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Quantum effects of electromagnetic potentials are analyzed further. It is
shown that other theories, both classical and quantum mechanical, exhibit
analogous effects. Examples from classical general relativity, Yang-Mills
theory, and quantum field theory are discussed. It is concluded that effects of
this kind are not necessarily quantum mechanical in nature and not necessarily
related to the appearance of non-gauge-invariant potentials in the formulation
of the theory.

INTRODUCTION

Some vears ago it was pointed out (1) that electromagnetic potentials seemed
to have peculiar effects in the quantum domain. It was shown that the motion of
a charged particle taking place in a multiply-connected region free of electro-
magnetic flelds but enclosing a flux depends on the enclosed flux. These effects
had been confirmed experimentally (2).

In subsequent discussions it was taken for granted that the effect is necessarily
quantum mechanical and involves either local interaction with potentials or
nonlocal interactions with fields.

In this article we analyze further the essential features of the effect. We
investigate other theories in which analogous effects are present and demonstrate
that such effects are not necessarlly quantum mechanical in nature.

Tinally we show that it is possible to formulate local theories in terms of
gauge-invariant quantities in which the same effects are present.

I

In this section we discuss the potential effects in multiply-connected regions
exhibited by a general gauge field.!

* Supporied in part by the National Science Foundation-Grant No. GP 6134.

1 This work was done in partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

t Preseut address: City College of New York Physics Department, New York, New
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1 The idea that such effects may be present in general gauge fields liad also been sug-
gested by others, e.g., B. 8. De Witt {Phys. Rev. 125, 2189 (1962)] und G. Carmi (personal
communiecation).,
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450 WISNIVESKY AND AHARONOV

We consider a field ¢{x), which belongs to a representation of o continuous
group of transformations (¢, and which satisfies linear equations of motion. We
assume the usual type of iuteraction between ¢(x) aud the gauge potentials
B, associated with ¢, namely one in which covariant derivatives of ¢( ) replace
ordinary derivatives in the free equations of motion for ¢(a). Examples of such
Interactions are charged fields intevacting with the electromagnetic field, tensor
fields in interaction with the gravitational field, nucleons interacting with the
Yang-Mills field (3), ete.

Let us consider a setup analogous to that of the electromagnetic case (1).
A flux of the gauge field F}, is enclosed in a region R, and a packet of the field
«(x) moves in a multiply-connected region R’ surrounding R. Let &, be the total
class of solutions (not necessarily single-valued) in R’ of the equations of motion
for ¢(), in the case in which the field Fj, is zero evervwhere.

When F, is not zero in B (but zero in B') the solution is

¢(z) = D(a)go(2), (1)
where ¢o(2) represents a suitable non-single-valued subclass of &, D(a) stands
for a gauge transformation with space—time-dependent parameters a{x) and
D{a)eo() is single-valued over the whole B {a(x) is in general multiple-valued).
To see this we compute the covariant derivative ¢, . Let « be the coupling con-
stant of the interaction of ¢ with Bi#, L’ a matrix derived from the multiplica-
tion table of the group elements ¢ = F(q, b) given by

aF’

L) = 2 (a0

=0,
and 7'; the infinitesimal generators of the group, then

0u = D{a)go,. + Dia) o0 + aBLTD(a)ey
D(a)go, + alLi (@) T:Dla)ey

+ aB L’#T{D( CLJ(,’)Q [Ref (4)] .

Since
aB'y(x) = —alLi'(a) (2)
in the regions where the field F}, vanishes, we have finally
e = D{(a)eoy-

This result assures that ¢(x) is the solution because ¢o is chosen to be a solution
of the free case. .

Let us now consider in more detail the effect of the field Fy. enclosed in B on
the motion of a packet of field ¢ in &', In addition to the change in ¢ that would
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oceur 1f its motion were free, there 1s an extra gauge transformation on ¢ with
paraeters given by Fq. (2). When the orbit is closed the added change of o
will be a constant, finite gauge transformation, independent of the shape of
the packet and of its orbit. The parameter of this gauge transformation is ob-
tained by integrating Eqs. (3) and (2) and is given by ()

D = Texp <— @ ;é T By da*/ds ds> =7 (4)

where T 18 an ordering operator with respect to the parameters that labels the
points along the orbit of ¢. It follows from Fq. (4) that the resulting effect on ¢
due to the presence of I}, depends on the global properties of the potentials B,'.

