PHYSICAL REVIEW VOLUME

122, NUMBER 3 JUNE 1, 1961

Time in the Quantum Theory and the Uncertainty Relation for Time and Energy

Y. AnaronNov* anp D. Borm
H. H. Wills Physics Laboratory, Bristol, England

(Received September 7, 1960)

Because time does not appear in Schrodinger’s equation as an operator but only as a parameter, the time-
energy uncertainty relation must be formulated in a special way. This problem has in fact been studied by
many authors and we give a summary of their treatments. We then criticize the main conclusion of these
treatments; viz., that in a measurement of energy carried out in a time interval, A¢, there must be a minimum
uncertainty in the transfer of energy to the observed system, given by A(E'—E) > k/At. We show that this
conclusion is erroneous in two respects. First, it is not consistent with the general principles of the quantum
theory, which require that all uncertainty relations be expressible in terms of the mathematical formalism,
i.e., by means of operators, wave functions, etc. Secondly, the examples of measurement processes that were
used to derive the above uncertainty relation are not general enough. We then develop a systematic presenta-
tion of our own point of view, with regard to the role of time in the quantum theory, and give a concrete
example of a measurement process not satisfying the above uncertainty relation.

1. HISTORICAL SUMMARY OF THE STATE OF THE
PROBLEM OF TIME MEASUREMENT IN
THE QUANTUM THEORY

S is well known, the uncertainty relations in

quantum mechanics can be regarded in two closely
related ways. First of all, they are a direct mathematical
consequence of the replacement of classical numbers by
operators, and of adding the basic principle that the
statistical distributions of the corresponding observables
can be obtained by means of the usual formulas from
the wave function and its probability interpretation.!
Secondly, however, it can be shown by analyses such
as that of the Heisenberg microscope experiment that
they are also limitations on the possible accuracy of
measurements.?

These considerations apply to observables such as
x, p, and H. With regard to the measurement of time,
however, a further problem appears, because time
enters into Schrédinger’s equation, not as an operator
(i.e., and “observable”) but rather, as a parameter,
which is a “c” number that has a well defined value.
Nevertheless, the uncertainty principle, AE A2 h, is
generally accepted as valid, even though it is not
deduced directly from commutation relations in the
way described above.

The justification of the time-energy uncertainty
relationship has been attempted in several ways. (We
shall restrict ourselves here entirely to a discussion of
the nonrelativistic case, since the theory of relativity
has no essential relationship to the measurement
problems that we are going to treat in this paper.)

First, one can begin with the wave function

Y(x,) =25 Can(x)e T,

* Now at Brandeis University, Waltham, Massachusetts.
! The uncertainty relations are obtained in this way using
Schwarz’s inequality with the expressions for

(A —A)2)ar((B—B)?)av= (A4)*(AB)~.
See, for example, D. Bohm, Quantum Theory (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1951), pp. 205-206.

2 W. Heisenberg, The Physical Principles of the Quantum Theory
(Dover Publications, New York, 1930), Chap. 2.
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where ¢z(x) is the eigenfunction of the Hamiltonian H
of the system belonging to the eigenvalue E, and Cg is
an arbitrary coefficient. If we consider a wave packet of
width AE in energy space (i.e., AE is the range in which
|Cg| is appreciable), it immediately follows from the
properties of Fourier analysis that (AE)7 >k, where 7
is the time during which the wave packet does not
change significantly (7 may be regarded as the mean life
of the state in question?®).

The above is a discussion in terms of the Schrodinger
representation. Mandelstamm and Tamm? have formu-
lated what is, in essence, the same point of view but it is
expressed in the Heisenberg representation. They con-
sider a dynamical variable 4, which is a function of the
time (e.g., the location of the needle on a clock dial or
the position of a free particle in motion) and which can
therefore be used to indicate time. If A4 is the un-
certainty in 4, then the uncertainty in time is

At=AA/ [(A)av],

provided that A does not change significantly during
the time, Af, and that AA/|(A).| is negligible. From
the relation ‘

AA AH S [ (A H)ue| =1] (A Dy,
we obtain

AA AH/(AYoy=At AH> h. (2)

Since H represents the Hamiltonian of the isolated
system, AH is also equal to AE, the uncertainty in
energy of that system.

It should be noted that the method proposed by
Mandelstamm and Tamm can actually lead to a deter-
mination of time, only when the system is not in a
stationary state;i.e., only when the wave function takes
the form of a packet, consisting of a linear superposition
of stationary states. In other words, the AH appearing
in equation (2) is determined by the range of energies

3V, Fock and N. Krylov, J. Phys. (U.S.S.R.) 11, 112 (1947),
present a more detailed account of the lifetime of a state.

4L. Mandelstamm and I. Tamm, J. Phys. (U.S.S.R.) 9, 249
(1945).
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in the wave packet. In this way, the relation of the
Mandelstamm and Tamm treatment to the Schrédinger
representation is made clear.

The above is then a discussion of the relation
AE AtZ> h insofar as this has been obtained from the
mathematical formalism of the quantum theory (i.e.,
the wave function, operators, and probability inter-
pretation). Naturally, as is necessary in the case of
observables such as x and p, this uncertainty relation
must also be analyzed in terms of the interaction of the
measuring apparatus with the observed system. Landau
and Peierls,>% for example, do this by considering a
special example, in which the momentum of a free
particle is measured by means of a collision with a heavy
test particle (also free). To simplify the problem they
consider a case in which the measuring particle is a
perfectly reflecting mirror, and discuss only the move-
ment in one dimension (perpendicular to the mirror).
They then apply the laws of conservation of energy and
momentum, which are

p'+P'—(p+P)=0, (3a)
E'+€— (E4¢)=0, (3b)

where lower case letters refer to the observed particle,
capitals to the test particle, unprimed quantities to
values before collision, and primed quantities to values
after collision. Because £E=P?*/2M, e=p>/2m, one can
solve for the momentum of the observed particle before
and after collision, in terms of the corresponding
momenta of the test particle.

