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Abstract

We show how one can ascertain the values of a complete set of mutually complementary observables of a prime degree of
freedom. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1987, one of us (Y.A.) co-authored a paper [1]
with the somewhat provocative title “How to ascertain
the values ofσx , σy , andσz of a spin-1/2 particle”.
It reports the solution of what later became known
as The King’s Problem: A mean king challenges a
physicist, who got stranded on the remote island ruled
by the king, to prepare a spin-1/2 atom in any state
of her choosing and to perform a control measure-
ment of her liking. Between her preparation and her
measurement, the king’s men determine the value of
eitherσx , or σy , or σz. Only after she completed her
control measurement, the physicist is told which spin
component has been measured, and she must then state
the result of that intermediate measurement correctly.
How does she do it?
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This thought experiment has not been realized as
yet. But recently an optical analog has been formu-
lated [2], and experimental data should be at hand
shortly. Somewhat unexpectedly, and rather reward-
ingly, the photon version of the king’s problem sug-
gested a new scheme for quantum cryptography [3].

Also very recently, we reported a generalization of
the king’s problem [4] where, instead of the traditional
spin-1/2 atom, a spin-1 atom is used. This general-
ization required answers to two questions: What are
the appropriate spin-1 analogs of the spin-1/2 observ-
ablesσx,σy, σz? And, how does the physicist rise to
the challenge now?

In the present Letter we deal with the further gener-
alization to arbitrary prime degrees of freedom, where
measurements can have at mostp different outcomes,
p being any prime number. Of course, the situations of
Refs. [1] and [4], spin-1/2 (p = 2) and spin-1 (p = 3),
respectively, are particular realizations of the prime
case. We believe that this extension of the idea of
Ref. [1] teaches us a potentially important lesson about
the mathematical structure of quantum kinematics.
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In Section 2 we answer the general-prime version
of the first question asked above. The analogs of the
three spin-1/2 observables are identified as complete
sets of mutually complementary observables. Then the
answer to the second question is given in Section 3;
it employs essentially the same strategy that works in
the cases of spin-1/2 and spin-1, so that we have a
genuine generalization indeed. We leave it as a moot
point whether generalizations to non-prime degrees
of freedom are possible, or if there are analogs of
the variants of the spin-1/2 problem that were found
by Ben-Menahem [5] and Mermin [6]. Also, we do
not address the intriguing question of whether the
geometrical reasoning that works so well in the spin-
1/2 case [7] lends itself to generalizations for spin-1
or richer degrees of freedom.

2. Pairwise complementary observables

The three spin-1/2 observablesσx,σy, σz arecom-
plete in the sense that the probabilities for finding
their eigenvalues as the results of measurements spec-
ify uniquely the statistical operator that characterizes
the spin-1/2 degree of freedom of the ensemble under
consideration. They are not overcomplete because this
unique specification is not ensured if one of the spin
components is left out.

In addition to being complete, the observables
σx,σy, σz are also pairwisecomplementary, which is
to say that in a state where one of them has a definite
value, all measurement results for the other ones are
equally probable. For example, ifσx = 1 specifies the
ensemble, say, then the results ofσy measurements are
utterly unpredictable:+1 and−1 are found with equal
frequency; and the same is true forσz measurements.

What is essential here are not the eigenvalues of
σx,σy, σz, but their sets of eigenstates. In technical
terms, the fact that the transition probabilities

∣∣〈σx = ±1|σy = ±1〉∣∣2 = 1

2
,

∣∣〈σy = ±1|σz = ±1〉∣∣2 = 1

2
,

(1)
∣∣〈σz = ±1|σx = ±1〉∣∣2 = 1

2

do not depend on the quantum numbers±1, is the
statement of the pairwise complementary nature ofσx ,

σy , andσz. Their algebraic completeness is then an
immediate consequence of the insight that a spin-1/2
degree of freedom can have at most three mutually
complementary observables.