In the following sections we discuss consequences of the above results in dif-
ferent gauge theories of physical interest, including classical as well as quantum
theories.

1I

Consider the classical gravitational field and let it interact with another field
(i.e., tensor or spinor) in the way deseribed in {IT} [seec Ref. (4), p. 700}. In this
case the gauge fleld is associatedwith the Lorentz group.

To begin with we discuss the effect of the gravitational field on the parallel
displacement of a vector in o multiply-connected region. Ior simplicity we restrict
ourselves to a two-dimensional case where the manifold 15 a cone. The curvature
vanishes everywhere except in the vertex. The vector is carried around a elosed
orbit encircling the vertex. After the orbit is completed the direction of the
vector will be rotated through an amount ecqual to the flux of curvature enclosed
by the orbit of the vector (8).

As in the general example discussed in I, the above change in the direction of
the vector 1s due to a global effect of the enclosed curvature, that cannot be
traced locally in an invariant (i.e., coordinate-independent) way.

Next we discuss the effect of the curvature of space time on the interference of
electromagnetic waves. An electromagnetic wave is split in two packets; one of
the packets is inade to move around a close path and then recombined with the
other packet. Suppose first that the path encloses no curvature, the energy dis-
tribution is then

e = F-F¥, (3)
where

30 i
e=¢ + e+ 2(E+Es, + H;-H,). (6)
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Here ¢ and e ave the euergles of each separate wave and 2(E\E, + HH,) is
the interference term.

Suppose now that the path encloses o bound region of curved space~time. In
this case the distiibution of energy is given by

d = (F + )R + 1Y) (7)

where Fy' = 5iF, [see (7)], and & is a three-dimensional coniplex rotation. The
six real parameters which define the three complex angles of this rotation are the
parameters of the Lorentz transformation undergoue by the vector potential -,
when it 1s transported along the same orbit.

If we write ® = 9 + &0, with T and 9 real and use the orthogonality con-
dition

R = 1, (8)

we deduce
NN — MIL = 1, (9)
NI + mI = 0. -~ (10)

Using (9) and (10) we can write the energy distribution (7) in the form
§ = & + e 4 2(9ME) (ME) 4+ 2(MHy) « (STH,) 4+ L(H,) « (9TEs)

11)
4 AE+(90-Es) — 4Ei+(9WH,) + 4H,. (5(H,) - 4H,.(91E,).

The analogy between this classieal effect and the quantun interference effect
for charged particles moving around a region enclosing electromagnetic flux is
evident. We have here a shift in the interference pattern which is nonzero only
if the light wave moves in the whole multiply-connected region, while in any
simply counected region free of curvature the effect vanishes.

As a final sample, consider two twins in two space ships initiaily situated at
point 1 of Fig. 1. Their clocks are synchronized and they agree to follow orbits
Cg and C., by accelerating themselves in equal amounts with respect to their
own frame of reference at equal proper times.

Assume first that the motion takes place in an overall flat space~timne. Then,
clearly, when they meet again at point 2 they are still of the same age.

Suppose now that the orbit made by the two space ships eneircles a bounded
region of curved space-time. Then, in general, the metric tensor will not be
Minkowskian evervwhere along the path of both space ships. In that case the
twins will differ in their age when they meet at point 2 by an amount

As=f ds —f ds. (12)
CL CR
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That this result is due to a nonlocal effect of the enclosed curvature is evident
from the fact that all experiments that can be carried out by the twins inside
their rockets will give results identical to the case with no curvature present
anywhere. Each of the fwins can set up a nonsingular coordinate system in
such a way that the metric tensor will be Minkowskian in a simply-connected
reglon containing his orbit. On the other hand, an external observer who wants
to compare the age of the twins at all intermediate stages of the trip, has to set up
a coordinate system including both orbits. This cannot be done with a single non-
singular coordinate frame covering the non-simply-connected region.