In order to define the time of measurement, Landau
and Peierls® (and also Landau and Lifshitz)$ consider
the case of a time-dependent interaction between the
particle and the mirror, which lasts for some known
period of time, Af. This period Af, which is the un-
certainty in the time of measurement, then implies
(e.g., according to perturbation theory) an uncertainty
in the energy of the combined system consisting of
observed particle and mirror, of magnitude #4/Af
resulting from the time-dependent interaction. Instead
of Eq. (3b) for the exact conservation of energy, we must
therefore write

|€+E—

(e+E)| > h/AL. (3¢)

Evidently the momentum of the test particle before
and after collision can be measured with arbitrary
accuracy, so that AP=AP’=0. As a result, we obtain
from Eq. (3a), Ap=Ap’; and from (3c), we have

A(d—e) 2 h/A. 4)
Since e= p*/2m, we can also write the above result as
(' —v)Ap 2> h/ AL (5)

(Note that although Ap itself may be very small, there

5 L. Landau and R. Peierls, Z. Physik 69, 56 (1931).
6 See also L. Landau and E. L1fsch1t7, Quzmmm Mechanics
(Pergamon Press, New York, 1958), pp. 150-153.
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is still a minimum uncertainty in energy transfer, be-
cause the change of velocity will then become very
large, if At is finite.)

Landau and Peierls therefore conclude that there is an
uncertainty relation between the energy transferred to
the system and the time at which the energy is
measured. This means that the energy of the observed
system cannot be measured in a short time, without
changing it in an unpredictable and uncontrollable way.
In other words, energy measurements carried out in short
periods of time are not reproducible.

Fock and Krylov? criticize the derivation of the above
results, but come to essentially the same conclusion. In
effect, they do not accept the definition of the time of
measurement by means of a time-dependent potential
of interaction between the two particles. This is because
in a real collision, there is no such time-dependent
potential. Rather, the time of collision is determined by
the movement of the particles themselves, in such a way
that one of them serves as a clock. Let us suppose that
it is the test particle which fulfills this function. This
particle defines the time, ¢, as that at which it passes a
definite point, X, by the equation, t=X/V. The
time, as defined in this way, has an uncertainty
At=AX/V (provided, as will actually be the case in our
example, that AV/V<1).

In order to define the time of collision, we must have
some information about the initial location of the ob-
served particle, as well as that of the test particle. For
simplicity, let us suppose that the initial velocity of the
test particle is so much higher than that of the observed
particle that the latter can be regarded as essentially at
rest until the collision. The mean initial position x of the
observed particle will be taken to be at the origin, while
the uncertainty in this position is represented by Ax.
Evidently we must choose Ax< AX, if the location of the
test particle is to serve as a definition of the time of
collision. Therefore

At=AX/V 3%/ (AP)V =#/AE.

(This is just the well-known uncertainty relation be-
tween the energy of the test particle and the time that is
defined by the movement of its coordinate.)

Fock and Krylov then point out that in this case, the
laws of conservation of energy and momentum are both
satisfied exacily, so that Eqs. (3a) and (3b) can be used
directly, while the approximate form (3c) for the con-
servation of energy is not to be applied here (since
perturbation theory no longer has any relevance to the
problem.) From (3a), we obtain

A(p—p")=A(P—P").

If V is chosen large enough, we can for a given
At>3%/VAP make AP and AP’ arbitrarily small, and,
as a result, we can likewise make A(p—p’) as small as
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we please. From Eq. (3b), it then follows that

, (0'—p) A(p'+p)
Al —€)= —_—

/2
— W= Ap=AE— >,
’ At

where we have used the result that A(p'—p) is negli-
gible. The above is exactly the same Eq. (5) as that
obtained by Landau and Peierls, but the uncertainty in
energy transfer to the observed system is now deduced
on the basis of the fact that the (time-dependent) posi-
tion of one of the particles is used to define the time of
collision.

Fock and Krylov then go on to criticize the approach
of Mandelstamm and Tamm, suggesting that it is in-
complete. They assert that by means of the wave func-
tion and the operators of the observed system, one can
discuss only the statistical features of any measure-
ment. In order to discuss an individual measurement
process, they refer to what they call “Bohr’s uncertainty
relation,” A(e'—e)AtS h, where e and € are the actual
values of the energy of an individual observed system
before and after measurement.

To clarify this distinction between the statistical
uncertainty relations discussed by Mandelstamm and
Tamm, and the Bohr relation, they point out that, for
example, in observation of a state with lifetime 7 (as
described by its wave function), one can make measure-
ments in times much shorter than 7. Therefore, it is
necessary to distinguish between the time intervals
defined by the wave function of the observed system,
and the time interval representing the actual duration
of an individual measurement. The time interval defined
by the wave function has in measurements generally
only a statistical significance.

Even if one treated the measurement process by
means of a many-body Schrédinger equation, including
the apparatus coordinates, the same distinction would
arise. For it would the necessary to observe the com-
bined system by means of additional apparatus; and
here too, there will be a “Bohr uncertainty principle”
for the individual observation and a statistical un-
certainty principle following from the wave function,
which applies to an ensemble of cases. To treat the
apparatus by quantum theory is, in effect, to push back
the well known “cut” between classical and quantum
sides another stage. While it is always permissible and
sometimes convenient to do this, it cannot change the
content of the theory.

