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Questions concerning superselection rules are considered. Two experiments are discussed. In the first,
coherent superpositions of different angular-momentum states are constructed. In the second, coherent
superpositions of states with different charge are constructed in complete analogy with the angular-mo-
mentum case. We suggest that, contrary to a widespread belief, interference may be possible between

states with different charges.

I. INTRODUCTION

HE idea of a superselection rule as a rule prevent-

ing certain mathematical state vectors from being

realized in nature was introduced by Wick, Wightman,
and Wigner.1?

A selection rule for a quantity 4 asserts the con-
servation of 4. Selection rules exist for energy, momen-
tum, angular momentum, electric charge, lepton
number, and baryon number, and the number of fer-
mions modulo 2. According to Wick, Wightman, and
Wigner, some of these selection rules can be elevated to
the status of superselection rules. A superselection rule
asserts the impossibility of preparing a coherent super-
position of two eigenstates of A with different eigen-
values. More generally, no physically realizable density
matrix contains off-diagonal elements connecting states
of different 4.

It was conjectured by Wick, Wightman, and Wigner
that superselection rules exist for fermion number
modulo 2 and for the total electric charge.

This is the first of a series of articles in which we
discuss the validity and meaning of such rules. In this
article we suggest a method of exhibiting interference
between states of different charge.

Imagine an isolated laboratory which is neither
interacting nor correlated to any outside system.

We consider experiments done entirely inside the
laboratory. We may, therefore, assume that the total
charge of the laboratory is definite.

We note that if the laboratory is divided into two
parts—a subsystem upon which our interest is focused,
and the rest of the laboratory—then the state of the
laboratory can be written

i) =2"¢ |9)10—a} f(9)

where |g) is a state of the subsystem with eigenvalue
g, |Q—g} is a state of the rest of the laboratory with
eigenvalue Q—g¢, and Q is the total charge of the labora-
tory. Since each value ¢ will be correlatéd with different
orthogonal states of the rest of the laboratory, the

* Supported in part by AFOSR Grant No. 508-66, AFOSR
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density matrix for the subsystem will not have elements
connecting different g.

It would seem then that unless the entire laboratory
has an indefinite value of Q, coherence between different
g for a subsystem is not possible, as emphasized by
Wigner. By analogy, it would seem that establishing
interference between different particle momenta (local-
izing a particle) is impossible unless the laboratory is
localized. This result applies to an observer outside the
laboratory who indeed is correct in concluding that if
the laboratory has definite momentum with respect to
him, no part of the laboratory is localized in his frame
of reference. Nevertheless, one may ask for the descrip-
tion as seen by the experimenter inside the laboratory.
His question is whether or not the subsystem is localized
with respect to the laboratory frame of reference.

The equivalent question for charge has not been
formulated before. In this article, we investigate this
problem and show that interference between different
charge states has analogous meaning.

We precede this discussion with a detailed description
of an arrangement in which interference in the above
sense is established between different angular-momen-
tum states, to indicate more fully the relevance of such
interference in a familiar context.

II. ANGULAR MOMENTUM

In this section we consider an experiment to prepare
a coherent superposition of o,=-+1 and ¢,=—1 for an
electron initially in the state |o,=-1). This can be
done with the aid of a magnetic field in the x direction.
The electron passes through the magnetic field, pre-
cessing in the usual way around the x axis. The system
is arranged in such a way as to leave the electron spin
in the y direction when the electron leaves the field.
Such a final state is a coherent superposition of ¢,==-1.
That it is coherent can be seen by measuring o,. An
incoherent superposition would give the value % for the
probability that o¢,=1 or —1, while the present state
has probabilities 1 and 0. The measurement of ¢, can be
done in various ways by the use of a second magnetic
field.?

The phase 6 in the superposition |o=-1)4re?
|e=—1) has an interpretation in terms of the direction

8 See, however, E. P. Wigner, Z. Physik 131, 101 (1962).
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of polarization of the electron. By changing 6, we rotate
the polarization of the electron about the z axis.