jus|

Ia this section we discuss the Yang—Mills field and its interaction with nucleons.
As it is well known (3) this gauge field was introduced to account for the isospin
symmetry of strong interactions. The eguations of motion for a nucleon inter-
acting with the Yang-Mills field are

o _ ”f »l . — 1
Y0, — L7 -Bu) P + m¥ =0, (13)
fic
where +* are the Pauli matrices, g the coupling constant, and B,’ the three-com-
ponent Yang-Mills potential. The field derived from this potential is

Fi, = B, — Bi, + igexB.’B), (14)

where e} is the totally antisymmetric Levi—Civita tensor.
Cousider a case in which the field 7, is different from zero in a bounded space—
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time region R. In analogy with our previous examples we will investigate the
nonloeal effects of Fi, on the motion of a nucleon around R. For simplicity we
discuss a case in which the field has only one component in the direction of .
The wavefunetion of a nucleon after moving around R is given by

T, = exp ( —ir'®); (15)

d = /;—/C (}é B} da* = ]7% _/ /. R, ds®

and ¥, is the wavefunction that would result for the same motion for Fi, = 0
everywhere.
From (15) we get

where

¥, = [cos ® — ir sin BN, . (16)
If the initial state ¥, represents a proton
Y=y, (17)

then ¥,” ( the state after the motion on the close orbit surrounding £) will also
correspond to a proton. But when /75, is different from zero we have ¥, cor-
responding to a superposition of proton and neutron states with probabilities
cos’ @ and sin’ ®.

The above deseription of the effect is not yet fully gauge-invariant since we
singled out the Z axis in isospace. To obtain an effect that is completely gauge-
Invariant, consicer the following experiment. Two nucleons are initially located
at the same point in space and have the same charge. One of them is moved
around R, the other stays behind. When the two meet again the relative orienta-
tion of their isospin is measured (by comparing their charge). The resuls depends
on the enclosed flux and is obviously gauge-invariaut.

Asin the gravitational case there is no gauge invarant way to trace the change
in the charge of the nucleon.” Moreover, if the motion of the nucleon is confined
to a sunply-connected region outside R, no effect of the flux will be observed. An
interesting open question is whether nonlocal experiments of this kind ave feasible.
Such experiments might provide a direct check on the existence of Yang-2lills
fields.

Iv

The previous discussion malkes it clear that nonlocal effects of potentials exist
in classical as well as in quantum theories. However, there still seems to exist an
important difference between the two cases.

* Nevertheless, in any gauge the total charge (fleld plus nacleon) is conserved and the

change in the charge of the nucleon is compensated by the change in the charge of the Yang-
Mills field.
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g IR/ B B S R

d =1 Q B,dx :~—]'/Fvyds

he | T8 fic g
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Compare the cases of a classical vector field transported around a bounded
region of curved space-time, and a quantum charged particle traveling around an
electromagnetic flux. In the first case the direction of the vector will change along
the orbit, the change being a Lorentz transformation. At each point in the orbit
the direction of the vector relative to its initial direction is not gauge-invariant.
Still, different observers can set up their own coordinate systems, with respect
to which the direction can be observed locally. In general, these frames will be
nounintegrable globally, but nevertheless suitable for any simply connected region
outside the flux (for instance, the different cones in the gravitational example in
II). Different observers will, in general, disagree about the local changes meas-
ured, but the net vesult at the end of the orbit will be the same for all observers.

In the quantum case the phase of the wavefunction will also change locally
in a non-gauge-invariant way, but here a further restriction seems to exist: there
1s 1o way to set np even a non-gauge-invariant frame relative to which the local
phase can be observed. However, this further restriction is not a common charac-
teristic of all quantum effects of potentials. Indeed even for electromagnetic
interactions there are quantum examples for which the analogy to the classical
case is complete.