Let us now sum up the problem. Mandelstamm and
Tamm propose a mathematical operator uncertainty
relation between energy and time, as determined by
the wave function. Fock and Krylov regard such a treat-
ment as incomplete, because it applies only statistically
to a large number of measurements, and because within
it one cannot even consider the question of the interval
of time needed to carry out an individual measurement.
To complete the treatment, they call attention to the
“Bohr uncertainty relation” (discussed also by Landau

1651

and Peierls,® as well as by Landau and Lifshitz®) which
applies to individual measurements, and which refers to
the relation between the error in the measurement of
energy and the duration of the measurement process.
While criticizing some of the methods of Landau and
Peierls, they agree with the essential conclusion that
energy cannot be measured in arbitrarily short periods
of time, without introducing uncertainties, according to
the relation A(e'—e) > h/At.

2. CRITICISM OF COMMONLY ACCEPTED
INTERPRETATIONS OF THE TIME-ENERGY
UNCERTAINTY RELATION

The main conclusion of Landau and Peierls,’ Landau
and Lifschitz,% and Fock and Krylov® (given in Sec. 1),
viz., that energy cannot be measured in a short time
without introducing an uncertainty in its wvalue,
represents a very widely accepted interpretation of the
time-energy uncertainty relation. This conclusion is, as
we shall show, erroneous, the error being based in part
on an inadequate formulation of Bohr’s point of view
concerning measurement, and in part on the use of an
illustrative example of a measurement process, that was
not sufficiently typical of the general case of such a
measurement. (In fact, in Sec. 4 we shall give a counter-
example, in which the energy of a particle is measured to
arbitrary accuracy in as short a time as we please).

With regard to Bohr’s point of view concerning
measurements, it is important to stress here his con-
tinual insistence that the minimum ambiguities in the
results of any individual measurement process (in the
sense of what Fock and Krylov called the “Bohr un-
certainty relations”) are always exactly the same as the
minimum ambiguities in the possibility of definition in
the mathematical theory of the observables that are
being measured.” (These latter ambiguitiesare, of course,
the “statistical” uncertainty relations referred to by
Fock and Krylov.)

The ambiguities in the results of individual measure-
ments are regarded as originating in the indivisible
quantum connections of the object under investigation
to the apparatus (and indeed to the whole universe),
which give rise to a minimum ambiguity in the degree to
which well-defined classical properties (e.g., position
and momentum) can be assigned to the object as a
result of any such measurement.? In addition, however,
the result of each measurement defines a “quantum
state” of the observed system, specified by its wave
function. This wave function is, of course, not a repre-
sentation of an individual system, but it implies, in
general, only a set of statistical predictions concerning
the results of possible measurements. Nevertheless, if
these predictions were such that the minimum ambi-
guity in the definition of the results of an individual
measurement were less than the minimum statistical

7 N. Bohr, Die Naturwissenschaften, 251 (1928).
8 W. Heisenberg, Physics and Philosophy (Allen and Unwin,
London, 1959), Chap. 3.
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fluctuation implied by the mathematical theory, then
there would be a contradiction. Vice versa, if they were
such that the minimum ambiguity in the result of an
individual measurement were greater than the minimum
statistical fluctuation as described above, then this
would lead to an arbitrary restriction, not related in any
general way to the mathematical formalism, a restric-
tion that evidently has no place in a coherent over-all
framework of theory. Moreover, one could, in general,
expect that with sufficient effort, it would be possible to
find an example of an individual measurement process
with the same minimum ambiguity as that implied by
the formalism; and if such a process is found, then the
supposedly greater minimum ambiguity in the results of
an individual measurement will be contradicted. For
these reasons, it is necessary to consider the statistical
and individual uncertainty relations as two equally
essential sides of what is basically the same limitation
on the precise definability and measurability of the
state of any system. In other words, as Bohr? has
stressed, there can be no limitation on individual measure-
ments that cannot also be obtained from the mathematical
formalism and the statistical interpretation.

There is no question that all the above considerations
apply for common examples of the uncertainty principle
(e.g., x and p). However, as we pointed out in Sec. 1,
time enters into Schriodinger’s equation only as a
parameter, so that there is no straightforward way to
apply these ideas to the time-energy uncertainty rela-
tion. Of course, we can, with Mandelstamm and Tamm,
obtain an uncertainty relation between the lifetime of
a state of the observed system and its energy. But let us
recall here that (as pointed out by Fock and Krylov),
the operators of the observed system have no connection
whatsoever with the duration of the measurement
process (which is evidently determined, in general, by
the apparatus). Keeping this fact in mind, let us now
raise the question of whether there can be a genuine un-
certainty relation between the energy transferred to the
observed system and the time at which the measure-
ment took place (as has been suggested by Landau and
Peierls, Fock and Krylov, and other authors).

In accordance with Bohr’s point of view on the sub-
ject, as we have described it above, we are led to point
out that one cannot safely regard any given uncertainty
relations as representing a real limitation on the
accuracy of all possible measurements of the quantities
under discussion unless the relationship has been shown
to follow from the mathematical formalism. On the
other hand, all of the authors referred to above seem to
be satisfied to establish the time-energy uncertainty
relations as applying to individual measurements by
what Fock and Krylov called “illustrative examples.”
Such a point of view would imply, of course, that the
uncertainty relations applying to individual measure-
ments could in principle, have a basis that is independ-

9 N. Bohr (private communication).
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ent of the statistical relations obtainable from the
mathematical formalism. As we have already pointed
out, however, such a procedure is arbitrary and there-
fore subject to the continual danger of being contradicted
by the development of new examples of measurement
processes, which reduce the ambiguity down to the
minimum allowed by the formalism. (For, as is quite
evident, there is no way to be sure that conclusions
obtained from an illustrative example have universal
validity).

It follows from the above discussion that to complete
the treatment of the time-energy uncertainty relation, it
is necessary to develop a method of showing how the
time of measurement and the energy transferred in this
measurement are to be expressed in terms of suitable
operators. The method that we shall use in this paper
starts from our discussion of the example first treated by
Landau and Peierls, and then by Fock and Krylov;
viz., the one in which the energy of a free particle is
measured by collision with another particle. As we saw
in Sec. 1, in such an interaction, the time of collision is
determined physically by the state of some system
which serves as a clock. In the example of Fock and
Krylov, it is determined by the position of the test
particle (which was taken to be free). Now, for any
system, one can define a Hermitian operator represent-
ing such a time. In the case of a free particle, this is

(7

where y and p, are respectively position and momentum
of the particle in question.'