Since angles are always measured with respect to a
frame of reference, with the zero of angle chosen arbi-
trarily, the phase in the ¢=2-1 superposition is defined
relative to an angular frame of reference, say the second
magnetic field. We analyze the system in terms of a
quantum-mechanical system of three parts, each free
to rotate about z. There are the electron e, the prepara-
tion magnet H;, and the second magnet H, used to
measure the electron spin. The magnets will be thought
of as a system of spin-} particles with magnetic mo-
ments. If the system of two magnets has a very large
moment of inertia, then the experiment cannot be
sensitive to the exact total angular momentum of H,
and H,, since, in any case, the angular velocity of the
system will be approximately zero. We therefore do not
lose generality if we choose the total angular momentum
La+L.s of H; and H, to be zero.

The electron enters with ¢,=--1. The initial state is
then

2 Y(Ly,Lya,B)s(Li+Ls)| Lo, LoB)a.=+1),

Ly, Ly,a,B

¢y

where L; equals the z component of angular momentum
of the ¢th magnet and o and B describe all other degrees
of freedom of the magnets. We shall suppress the
dependence on a and 3 in what follows.

At any later time the state will be

@(L1L3)8(La+Ls)|o=+1)| L1,Ly)
+@2(L1L2)d(Li+Lo—#) |o=—1)| L1,Ls). (2)

The density matrix for the electron alone can be seen
to be diagonal in the z component of g, since different
o will be correlated with different Li+Ls.

More generally, if the entire universe is in a state of
definite L., then the density matrix for any subsystem
must be diagonal in L,, since different L, for the sub-
system will be correlated with different L, for the rest
of the universe.

Are we to assume that the diagonal nature of the
density matrix means that the originally proposed
experiment is impossible, or that a superselection rule
for L. exists even for subsystem of the universe?

The answer for the simple system of electron and
magnets is that since we prepared the entire system in
an eigenstate of L., the orientation of the xy plane is
completely uncertain with respect to an external ob-
server. Hence, in particular, the orientation of the
electron in the xy plane remains totally ambiguous.
However, in the experiment described above, the
reference frame for the electron is the system of mag-
netic fields. Therefore, questions concerning the over-all
orientation of the electron with respect to magnetic
fields are of no importance, i.e., the coherence of states of
different angulor momentum is measured relative lo a
frame of reference. In other words, the statement that
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the electron emerges from the first magnet in an eigen-
state of o, has a meaning only relative to the second
magnet and not relative to an external observer.

In order to insure consistency of the experiment, it is
important that the frames of reference provided by H;
and H; be consistent. That is, the orientation of H; with
respect to Hp; must not be ambiguous. This requires the
wave function ¥(L;,Ls) to have a form

U (LyLo)~ eitti—12)0, 3

so that the magnetic fields will have a definite, non-
fluctuating angle  between them.

We summarize by saying that the relative phase
between the states |s==1) is always measured with
respect to a zero angle defined by the orientation of one
of the magnets, which by definition provides the wxy
frame of reference.

Furthermore, if consistency is to be checked in some
other frame, the dynamical degrees of freedom of the
two frames must be correlated so as to give the two
frames a definite relative orientation.

III. CHARGELIKE QUANTITIES

In this section, we discuss an experiment which can
be performed in principle, in which charge plays an
analogous role to that of the angular momentum in the
previous section.

Imagine two cavities, C; and Cs, each having a single
mode which may be populated by an arbitrary number
of negatively charged mesons. (We neglect electro-
magnetic interactions in our discussion.) A state is
prepared in which the charges Q; in C; and Q: in C; are
uncertain, while the total charge Q:+Q; is definite.
Such a state may be prepared, for example, by feeding
the cavities with mesons, each being “split” before
entering the cavities by a suitable “half-reflecting”
mirror. Each meson will be prepared with a wave func-
tion ¥;--¢?#¥,, where ¥ is nonvanishing in C; and ¥, is
nonvanishing in Co.

If the total number of mesons is large enough, the
state thus prepared will be, to a good approximation, a
state of definite phase ®;—®,, where ®; is the phase
conjugate to Q.