Consider a charged-meson field described by a complex field operator ¥, which
can be written in the form

v = Rix, t)e®"?, (18)

where R and ¢ are real operators which commute at space like points. The usual
commutation relations imply that the charge density

p = —ie(¥r — V) (19)
is conjugate to the phase operator ¢ modulo 27; that is,
[p(;v’ f), ez‘¢(x"t)] _ Z<ef¢£r,l)53(l‘ _ .),'"), (2())

Tt can be shown (8) that the meson field cau be prepared in a state which is a
coherent superposition of eigenstates of charge with definite relative phase. A
non-gauge-invariant frame of reference can be set up relative to which the phase
of ¥ can be observed locally.

When a packet of fleld ¥ 1s trausported around a circuit enclosing electro-
magnetic flux, it will pick up a phase proportional to the line integral of the
potential between the starting point and the point in question. An array of
apparatus is set up along the trajectory which can measure the phase of the field
locally at each state of the process. Thus, the analogy to the gravitational field is
complete.

v

Nonlocal effects of the type we have considered are not necessarily a conse-
quence of the cxistence of potentials in the formulation of the theory. Indeed
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it is possible to find equivalent local theortes in which only gauge-invariant
quantities are used, and where nevertheless similar etfects occur.

Let us start with the case of a nonrelativistic quantum particle interacting with
an electromagnetic field. The action expressed in terms of the vector potential
A the sealar potential ® and the wavefunction ¥, is

(1 e
;S:/ciultﬁ r< +:f >\Ifﬁ<A—%€A>\1/

{21)
s (0 ¢ \
— i - ~-¢ T e be m. s
a ¢ f
where N, ... 15 the action for the free electronagnetic field. We write
= Re® 9% = R (22)
where 2 and ¢ are real. We then get
!
S 2/(Z3.1'(sz'f1fﬁ[vl€+ ik ﬁA«qu)}vz YR — iR{S A - V¢>
2 fic fic ‘o
(23)

o IR e L0(1)\ L@
LﬁR? TR <ﬁ‘® T é‘t>>T~\cm

The equatious of motion obtained by varying S with respect to ¢, R, A, and @ are

Tc? 2 €
2w R (ve—ZA)]=
2 9t +)777 |:R< 7 e >J 0,
W% p(ve— 2a) = Lpvn - 4R(I> (24)
"ot 2m hic T om LT -
: 1 9°A s fe e
VA -—-Z= = - R —{Vyp— —A
¢ o E mc< ¢ fie >’
v b 16'5‘@ e
el c
If we eall
n e e
= R V=—1{V¢— — = —pV
P m< ® ne > / cp
ngp, and @—ia—d); c(b,
¢ m ot me

we can write ( 24) in terms of gauge-invariant local quantities in the form

dp/dt + V-(pV) =0
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- 1. B VR

& vy = YA

+2 2mt R’

1oV . 1_a0. e (25)

VV — 2~ — VWV V) + 2V % = —j.
2 o ) e ch
2z J e

Ve - vy = - S,

at v mcq

These equations can be interpreted az the continuity equation, Bernoulli’s
equation. and AMaxwell’s equation for a chareed fluid with density p and quantum
pressure P = (7’ 20N V'R/R) [see Ref. {9)]. The ohservable quantities of the
fluid at a point are p and j = (e/c)pV, thus the velocity is defined only in the
regions where p 7 0’?

Consider now a situation in which the field fows around an impenetrable body
enclosing a magnetic field. When passing the body, the fluid will split into two
separate streams. When these streams are re-combined later, an interference
pattern of their charge density will be produced. As long as the two streams do
not overlap the observable quuntities o and J will remain independent of the
magnetic flux. However, when they finally meet the charge distribution p will de-
pend on the enclosed flux in the manner shown in Ref. (7).

The equation of mwotion for p is local {and. therefore, independent of the mag-
netie flux whieh is far away) and we would expect that if ¢l the local quantities
are independent of the flux before the streams overlap, then they should remain
s0. Thus Egs. (23) seem to be ambiguous.