The commutation relations between the above opera-
tor and the Hamiltonian, H., of the “clock” in question
are (as can easily be verified for the case of a free
particle, for which H.= p,%/2M),

[H ote ]=1h. ®)

This procedure is evidently very similar to that of
Mandelstamm and Tamm. However, they discussed
only the operators of the observed system, and obtained
an uncertainty relation (2) between the energy of this
system and the “inner” time as defined by dynamical
variables in this system (e.g., the lifetime of a state).
On the other hand, we are applying the relations (8) to
the energy, Z., of the “clock” in the apparatus, and to
the time, £, of measurement as determined by this clock.

Since the time of measurement can be represented by
an operator, %, belonging only to the observing appara-
tus, it follows that this time must commute with every
operator of the observed system and, in particular, with its
Hamiltonian. There is therefore no reason inherent in the
principles of the quantum theory why the energy of a
system cannot be measured in as short a time as we

0There is a singularity for p,=0, but it is easily shown that this
will be unimportant if p, is large enough, as will be the case in
our applications.
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please. (Recall, however, that in accordance with the
treatment of Mandelstamm and Tamm, any such a
measurement of the energy of the observed system to an
accuracy AE must leave the “inner” time undefined to
AtZ2h/AE).

In view of the above discussion, it is evident that the
usual treatment of the energy-time uncertainty relation
(e.g., as discussed by Fock and Krylov) must be in some
way erroneous. Since the particular illustrative example
chosen by all the authors cited here (which is, in fact,
the one usually given) has in fact been treated correctly,
it follows that the mistake must be that this example is
not sufficiently typical of the general case. And, indeed,
as we shall see in Sec. 4, one can suggest more general
methods of measurement of energy, which do not lead
to the above limitation. In this way, we confirm our
conclusion, based on general considerations regarding
the principles of the quantum theory, that it is always
possible to obtain true limitations on the measurability
of any observable from the mathematical formalism,
and that any other limitations that are added to these
are arbitrary restrictions, which can eventually be
contradicted, if further examples of measurement
processes are sought.!!

Finally, it is instructive to point out that problems
similar to those connected with the time-energy un-
certainty relations arise in the more familiar example
of the position momentum relationship, Ap, Ax>%. To
bring out the analogy, we can ask ourselves whether the
momentum of a particle can be measured to arbitrary
accuracy by means of an apparatus, which is localized in
space. (Here, . takes the place of E, while the region of
space in which the apparatus is located takes the place
of the duration, A¢, of the measurement.) At first sight,
it may seem that if the apparatus is localized in a very
small region of size AX, the momentum of a particle
cannot be measured to an accuracy greater than
Ap,=h/AX. This, however, is not the case, because,
what is defined here is the coordinate, X, of the appara-
tus, and not that of the measured particle, x. Since p,
commutes with X, there is no inherent limitation on
how accurately it can be measured, if X is defined.

To illustrate such a possibility, consider the measure-
ment of the momentum of a photon, by measuring its
energy and using the relation p= E/¢. (This is analogous
to the measurement of energy of a particle by measuring
its momentum and using the relation £=p2/2M.) We
can do this by means of an atom which is very highly
localized, provided that this atom has a sharp level,
excited above the ground state by the amount E= pc.
If the photon has the appropriate energy, it will be
absorbed and eventually reemitted (being delayed and
perhaps scattered). It is observable whether this
happens or not. If it does happen, then this provides a
measurement of the energy, and through this, of the

11 This conclusion, the validity of which is fairly evident, will
be obtained again in Sec. 3 from a more detailed discussion of the
mathematical formalism.
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momentum. It is evident that the uncertainty in this
momentum has no essential relation to the size of the
atom, but only to the lifetime of the excited state. The
momentum has therefore been measured by an appara-
tus, which is as localized in space as we please. (Of
course, the position of the photon after the measure-
ment is over is indeterminate, just as happens with
“inner” time variables in the analogous case of time
measurement.)

3. TREATMENT OF TIME OF MEASUREMENT IN
TERMS OF THE MATHEMATICAL FORMALISM
OF THE QUANTUM THEORY

We saw in Sec. 1 that (as pointed out by Fock and
Krylov?) there is a need to make a careful distinction
between the time at which a measurement takes place
and the time as defined by the wave function and
operators of the observed system (e.g., the lifetime of an
excited state). In Sec. 2, we showed how such a dis-
tinction can be represented within the mathematical
formalism of the quantum theory by considering as
operators certain variables that have hitherto usually
been associated with the observing apparatus; viz.,
those variables determining the time at which inter-
action between the apparatus and the observed system
takes place. This implies, of course, that the wave func-
tion must now be extended, so as to depend on these
latter variables, It is equivalent to placing the “cut”
between observing apparatus and observed system at
a different point.

It is well known that while there is a certain kind of
arbitrariness in the location of this cut, it is not com-
pletely arbitrary. For example, in the treatment of the
energy levels of a hydrogen atom, one can, in a certain
approximation, regard the nucleus as a classical particle
in a well-defined position. If, however, the treatment

aims at being accurate enough to take the reduced mass

into account, both electron and nucleus must be treated
quantum-mechanically, and the cut is introduced
instead between the atom asa whole and its environment.
The place of the cut thérefore depends, in general, on
how accurate a treatment is required for the problem
under discussion. Of course, it follows that once a given
place of the cut is justified, then it can always be moved
further toward the classical side without changing the
results significantly.