More generally, there can be no more thanp + 1
such observables for a degree of freedom with ap-di-
mensional space of state vectors [8]. Following Weyl
[9,10] and Schwinger [11–13], we shall find it con-
venient to deal with unitary operators, rather than the
Hermitian operators to which they would be closely
related. Thus thep+1 observablesU0,U1, . . . ,Up are
unitary and of periodp,

U
p
m = 1,

(2)Ur
m 	= 1 if r = 1,2, . . . , p − 1,

for m = 0,1, . . . , p. The eigenvalues of eachUm are
powers of

(3)q ≡ e2πi/p,

the basicpth root of unity, and we denote by|mk〉 the
kth eigenstate ofUm, so that

(4)Um|mk〉 = |mk〉qk

for m = 0,1, . . . , p andk = 1,2, . . . , p.
Both the orthonormality of the|mk〉’s for eachm

and the mutual complementarity for differentm’s are
summarized in∣∣〈mk|m′

k′ 〉
∣∣2 = δmm′δkk′ + 1

p
(1− δmm′)

(5)=
{

δkk′ if m = m′,
p−1 if m 	= m′,

for m,m′ = 0,1, . . . , p andk, k′ = 1,2, . . . , p. With

(6)Um =
p∑

k=1

|mk〉qk〈mk|

this implies

p−1 tr
{
Ur

mUs
m′
}= δmm′δ(p)

r,−s + (1− δmm′)δ(p)

r,0 δ
(p)

s,0 ,

(7)

wherem,m′ = 0,1, . . . , p and r, s = 0,±1,±2, . . . ,
and

(8)δ
(p)
rs ≡


 1 if qr = qs

0 otherwise


= 1

p

p∑
k=1

q(r−s)k
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is the appropriatep-periodic version of Kronecker’s
delta symbol. The reverse is also true: (7) implies (5),
as can be shown with the aid of

(9)|mk〉〈mk| = 1

p

p∑
r=1

(
q−kUm

)r
.

Thus, given a set ofp + 1 unitary operators of pe-
riod p, we can verify the defining property (5) of their
pairwise complementarity by demonstrating that (7)
holds.

Repeated measurements of the observablesUm (on
identically prepared systems) eventually determine the
probabilitiesw

(m)
k for finding their eigenstates|mk〉.

As a consequence of their mutual complementarity,
knowledge of the probabilities for oneUm contains no
information whatsoever about the probabilities for any
other one. These(p + 1) × p probabilities represent
p2 − 1 parameters in total, since

(10)
p∑

k=1

w
(m)
k = 1

for each of thep + 1 measurements. The statistical
operator that characterizes the ensemble of identically
prepared systems,

(11)ρ =
p∑

m=0

p∑
k=1

|mk〉
(

w
(m)
k − 1

p + 1

)
〈mk |,

is therefore uniquely determined by the probabilities
w

(m)
k = 〈mk |ρ|mk〉. Indeed, theUm’s constitute a com-

plete set of pairwise complementary observables for
the prime degree of freedom under consideration.

Actually, the prime nature ofp has not been
significant so far, but it is for the explicit construction
of the setU0,U1, . . . ,Up that we turn to now. We
pick an arbitrary period-p unitary operator forU0.
The unitary operator that permutes the eigenvectors of
U0 cyclically is used forUp. Its eigenvectors in turn
are cyclically permuted byU0, so thatU0 andUp are
jointly characterized by

(12)〈0k|Up = 〈0k+1|, U0|pk〉 = |pk+1〉
for k = 1,2, . . . , p − 1 and, to complete the cycle,

(13)〈0p|Up = 〈01|, U0|pp〉 = |p1〉.
The fundamental Weyl commutation relation

(14)U0Up = q−1UpU0

is an immediate consequence of this reciprocal defini-
tion of U0 andUp . The otherUm’s are chosen as

(15)Um = Um
0 Up.