Suppoese that the body enelosing the flux is not completely impenetrable, so
that p inside the body (pia) will be very small but not exactly zero. The magnetic
field will now atfect the fluid even before the interference takes place, and it is
possible now to trace the effect of the fluxlocally. Yet the local effects of the mag-
netic field are proportional to p and therefore extremely small but its effecton the
interference pattern is alwayvs finite {even when pin — 0). It we compare two
situations in which the enclosed magnetic flux is different we see that before the
overlap takes place the ditference in p and j i the two cases is arbitrarily small,
and, nevertheless, after the two streams meet the difference is finite. In this sense
Fgs. (25) might be said to include instabilities. These instabilities are removed
when the non-gauge-invariant quantities are introduced. Thus in this context
we may interpret the electronagnetic potentials as quantities useful in removing
instabilities *

1 In the regions where p = 0, Eq. (26) do not determine V.

t Note that the enndition of single valuedness of the wavefunction implies that along
any closed loop ,56‘ V.dl = (h/im) integer —(e/mc). Flux included. Since this constraint in-

volves the velocity but not the current it does not atfect our conelusion concerning the in-
estability of p and j.
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The above treatment may be extended to general gauge theories. Consider
again the interaction of a general gauge fleld with a scalar tield ¢. We split the
field ¢ In a way which corresponds to the phase and absolute value of the
Sehrodinger wavefunction

¢ = D(e)po = exp [Ei(Q:)T[]¢70(.E)} ' (26)

where ¢'(z) and ¢o(x) are scalars and 7T, are the generators of the group in the
representation of ¢. Using the field ¢ and its contragradient representation

¢~ = D¢y (Dy~ = Dy) (27)
we form the scalar Lagrangian density which deseribes our interaction
L = [0.D ") — B TTDT 4] (23)
[0.(Dg0) + aBTDé) + m'be’ + Luuge -
where 7,7 are the generators corresponding to the contragradient representation.
Using the relations [see Ref. (4), p. 671],
3,D = 0,&R. DTy,
9, D7 = — R DT,
we have
L= [—0,RD T ¢o + D "9,y — aB 1D "y
X [0,6'R™".D oo + Ddugo + aBTuDen] + m'es’ + s
= d,dodubo + "R (0,00 vy — dold,0)

+ aB*,(8,60D " TuDo — ¢oD " TuDduby) (30)
= 0ER D00, BTy ¢y — o'B"uB" 90D TLT. Doy
— w0, BB 6D T DTody + ¢0ToD ™ T D)
R S
Trom the commutation relation between D and 7',
(T.,D] = —R,.Ciue DT, (31)
we deduce
DD = (b — Bl T 2
and
VDN, + TT0D = 15(b — Bl s (byrwr — Bl .
33

(Tl + ToTa).
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Using (32) and (33) the Lagrangian (30) may be cast into the form
L = 0ubodudy + [0.8R7™7, + aB’y — aB" R .00 )
X [8ub0Tsdb0 — D013 ubo)
— [0.R7Y, + aB’, — BYR™,.C€) (34)
X [a#e"’Rflbl,,/ + aBa/# — B"/#RﬂlmcfCce/b'ép/]%TbTb"bo
-+ iy + Ly .
¢y may be written as
G0 = fla) u (33)

where f(&) is a sealar and u a constant representation of the group independent
of w. We then have ¢ = f(x)e™ Tu, i.e., ¢ is obtained at each point by perform-
ing a space dependent “rotation” on the fixed » and changing its length by a
sealar faetor f{x).

frurthermore we choose u to satisfy

w(ToTy + ol = vya, (36)
where
Yao = C0yCse . (37)
We now have
[ 0utbo) Tubs — ¢ 'a0uby = 0, (33)
ool TuTs + DT o = [’ (39)

and, using the matrix v to rise and lower indices and the relation [see (4), p. 666,
Eqs. (11.43)]

=l rcbe o b (4)=1b .
R0 = 5,0 — D™, (40)
we can write

L = 0,03,f + m’fu’ — [0.R™%, + oD ,B%)

/ o= S (41)
X [ R + aD™ lba/Ba Wi + Lg
The equations of motion for 1 and ¢ following from (41) are
Of + (VVa — 0" =0 (42)
and
a1 =0, (43)
where