If we are interested only in discussing what Fock and
Krylov called the “Bohr uncertainty relation” (the one
referring to an individual measurement of energy and
time), then we are justified in placing the physical
variables that determine the time of the measurement
on the classical side of the cut. For, as is quite evident,
in this aspect of the uncertainty relations, these varia-
bles are by definition regarded as classical, in the sense
that their uncertainty represents only an inherent
ambiguity in the possibility of defining the state of an
individual system. We have seen in Sec. 2, however, that
according to the Bohr point of view, every uncertainty
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relation that appears in this way must also be able to
appear as a statistical fluctuation in a corresponding
operator, which must, of course, be calculated from an
appropriate wave function. To discuss this side of the
uncertainty relations, it is clear that we must change
the position of the cut, so that the corresponding
variables now fall on the quantum-mechanical side.

In the subsequent discussion of how the uncertainty
relations appear in the mathematical formalism, we shall
begin with the case in which the time determining
variables are placed on the classical side of the cut. In
this case, the time variables can be reflected in the
Schrodinger equation only in the time parameter ¢ which
can, of course, have an arbitrarily well-defined value.
This time parameter is related to measurement in
several ways.

First of all such a relation comes about in the prepara-
tion of a system in a definite quantum state, and in
observations carried out later on that system. Consider,
for example, a quantum state prepared at a time deter-
mined by means of a shutter (which we are, of course,
now regarding as being on the classical side of the cut).
There must be some relationship between the time, #,
at which the shutter functions and the time parameter,
¢ appearing the Schrodinger’s equation. Indeed, if the
Hamiltonian of the observed system does not depend on
time, then it is easily seen that the wave function takes
the form

\0:1,,/()(, t'—ts)y (9)

where ¢ is a solution of Schrédinger’s equation for the
system in question. The form of y is determined by
choosing that solution which at =, becomes equal to
the function, ¥,(x), representing the quantum state in
which the “preparing”” measurement leaves the system.
Then, when an observation is made, the time ¢,, of the
measurement is likewise determined by suitable varia-
bles on the classical side of the cut. The probability of
any given result is, of course, computed in the well-
known way from the wave function, Y =y (X, tn—1s).

It is clear that as far as this one-body treatment is
concerned, there is certainly nothing in the formalism
which would prevent the system under discussion from
being either prepared or observed in a state of definite
energy, when £, and £, are as well defined as we please.
Thus, if the system is in a state of definite energy, E
(so that the uncertainty, AE, in its energy is zero, while
the lifetime 73%/AE of the state is infinite), its wave
function, y=yg(x)e " [where Yr(x) is the eigen-
function of the Hamiltonian operator belonging to the
eigenvalue, E] is evidently able to represent such a
state, no matter what value is given to {. A wave func-
tion of this kind is therefore evidently compatible with
the statement that at some time, {=¢,, the system was
prepared in the eigenstate of the energy represented by
Yu(x). Thus, in the one-body treatment alone, no reason
for an uncertainty relation between the energy of the
system and the time of measurement can be found. And
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this is indeed basically the reason why Fock and Krylov
were led to postulate such an uncertainty relation
independently, and to try to justify this relationship by
means of illustrative examples of measurement processes
(see Sec. 1).

Let us now go on to consider the time-energy un-
certainty relation from the other aspect, in which the
variables determining the time of measurement are
placed on the quantum-mechanical side of the cut. In
this case, we must introduce these variables into the
wave function, so that we are in this way led to a many-
body Schrédinger equation. Let us recall, however, that
the “cut” has not been abolished, but merely pushed
back another stage. Thus, as was pointed out in the
discussion of the treatment of Fock and Krylov given
in Sec. 1, there is implied an additional observing
apparatus on the classical side of the cut, with the aid
of which the many-body system under discussion can
be observed. The probabilities for the results of such
observations are determined by the wave functions,
which take the form

¥=v (Xryi;t); (10)

where y;, represents the apparatus variables on the
quantum-mechanical side of the cut (which include
those that describe the time of measurement). The
time parameter ¢ here plays a role similar to that which
it had in the one-body problem; viz., through it the time
frame on the large-scale classical side of the cut is
brought into relationship with the quantum-mechanical
formalism by means of suitable observations.

We shall now consider as an example of the approach
described above, the measurement of energy and time
by means of a collision of two particles, as treated in
Sec. 1. The initial wave function of the combined
system is, for this case, a product of two packet func-
tions, one representing the test particle coming in with
a very high velocity, V, and the other representing the
observed particle, essentially at rest (with a velocity
that is negligible in comparison to V) and with its
center at the origin. After the collision, it is well
known!?:13 that the wave function becomes a sum of
products of such packets, correlated in such a way that
an observation of the properties of the test particle can
yield information about the particle under discussion.

As far as this particular example is concerned, it will
not be relevant here to go into a more detailed discussion
of the problem of solving Schrédinger’s equation. All
that is important here is that as we saw in Sec. 2, the
time of collision is given essentially by the operator,

1 1
te= %M(y_-’__y);
by Py
(where y and p, refer to the position and momentum of

12 See reference 1, Chap. 22.

13]. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, New Jersey,
1955), Chap. 6.
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the test particle, respectively), so that the operator, Z,
commutes with the Hamiltonian, H,, of the obsepved
system. As a result, there is, as we have already stated
in Sec. 2, no uncertainty relation between the time of
measurement and the energy of the observed system.
But in the treatment that we are now using, we have
obtained this result by allowing the variables deter-
mining the time of measurement to fall on the quantum-
mechanical side of the cut. (As was to be expected, of
course, the actual physical consequences of the theory
do not depend on which side of the cut these variables
are placed.)

In the example given above, the same apparatus was
used to determine both the time of measurement and
the momentum of the particle. However, it is possible,
and in fact frequently advantageous, to consider a more
general situation, in which the time determining
variables are separated from those which are used to
measure other quantities (such as momentum). This, in
fact, would be the correct way of completing the treat-
ment of the example given by Landau and Peierls®¢ (see
Sec. 1), in which the time of measurement was deter-
mined by an interaction between the test particle and
the observed particle which was assumed to last for
some interval At

If there is a time-dependent interaction between
apparatus and observed system which lasts for an
interval Af, then the Schrédinger equation will have to
have a corresponding potential, which represents this
interaction. The form of this potential will depend on
where we place the cut.