Sincep is a prime — what follows is not true for
composite numbers; tryp = 6, for instance, to see
what goes wrong — the powers of theUm’s that appear
in (9) comprise all products of powers ofU0 andUp ,
and since the unitary operators

(16)Ur
0Us

p with r, s = 1,2, . . . , p,

which arep2 in number, are a basis in thep2-dimen-
sional operator algebra [9–13], thep2 − 1 unitary
operators

(17)Ur
m with r = 1,2, . . . , p − 1,

supplemented by 1= U
p

0 = U
p

1 = · · · = U
p
p are also

such an operator basis. As it should be, these bases
are complete, but not overcomplete; none of the basis
operators is superfluous.

As a consequence of (12) and (13), all operators in
(16) are traceless with the sole exception of the iden-
tity operator that obtains forr = s = p. It is then a
matter of inspection to verify that theUm’s thus con-
structed obey (7) and are, therefore, a set of pairwise
complementary observables, indeed. From the point of
view of the information-theoretical approach to quan-
tum mechanics that is being developed by Brukner and
Zeilinger [14], theUm’s form a complete set of mutu-
ally complementary propositions.

3. The mean king’s problem generalized

In the generalized version of the king’s problem
then, either one of the observablesU0,U1, . . . ,Up is
measured by the mean king’s men, on ap-system
suitably prepared by the physicist. Without knowing
which measurement was done actually, the physicist
performs a subsequent measurement of her own, and
— after then being told whichUm was measured by
the king’s men — she has to state correctly what they
found:|m1〉, or |m2〉, . . . , or |mp〉.

The physicist solves the problem by first preparing
a state|Ψ0〉 in which the givenp-system, theobject,
is entangled with an auxiliaryp-system, theancilla,
whose operators and states are barred for distinction.
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For the ancilla, there are analogs�U0 and�Up of the fun-
damental Weyl operatorsU0 andUp that we have for
the object. It is advantageous, however, to interchange
the roles of�U0 and �Up in their reciprocal definition.
So, rather than just copying the object relations (12)
and (13), we write for the ancilla

(18)�Up

∣∣0̄k

〉= ∣∣0̄k+1
〉
, 〈p̄k |�U0 = 〈p̄k+1|

for k = 1,2, . . . , p − 1 and

(19)�Up

∣∣0̄p

〉= ∣∣0̄1
〉
, 〈p̄p |�U0 = 〈p̄1|,

and the corresponding analog of (15) is

(20)�Um = �Up
�U m

0

for m = 1, . . . , p − 1. Then the transition amplitudes
〈0j |mk〉 and 〈0̄j |m̄k〉 between the eigenstates ofU0
andUm and between those of�U0 and�Um, respectively,
obey recurrence relations

〈0j+1|mk〉
〈0j |mk〉 = q−jm+k,

〈0̄j+1|m̄k〉
〈0̄j |m̄k〉

= qjm−k

(21)

(for m 	= 0, of course), which allow and invite to
choose the phase conventions such that

(22)〈0j |mk〉 = 〈
m̄k

∣∣0̄j

〉
.

We note in passing that the|mk〉’s, or the|m̄k〉’s, are
essentially identical with the states found by Wootters
and Fields [8] if one opts for the solutions

(23)〈0j |mk〉 = p−1/2qjk−j (j−1)m/2 = 〈
0̄j

∣∣m̄k

〉∗
of recursions (21).

Joint states in which the object is in|m′
k′ 〉 and the

ancilla in |m̄k〉 are denoted by|m′
k′m̄k〉. Then

(24)|Ψ0〉 = p−1/2
p∑

k=1

|mkm̄k〉

is the entangled object-ancilla state that the physicist
prepares. Thanks to the phase conventions (22), the
m dependence is only apparent. For either value of
m = 0,1, . . . , p we get the same|Ψ0〉.

If the king’s men then measure the object observ-
able Um and find the eigenvalueqk, the resulting
object-ancilla state is|mkm̄k〉. After their measure-
ment, there are thus all togetherp + 1 sets (labeled
by m) of p possible object-ancilla states each. These

(p + 1) × p states cannot be linearly independent be-
cause the state space is onlyp2-dimensional. Indeed,
each of thep-dimensional subspaces spanned by the
p + 1 sets contains|Ψ0〉 by construction. In addition,
there are(p + 1) × (p − 1) = p2 − 1 other states, and
we now proceed to show that theyare linearly inde-
pendent.

