly
cause it is assumed that we have no another particle
superposition of being inA and B ~this is entanglement!.
Therefore, the other particle is not present in at least on
the sites and consequently the ‘‘local swapping interactio
with this particle is meaningless. However, if the partic
are bosons, then the swapping operation is possible. It ca
done by transferring the quantum state to the entangled
of a composite system: a single-photon state can be tr
ferred to two spin-12 particles in a magnetic field in th
gedanken scenario described in Sec. VII or to two atoms
real experiment using microwave cavities. After that, t
quantum state can be swapped back to ‘‘another’’ photo

Let us come back to the question of transferring the qu
tum state of the electron to a positron. Again, since we
sumed no prior entanglement, the positron cannot be
superposition of being inA and in B. Therefore, we will
consider a situation in which there are two positrons, one
A and another inB. We apply an interaction such that th
positron and the electron that are in the same site annih
and create a photon. This is described by the equation

1

&
~ ue2&A1eifue2&B)ue1&Aue1&B

→ 1

&
~ ug&Aue1&B1eifug&Bue1&A). ~35!

Now, the procedure described in Sec. VII allows measu
ments of local superpositions of the vacuum and sing
photon states. In particular, there is a nonzero probability
finding the state (1/&)(u0&A1ug&A) in A and a similar state
(1/&)(u0&B1ug&B) in B. When this occurs, the final situa
tion is that the electron and one of the positrons are ann
lated and a positron appears in a superposition of bein
two places,

1

&
~ ue1&B1eifue1&A). ~36!

Thus, we can obtain a positron in a superposition from
electron in a superposition. If we are allowed to perfo
collective measurements we now can annihilate this posi
with another electron in the ensemble:

1

&
~ ue2&A1eifue2&B)

1

&
~eifue1&A1ue1&B)

→ 1
2 ~ ue2&Aue1&B1ei2fue2&Bue1&A1eifug&A

1eifug&B). ~37!

We do not obtain a relative phase between photon w
packets in two places, which would allow us to find t
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phasef, but we do obtain a superposition of a photon inA
andB with known ~zero! phase. This superposition can ge
erate quantum correlations without local causes as descr
above.

If we are allowed to perform collective measurements,
can consider measurements on the pairs of fermions from
ensemble. The phase of pairs of fermions is 2f and, in gen-
eral, it can be found by the method described in Sec. V
However, as we mentioned above, all statements about m
surability using collective measurements do not describe
nature of a quantum wave of a single particle.

XI. CONCLUSIONS

In this paper we have analyzed nonlocal aspects o
simple quantum wave which is an equal-weights superp
tion ~2! of wave packets inA and inB. For this analysis we
assumed that we are given nonentangled laboratoriesA
andB which are described quantum mechanically by a pr
uct state of systems inA and systems inB.

We have shown that the presence of an ensemble
bosons in a superposition (1/&)(ua&1eifub&) leads to cor-
relations in the results of single-particle local measureme
in A and in B which break Bell’s inequality. These result
collected from a large ensemble, allow us to find the ph
f. Thus, the boson quantum wave exhibits EPR-type non
cality. For a photon state this is not just a theoretical sta
ment: the EPR nonlocality can be observed in an ensem
of measurements carried out on single photons. In princi
the statement applies to any boson state. However, an e
ronmentally induced superselection rule prevents such
periments with charged bosons. Also, experiments with n
tral massive bosons do not seem to be feasible.

The presence of an ensemble of fermions in a superp
tion (1/&)(ua&1eifub&), with the restriction that we per
form separate measurements on each fermion, does not
to correlations in the results of the local measurements iA
and inB that violate Bell’s inequality. We do get correlation
between the results of local measurements inA and B, but
these correlations are of the kind that allow local causal
planation. These results do not allow us to find the phasef.
The phasef has observable consequences in interfere
experiments. A fermion quantum wave exhibits AB nonl
cality, which is the unobservability of this phase via loc
single-particle measurements.
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