If the apparatus determining the time of interaction
is taken to be on the classical side, then the potential
will be a certain well defined function of time, which is
nonzero only in the specified interval of length Az. We
may write this potential as

V=V(xy1), (11)

where x represents the coordinate of the observed
particle, and y that of the test particle. This is indeed
the usual way by which measurements are represented
in the mathematical formalism.!?3

In the next section we shall apply this method in
order to treat a specific example, in which it will be
shown in detail that the energy of a system can be
measured in an arbitrarily short time.

If, on the other hand, the variables determining the
time of interaction are placed on the quantum mechani-
cal side of the cut, then we cannot regard the potential
as a well-defined function of time. Instead, we must

write
(12)

where z is the variable that determines the time of
interaction.

If the particles determining the time of interaction
are heavy enough, then they will move in an essentially
classical way, very nearly following a definite orbit,

V=V(x,y,3),
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Z=_Z(1). To the extent that this happens, we obtain, as
a good approximation,

V(X’y,z) = V(X,y,Z(l)).

To treat this problem mathematically, we begin with
the Schrodinger equation for the whole system.

(13)

oV
ih*—;(x,y,z,t) =[H,+Hy+H.AV(x,3,2) ¥ (x,y,51), (14)
t

where H, represents the Hamiltonian of the observed
particle, H, that of the apparatus, H, that of the time-
determining variable, z. We must then show the equiva-
lence of this treatment with that obtained by placing
the time-determining variable on the classical side of the
cut. To do this, it is sufficient to demonstrate that in a
suitable approximation, equation (14) leads to the time-
dependent Schrédinger equation for the x and y
variables alone, viz.,

0
iﬁa—f(x,y,i) =[H,+H,+V(xys0) W(xyi). (15)

We shall simplify the problem! by letting the time
determining variable be represented by a heavy free
particle mass M, for which we have H,=p.2/2M. We
suppose that the initial state of the time-determining
variable can be represented by a wave packet narrow
enough in z space, so that Ai=Az/|Z| can be made as
small as is necessary. This packet is

i

<I>0(z,z‘)=§: Cp. epr[zpz——g}] } (16)

Because M is very large, the wave packet will spread
very slowly, and to a good approximation, we shall have

By (2,0) =D (z—v.0) exp[%[ﬁzz— (j;; t]}, (17)

where v,=%,./M is the mean velocity, and ®(z—1,2) is
just a form factor for the wave packet which is, in
general, a fairly regular function which varies slowly in
comparison with the wavelength, A=/7/{..

If the interaction, V (x,y,2) is neglected, a solution
for the whole problem will be

‘I’(X;%Zyt) :(I’O(z)t)sbo(xyy;t); (18)
where ¥o(x,v,t) is a solution of the equation
’iha%(xy%t)/at: (HP_{—HQ)‘I/O(X,y)t)' (19)

When this interaction is taken into account, the
solution will, in general, take the form

b4 (X,y,Z,t) = Zn @, (z)t)¢ﬂ (xath)Cm

14 Qur procedure is along lines similar to those developed by
H. L. Armstrong, Am. J. Phys. 22, 195 (1957).
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where the sum is taken over the respective eigenfunc-
tions, ®,(3,t) and ¥, (x,y,t) of H, and (H,+H,). If such
a sum is necessary, there will be correlations between
the time-determining variable and the other variables,
with the result that there will be no valid approximation
in which an equation such as (15) involving only x and y
can be separated out. However, if the mass, M, of the
time determining particle is great enough, so that the
potential V (x,y,z) does not vary significantly in a wave-
length, A="%/p., then, as is well known, the adiabatic
approximation will apply. In this case, one can obtain
a simple solution, consisting of a single product, even
when interaction is taken into account. To show in more
detail how this comes about, we first write the solution
in the form
\I’=¢0(Z,t)1[/(x,y,z,t).

When this function is substituted into Schrodinger’s
equation (15), the result is

Y
h—= [Hp-[—Hy—F V(x,y,2)
ot
B2 olndy 0 K 02

—]¢. (20)
M 09z 09z 2M 9z

If M is large, and if the potential does not vary too
rapidly as a function of 2, the last term on the right-hand
side of (20) can be neglected.!> Moreover,

dlndy 1 9 In®(z—,1)
)

0z 9z

Because ®(3—1,£) does not vary significantly in a wave-
length, this term too can be neglected in the above
equation, and we obtain

Y (x,9,%,1) 9
i [Hp+Hy+V(x,y,z> —ih ]¢<X,%ZJ>-
¢ 2

We then make the substitution, z— /=1, and
¥ (x,3,0,8) =¥ (X,9,2,0) =¥ (X,y,841v.1,0).
With the relation
oY/ o1=(¢w/ 01)+ (v.0¢/ 02),
we have
1hdy'/ot=H ,+H,+V (x,y,u+v.8) W x,y,%,t). (21)

Note that this equation does not contain derivatives of
u, so that # can be given a definite value in it.

The complete wave function is, of course, obtained
by multiplying ¢/ (x,y,%,t) by ®¢(z—v.t)=(#). Now,
this was assumed to be a narrow packet centering at
#=0, such that the spread of # can be neglected. As a
result, we can write #=0 in the above equation. The

15 If V (2,y,2) varies too rapidly, then (%#2/2M)d%/ 2% will not be
négligible, even when M is large.
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result is
LY (x,9,0,8)
%ﬁ——at——= CH,+H,+V (x,y,0.0) W (x,9,0,0). (22)

In this way, we have obtained the Schrédinger equa-
tion for x, y, with the appropriate time-dependent
potential V (x,y,v.t), the relationship between the time
parameter ¢ and the time determining variable z being,
in this case, t=2/v.. We have therefore completed the
demonstration of the equivalence of the two treatments,
in which the time-determining variables are placed on
different sides of the cut.