V#h — (9#6"]?_“)@ + aDmx)({)—lbaBa# (44)
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Equations (42) and (43) are the generalization of equations (25) where the
quantities 1 and V?, play the role of density and veloeity of the fluid and can be
shown to be gauge invariant {see Appendix I). In this case we have again that
the observables of the fluid are f* and j, = f°¥°, . The velocity 17, is defined and
observable in the regions where 1° % 0. An argunent similar to that given in the
discussion of the special case of the quantum fluid econnected with the non-
relativistic Schrodinger equation may be reproduced here. In a situation cor-
responding to interference in non-simply-connected regions, Eqs. (42) and (43)
will develop instabilities analogous to the ones described previously.
To complete the discussion we now show that the equations for the gauge field
can be written in terms of local gauge-invariant quantities.
Under a gauge transformation,
B, — F", = DY, o
(43)
Frow — F/b;.w = D("{)ilebFW ,

and Ly = (1/20)F uWFs,, is gauge-invariant.
The variation of the Lagrangian density (41) leads to the equations of motion
WD, T T, = i—m (46)
or
=W Vi = DY i Fow = Pl (47)
where F°,, is the field obtained from Iy, by a gauge transformation with param-
eter —e. In that gauge we have from (44)
Vb# _ Bb“
so that
Fow = Voo — Vi + Conf 157, (48)
Equation (47) can be written In terms of gauge-invariant quantities in the form
— MV = P+ O, (49)
It is then possible to show (see Appendix IT) that Eq. (43) follows as a couse-
quence of the field equations (49).
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APPENDIX I

It iS clear fl'Oln the deﬁnition that f1s gauge- illVllI‘ifL t. Let us now ShO\V that
o pel
IYL,_‘ 15 also gzluge—inv;u‘izmt.
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Suppose that ¢ = F(a, b), then
V/i# = a# ejRﬂh.J(f) + DU)(e)_likaB,k#
= 3, "(a,0)R7",(F) + DU~ L 7" (a)a”,

+ oD%, (a)B",] [see Ref (4), p. 685, Egs. (12.14)]

= (e R + O e B
— DWW L (@)a”, + «DTE(FIDF, (a) By,
Using the relations [see (4), p. 663, Eqs. (11.17) and (11.18)]
(aF7/0a")(a, b) = L%(F)L™"\(a) (A2)
and
(aF°/ab™)(a, b)Y = RW(E)R™™.(b), (A3)
we can write (A2) i the form
Vi = LWL (a)a" WRT(F) + RA(F)R™(b)b" JRT5(F)
— DRI s + DS P)D O @B
The first and third terms in (A4) cancelled out by virtue of the relatiow
LA(F)R™(F) = DW™(F) (A3)
and
DYTHFYD™ (a) = DTN, (A6)
5o finally we can write (A4) in the form
V= R, + aDWTB)BY, = VL
APPENDIX II
We take the divergence on both sides of Eq. (49) and get
— WV = F s + C oV s + C Ve F™ . (A7)

The first term on the right hand side of (A7) vanishes by virtue of the anti-
symmetry of F ™ . Again using Eq. (49) and the relation Con = —C"pe , we
write (A7) in the form

_a‘.“u!a”(f%[l_vk#) — Ckengy'#Fomw _ CkemCrnjan#FOnWng <\)
e . ) o (AS
= /l’éckem-(v v V‘}.L,y)Fom#y - C’LemijnVJ#VJyFonny .
From the Jacoby identity

CFoanC™ 0 4+ CF 3™ e + €0 = 0, (A9)
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we deduece
k Cm T/j T/n: Al . 1.k (wm }rj Pve ~0n \ 0
C em Jn ¥ ou¥ 91 wy _/"ZC amls eg ¥V oy ul’ uv (A 1 )
Using ( A10) we can write (AS), after changing indices, in the form
T a2k k0 o e iy
— U ap(_j ¥ “) = }gc em,F mpv[x/ v T ) tﬂ,v + C'ejn T JpT" ny]
o~k Om Oe
= o0l Wl = 0.

We finally remark that the system of Eqs. (42), (49) can be derived from an

alternative Langrangian density, namely

1

2o

L= [8,f0.f + u’f — V. Vi’ + F P

Recrrvep: March 10, 1967
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