This preparation is analogous to the preparation of
the two magnets in the last section which were prepared
in a state of well-defined relative orientation and
definite total angular momentum.

After the cavities have been so prepared, a proton is
sent into C;. It emerges from C; as either a proton or a
neutron. We claim that relative to the frame of reference
provided by Ci the emerging nucleon is in a coherent
superposition of zero and plus charge with a definite
phase between neutron and proton components. To
check this, we send the nucleon through C; and observe,
as we shall show, that the probability of the nucleon
emerging from C; as either proton or neutron exhibits
interference between proton and neutron.
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In fact we can construct a “laboratory” including an
arbitrary number of cavities that serve as frames of
reference. One cavity may be arbitrarily chosen as the
zero of phase. Relative to that origin, we can prepare
superpositions of charge states which can be checked at
any other cavity in an interference experiment of the
kind we shall describe. Consistent results will be ob-
tained in that the phase of the superposition will be
independent of the cavity at which it is checked.

We now discuss in detail the setup described. Let
[n) be a state with # negative mesons. Consider a state
|Q,0) for cavity 2 which has an approximately well
defined charge Q and phase 6:*

n/2

e n). 4)

100)=3

(nl)1r2

We show how such a state can be used to measure the
phase of a proton-neutron superposition if Q is chosen
very large.

We assume that protons and neutrons interact with
mesons through a Hamiltonian

H=(ota"+o7a*)g(), ©)

where ¢ takes a proton into a neutron, ¢~ takes a
neutron into a proton, and ¢~ and @t are meson de-
struction and creation operators. The function g(Z) is a
function which equals g from {=0 to =T and equals
zero for all other times. The interval O to T represents
the time during which the nucleon is in contact with the
mesons. The initial state is |Q,8) for the cavity C; and
a| P)+B|N) for the nucleon.

Using the Hamiltonian of Eq. (5) and assuming large
0, we find that at time T the state is

[ cos(gTQ"2)+-Bi sin(gTQY2)e~]| P)
+ [ sin(g7Q?)e?®+B cos(gTQY2)]|N).  (6)

The proton probability is

o*a cos?(gTQ"?)+B*B sin*(g7°0"*)
—iaf¥ei® cos(gTQ'?) sin(gTQ"?)
+ia*Be~# cos(gTQV?) sin(gT(Q'2). @)

Hence if the relative phase between o and 8 is ¢, then
the probabilities of a proton and a neutron after passing
through C. depend on (6— ).

In fact, we may say that with respect to the reference
frame provided by Cs, the neutron-proton relative phase
is (6— ¢) and the initial nucleon state is

la] | P)+[8] =2 |N). ©)

Suppose now that we prepare a nucleon state by
passing a proton through C; with C; in the state |Q8).
Upon emerging, the nucleon has the probability
cos?(gTQM?) of being a proton and sin?(g7’Q'/?) of being
a neutron. We wish to determine the relative phase

4R. J. Glauber, Phys. Rev. 131, 2766 (1963).
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between the proton and neutron components by passing
the emerging beam through C,, which is in the state
|Q'6’). The probability that the nucleon emerging from
C: will be a proton is obtained by multiplying the
transition operator for passing through C; by that for
passing through Cs,. The result gives

cos’(gT'Q"?) cos?(gT/Q")-+sin?(gTQ'2) sin?(gTA/Q")
—2[cos(gTQ"?) sin(gTQ") cos(gT/Q’)
sin(g7v/Q") JLcos(6—6")] (9)

for the proton probability.

Comparing Eq. (9) with Eq. (6) gives a value (0—6")
for the relative phase between neutron and proton when
referred to the frame provided by Cs.

In the above experiment, the two states |(Q8) and
|Q'6") for Cy and C, are, of course, not eigenstates of
charge. Actually they are minimum uncertainty packets
in charge and phase. Hence we have not yet been able
to set up the required relative reference frames with a
system of definite charge. However, if we superpose
states |Q0;) and |Q'6.), keeping the phase difference
(6:—8,) fixed at (—0') according to

[i)= / [Q01)[Q/02)3 (81— 60— 646" )e?(@+e)e | (10)

then we obtain a state of definite charge Q-+(Q’. Further-
more, all probabilities for proton or neutron states are
precisely the same as for the initial state |Q8) |Q'0").
Hence the apparatus described by Eq. (10) constructs
a state which, when referred to the phase frame of Cs,
is a coherent superposition of proton and neutron with
phase (0—6").