4. EXAMPLE OF A REPRODUCIBLE MEASUREMENT
OF ENERGY IN A WELL-DEFINED TIME

We saw in Secs. 2 and 3 that there is no reason
inherent in the principles of the quantum theory why a
reproducible and exact measurement of energy cannot
be made in an arbitrarily short period of time. Since
Landau and Peierls,® Fock and Krylov,® and many
others have considered examples leading to a contrary
conclusion, it is necessary to complete the discussion by
giving a specific example of a method of measuring
energy precisely in as short a time as we please. This we
shall do in the present section. Following the develop-
ment of our example, it will become clear in what
way the previous treatments of this problem were
inadequate.

As a preliminary step, we discuss the treatment of the
measurement of energy by means of the Schrédinger
equation for the apparatus and the observed system
together. The Hamiltonian of the combined system is

H=H0(?$ix)+H0,(Pmy)+Hl(Prrx; Plny)t); (23>

where Ho(p,x) is the Hamiltonian of the observed
system, Ho'(py,y), that of the apparatus, and H(p.,x;
$u,Y,t) is the interaction, which is zero except during a
certain interval of time between ¢, and f+ At (Here we
are adopting the point of view described in Sec. 3, in
which we regard the time determining variables as
being on the classical side of the cut, so that they do not
appear explicitly in Schrédinger’s equation.) It will be
adequate for our purposes to assume that both the
observed system and the apparatus are free particles,
with respective Hamiltonians

Ho=p2/2M; Hy=p2/2M. (24)

To simplify the problem, we consider the ideal case of
a measurement of p, which does not change p.. This
will happen if H; is not a function of . (The satisfaction
of this condition will evidently guarantee that repro-
ducible measurements of $., and therefore Ho= p,2/2M
will be possible). The Hamiltonian of the whole system
will then be taken as

H=(p*/2M)+(p*/2M)+yp=g (1), (25)
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where g(#) is everywhere zero, except between # and
to+At, where it is constant. (The interaction Hamil-
tonian is similar to a vector potential in its effects).

With the Hamiltonian (25), p, s, of course, a constant
of the motion. The equations of motion for the remain-
ing variables are then

&= (pa/m)+yg(1), P=—1p80), (26)
y=2p./M.
On solving for p,, we obtain (using p,=constant)
Pv—p"=—pg (DAL (27)

This equation implies a correlation between p,—p,°
and p, such that if p,—p,° is observed, we can
calculate p,.

It is important also to consider the behavior of .
Although p. is constant, & shifts suddenly at =17y from
ps/m to p./m+g(t)y, and remains at this value until
t=t;, after which it returns to its initial value. (In a
similar way, the velocity and momentum differ in the
case of a vector potential.)

The above behavior of the velocity is, as a simple
calculation shows, just what is needed to produce the
uncertainty in position, which is required by the im-
proved definition of the momentum resulting from the
measurement.

It is easily seen that if g(Z) is large enough, the meas-
urement described above can be carried out in as short a
time as we please. In order that a given accuracy, Ap,,
be possible, the change of deflection of the apparatus,
A(py—p,°) due to the shift Ap,, must be greater than
the uncertainty, A(p,’) in the initial state of the
apparatus. This means that we must have

Apag()AI=ADY,

and if g(¢) is large enough, both A¢and Ap, can be made
arbitrarily small for a given Ap,°.

This hypothetical example confirms our conclusion
once again that accurate energy measurements can be
reproduced in an arbitrarily short time. We shall now
show how to carry out such a measurement by means of
a concrete experiment. To guide us in the choice of this
experiment, we note that the essential feature of the
interaction described in Eq. (25) is that it implies a
force that is independent of the x coordinate of the
particle, and which alters the velocity suddenly at
t=1t, to bring it back to its original value at ¢=1¢,.1% This
force is therefore equivalent in its effect to a pair of
equal and opposite pulses in a uniform electric field, the
first at 4o and the second at #. In order to approximate
such pulses, we shall consider two condensers, the fields
of which cross the observed particle at the times # and
t1. The condensers are assumed to have a length, /, in the

16 In the hypothetical example of Eq. (25), this force resulted
from the time-dependent interaction, which was equivalent to a
corresponding vector potential, which would produce a field,

=—(1/c)dA/at, that is nonzero only when A (¢) changes;i.e., at
the beginning and the end of the interval.
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YV direction which is much greater than their thickness,
d, in the X direction. Therefore, they will produce a
uniform electric field in the X direction, except for edge
effects which can be neglected when />>d. Each con-
denser will go by the particle at a velocity, V, in the ¥
direction, which is assumed to be so great that the
electric field acts for a very short time, I/V,, with the
result that the field approximates the one cited in our
mathematical example, where the period of action was
infinitesimal. If the two condensers follow each other,
one at (=1, the other at /=#, then we shall approach
the case treated in Eq. (25).

As in the case of the collision treated in Secs. 1 and 3,
the time of measurement is defined as the time at which
the condenser passes the observed particle. (This means
that we are now shifting to the point of view in which
the time-determining variables are on the quantum-
mechanical side of the cut, but as we saw in Sec. 3, both
both points of view are equivalent and can be used
interchangeably). As in the case of collision, the un-
certainty A¢ in this time will be given by Ay/V,, pro-
vided that the observed particle is initially localized in
the ¥V direction, with a velocity v, much smaller than
V. This will imply an uncertainty in the energy of the
condenser, AE,=V,AP,S#%/At.