Considerm 	= m′ and any pair of values fork and
k′. Then

(25)
〈
mkm̄k

∣∣m′
k′m̄′

k′
〉= p−1

as a consequence of (5) and (22), and definition (24)
of |Ψ0〉 implies

(26)〈Ψ0|mkm̄k〉 = p−1/2 = 〈
Ψ0
∣∣m′

k′m̄′
k′
〉
.

The two vectors

|mkm̄k〉 − p−1/2|Ψ0〉,
(27)

∣∣m′
k′m̄′

k′
〉− p−1/2|Ψ0〉

are therefore orthogonal to|Ψ0〉 and orthogonal to
each other. Accordingly,|Ψ0〉 together with thep2 − 1
vectors|Ψ1〉, |Ψ2〉, . . . , |Ψp2−1〉 that are defined by

(28)|Ψ(p−1)m+j 〉 = p−1/2
p∑

k=1

|mkm̄k〉q−jk

for m = 0,1,2, . . . , p andj = 1,2, . . . , p − 1 consti-
tute an orthonormal basis,

(29)〈Ψn|Ψn′ 〉 = δnn′ for n,n′ = 0,1, . . . , p2 − 1,

in thep2-dimensional object-ancilla state space.
Two |Ψn〉’s that have the samem value in (28) are

orthogonal by construction. And if|Ψn〉 and|Ψn′ 〉 be-
long to differentm values, their orthogonality follows
immediately as soon as one replaces|mkm̄k〉 in (28) by
the difference of (27), which does not alter the value
of the sum.

Let us now see how all of this helps the physicist
to meet the mean king’s challenge. She will be able
to state correctly the measurement result found by the
king’s men if she can find an object-ancilla observable
P with eigenstates|P1〉, . . . , |Pp2〉 such that each|Pn〉
is orthogonal top − 1 members each of thep + 1
sets of states that are potentially the case after the
measurement by the king’s men. We characterize the
looked-for eigenstates ofP by an ordered set of
numbersk0, k1, . . . , kp that indicate which members
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they arenot orthogonal to, so that

(30)
∣∣[k0k1 . . . kp]〉
has the defining property of being orthogonal to the
object-ancilla states that result when measurements of
Um do not give the eigenvalueqkm .

Suppose the physicist finds the state|[325. . .7]〉.
She then knows that if the king’s men had measured
U0, U1, U2, or Up , the respective results must have
beenq3, q2, q5, andq7, because she would never find
|[325. . .7]〉 for other measurement results.

Accordingly, all that is needed to complete the so-
lution of the generalized mean king’s problem is the
demonstration that we can have a complete orthonor-
mal set of object-ancilla states of the kind (30). First
note that the expansion of|[k0k1 . . . kp]〉 in the |Ψn〉
basis is given by∣∣[k0k1 . . . kp]〉

(31)= 1

p

(
|Ψ0〉 +

p∑
m=0

p−1∑
j=1

qjkm |Ψ(p−1)m+j 〉
)

.

Then observe that

〈[k0k1 . . . kp]∣∣[k′
0k

′
1 . . . k′

p

]〉= 1

p

p∑
m=0

δkm,k′
m

− 1

p
,

(32)

so that two such states are orthogonal ifkm = k′
m for

one and only onem value. Therefore, a possible choice
of basis states for the physicist’s final measurement is
given by thosep2 states for whichk0, k1 = 1,2, . . . , p

and

(33)km = (m − 1)k0 + k1 (modp)

for m = 2,3, . . . , p. The prime nature ofp is crucial
for the otherwise straightforward demonstration of the
orthogonality of two such states that differ in their
values ofk0, or k1, or both.

So, the physicist just has to choose her object-
ancilla observableP such that it distinguishes the
states specified in (33). After being told which mea-
surement the king’s men performed on the object,
she can then infer their measurement result correctly,

and with certainty, in the manner described above for
|[325. . .7]〉.
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