IV. CONCLUSION

Our conclusion is that coherence between different
values of an additive conserved quantity Q is really a
way of speaking about the special interference effects
which occur when the source and detectors of particles
are correlated and coherently share a fixed amount of
Q between them.

In order to establish the existence or nonexistence of
a superselection rule in the present sense, it is necessary
to examine the nature of the available interactions to
see whether the procedures outlined above can actually
be carried out without loss of coherence.

Our preliminary investigations, which will be de-
scribed in a separate article, indicate the following
points for electron charge.

1. If the electromagnetic coupling between charge
and photons is turned off, then there exists no limitation
on the coherence of superpositions of charge.

2. Because of the actual coupling, the electromag-
netic energy in the meson cavities will cause the phase

5 We refer to the state of the nucleon after having been pre-
pared at 1 and before being detected at 2.
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relations between cavities to become uncertain in an
amount of time which depends on the fine-structure
constant and the geometry.

3. The potential energy seen by a charge when
passing between cavity 1 and cavity 2 is uncertain
because of the uncertain value of charge in each cavity.
Hence a charged particle will develop an uncertain
phase relative to an uncharged particle in the motion
from 1 to 2.

4. It follows from the above points that as long as the
fine-structure constant is small compared to 1, our

CHARGE SUPERSELECTION RULE
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experiments can be carried out. For a given fine-
structure constant, an upper bound on the distance
separating the two cavities exists beyond which the
interference will be washed out. This upper bound
becomes infinite as the fine-structure constant becomes
zero.
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An analysis is given of the change in the statistical ensemble when a measurement of a generalized co-
ordinate is made on a quantum-mechanical system. The results are naturally described in terms of the
changes in the Wigner distribution of the system. Some of these changes are the same as those in classical

theory.

I. INTRODUCTION

E develop in this paper a method for discussing
the measurement of quantum-mechanical ob-
servables with continuous eigenvalue spectra. In this
method the Wigner distribution function! has a role
similar to that of the Gibbs phase-space density in the
corresponding classical problem. The analysis applies
to a wide class of physical situations, such as a field or a
material particle.

In classical theory, the ensemble describing the sta-
tistical properties of a system is specified by the Gibbs
phase density pg, such that pg(g,p)dgdp is the proba-
bility of finding the system in the phase-space element
dqdp. When a measurement is made, the Gibbs density
must be changed to incorporate the information obtained
from the measurement. For a measurement of a system
with one degree of freedom, which establishes that the
coordinate ¢ lies in a range 1—3A¢<¢<q1+3Aq, the
Gibbs density just after the measurement is

PG(I) (Q;P) =wG_IPG(0) (Q)P) ) lq_qll <%Aq

* This research was sponsored by the U. S. Army Research
Office (Durham) and by U. S. Air Force Project RAND.
1 E. P. Wigner, Phys. Rev. 40, 749 (1932).

where pe@ is the Gibbs density just before the meas-
urement, and

qu-%A q

we= (1.2)

+0
dg f a5 59 ().

a—4Aq

Equation (1.1) is an expression of the “reduction” of
the classical ensemble by the measurement. The
members of the original ensemble having coordinates
inconsistent with the measurement are discarded ; those
which are consistent form the new ensemble. The factor
wg, which normalizes the new ensemble, is the proba-
bility of finding the coordinate ¢ in the range Ag in the
original ensemble. Some information about the original
ensemble is preserved by those members retained in the
new ensemble.

In quantum theory, the statistical state of a system
is described by the density matrix p. When a measure-
ment is made, the density matrix must be changed to
incorporate the information obtained from the meas-
urement. The density matrices just before and just
after the measurement, po and p; respectively, are
related by the equation

p1=w"Pp,P,
w="Tr[pP],

(1.3)
(1.4)