In the interaction between particle and condenser, the
transfer of X component of the momentum (neglecting
edge effects) is

Ap.=pLl=Fr=ebr=e8l/V,, (28)

where 7 is the time taken by the condenser to pass the
particle. (Note that 7 and Af are different quantities).
This transfer is independent of initial conditions, and is
calculable to arbitrary accuracy. (Since V, is as large as
you please, the ¥ component of the velocity of the par-
ticle can be neglected in the above calculation.) The
above transfer of momentum implies a transfer of
energy to the particle,

(pSHApS p2 p

2m

(Ap)?
Ap.+t .

2m  m 2m

(29)

€E— € —

By conservation, this transfer must be equal to the
energy loss Eo—E; of the condenser. Since the initial
momentum P, of the condenser in the X direction is
zero, and since the mass M of the condenser is large, the
term (Ap,)?/2M which represents the energy of the
condenser due to momentum transfer in the X direction,
will be negligible. The energy change must therefore be
the result of alteration in the ¥ component of the
condenser momentum, so that it will be equal to
Ev—E~V ,AP,.

Equation (29) can now be used to permit p,” to be
measured if Eo— E=e—e¢ is known. For since e—e¢; de-
pends on p.,0 and since Ap, can be obtained from
Eq. (28), p. can be calculated in terms of Ey—E,.

There is, however, a limitation on how accurately
Ey—E; can be measured because we require that the
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V coordinate of the condenser shall serve as a clock to

an accuracy, 64, with the result that the uncertainty

relation, 8E£>7%/6¢ will hold for the energy of the con-

denser. By conservation, the same uncertainty relation

must hold for the energy e—e, transferred to the particle.
By evaluating §(e— €) from Eq. (29), we obtain

Ap,
0(e0—€)0t=0p0——01="0p,IAv,0t=0p, (v, — )8t > h.
m

This is exactly the same relation as was obtained in
the collision example given in Sec. 1. In other words,
the measurement on the first condenser alone, must
satisfy the condition that if it is carried out in a time
defined as é¢, there will be an uncertain energy transfer,
SESh/6t. It is at this point, however, that the second
condenser plays an essential role. For immediately
after the interaction with the first condenser is over, it
will bring about a transfer of X component of the
momentum, which is equal and opposite to that trans-
ferred to the first condenser. As a result, the velocity of
the observed particle will return to its initial value, just
as happened in the mathematical example discussed in
the beginning of this section. Thus, the momentum and
the energy have been measured without their being
changed. There is, therefore, no limitation on the
accuracy with which the energy of the particle can be
measured, regardless of the value of 64, which can be
made as small as we please by making V, very large.

A similar two-stage interaction can be carried out in
the collision example described in Sec. 1. To do this, we
recall that the uncertainty in energy transfer, §(¢'—e)
=|v—17'|8p is large because |v—1v'| is large. Neverthe-
less v—v’ can be determined with arbitrary accuracy
from the results of the measurement. After this is done,
one can then send in a second test particle, with initial
momentum calculated to be such as to change v’ back
to v. After the two collisions, there will be, as in the
case of the condensers, no uncertainty in energy of the
observed particle. In the collision experiment, the
change of velocity depends on the value of the momen-
tum of the observed particle, so that the initial condi-
tions in the second collision must be arranged, in
accordance with this value, which is learned from the
first collision. On the other hand, in the condenser
experiment, v,/—v, is independent of initial conditions
so that the second condenser can be prearranged to
cancel out this shift of velocity without any information
from the results of the first interaction. _

At first sight, one might raise the question as to
whether our conclusions could be invalidated by effects
of radiation, or by currents which might be induced in
the condenser. Since we are discussing only the problem
of nonrelativistic quantum mechanics, we can assume
that the velocity of light is infinite. In this case, radia-
tion and relativistic effects, in general, can be made
negligible, no matter how sudden the shift of potential
is. As for currents induced in the condenser, these can
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be avoided by charging an insulator instead of a metal
plate. The field will still be uniform, but the charges will
not be mobile, so that no currents will be induced in the
condenser.

The error in the treatments of Landau and Peierls,
Fock, and Krylov, and others, as discussed in Sec. 1, is
now evident. For in all of these treatments, the example
used was that of a single collision of a pair of particles.
For this case, our own treatment also gave the result
that energy transfer in a short time must be uncertain.
But as shown in our general canonical treatment of the
problem [see Eqgs. (25)-(28)7], it is clear that this is not
the correct way to measure momentum and energy
without changing them. To accomplish this purpose we
need an interaction of the kind described in the above
equations, which changes the velocity only while
interaction is taking place, but which brings it back to
the initial value after interaction is over. And, as we
have seen, it is possible to realize such a measurement
in a concrete example.

5. SUMMARY AND CONCLUSIONS

There has been an erroneous interpretation of un-
certainty relations of energy and time. It is commonly
realized, of course, that the ‘“inner” times of the
observed system (defined as, for example, by Mandel-
stamm and Tamm?) do obey an uncertainty relation
AE At2 h, where AE is the uncertainty of the energy of
the system, and At s, in effect, a lifetime of states in that
system. It goes without saying that whenever the energy
of any system is measured, these “inner” times must
become uncertain in accordance with the above relation,
and that this uncertainty will follow in any treatment of
the measurement process. In addition, however, there
has been a widespread impression that there is a further
uncertainty relation between the duration of measure-
ment and the energy transfer to the observed system.
Since this cannot be deduced directly from the operators
of the observed system and their statistical fluctuation,
it was regarded as an additional principle that had to
be postulated independently and justified by suitable
illustrative examples. As was shown by us, however,
this procedure is not consistent with the general
principles of the quantum theory, and its justification
was based on examples that are not general enough.

Our conclusion is then that there are no limitations
on measurability which are not obtainable from the
mathematical formalism by considering the appropriate
operators and their statistical fluctuation; and as a
special case we see that energy can be measured
reproducibly in an arbitrarily short time.
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