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Spin-} partons are introduced into dual-parton theory. A nearest-neighbor antiferromag-
netic interaction in longitudinal momentum is postulated and solved in the infinite-momentum
frame. The resultant theory has a two-dimensional conformally invariant continuum limit
and yields a dual theory of mesons and baryons which are magnonlike excitations of the spin
lattice. For an even number of partons the model is equivalent to the Neveu-Schwarz meson
theory. The odd-number case defines half-integer-spin states which are identified with
baryons. The model is equivalent to a covariant model described previously. An important
feature is the possibility of constructing current operators, although the gauge-invariance
problem has not been solved yet. A major difficulty is the tachyonic nature of the ‘pion.”
Also, the nonspurious baryonic states have not yet been identified.

I. INTRODUCTION

There exists now a considerable amount of evi-
dence that to a good approximation hadrons may be
described as one-dimensional many-body systems.

Experimentally, the products of high-energy col-
lisions may be ordered by their longitudinal mo-
menta while the multiplicity of fragments obeys
Feynman’s distribution law,

dN~& as P, -« (1)
P L
Deep-inelastic probes by photons indicate the pres-
ence of a large number of spin-3 partons whose
electromagnetic interactions are adequately de-
scribed by treating them as bare quanta.

On the theoretical side, both multiperipheral and
dual-resonance models lead to a picture of had-
ronic matter characterized by an average parton
distribution similar to Eq. (1), and correlations
between the other dynamical variables which may
be damped’ at large separations of longitudinal mo-
menta.

In the conventional dual-parton model® the basic
starting point is quantum field theory. Hadronic
processes and states are described by large planar
Feynman diagrams. It is assumed that in colli-
sions the role of the external particles is to pro-
vide sources and sinks for the conserved quanti-
ties - energy, momentum, angular momentum,
isospin, etc. These latter quantities distribute
themselves among a large number of degrees of
freedom (partons) which are of course described
by the propagators which build the diagram. If one
assumes a fairly smooth flow then it is overwhelm-
ingly probable that the total momentum flux through
any infinitesimal portion of the diagram be infini-
tesimal. This observation, applied to the Euclid-
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ean continuation of the diagram, leads to the well-
known approximation of ascribing Gaussian propa-
gators to the partons. The result is a description
of hadrons in terms of harmonic chains with near-
est-neighbor coupling, and the Veneziano formulas.

It is our aim to include a description of parton
spin in the dual-parton framework. It is apparent
that the lack of such a description constitutes a
serious flaw in the present models. Spin certainly
exists, and the most natural description of had-
ronic matter should presumably be attempted using
spin-3 constituents. The procedure is best de-
scribed in the infinite-momentum frame,?® which
possesses some simplifying features with respect
to the treatment of spin* and the physical interpre-
tation of the equations.

A hadronic system will consist of a one-dimen-
sional array of partons, ordered by a parameter
0< 6< 7. In accordance with the conventional mod-
el, 6 has a one-one correspondence with the aver-
age fraction of the (infinite) longitudinal momen-
tum carried by the partons at 6,

%‘f—)=a(e)=xosino. @)

The longitudinal momentum will be treated as a
parameter and is not subject to dynamical fluctua-
tions. In accordance with Feynman’s assumption
and the dual-parton model, the parton density is
inversely proportional to the longitudinal momen-
tum,

dae

an(9)= mA, sing *

(3)
Although it is not expected that the parton density
be really infinite, this idealization will be assumed.
Still, the model does retain a memory of the pa-

rameter A, in that no wavelengths shorter than
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A, 5ind will be allowed in normal-mode expansions
We note that this point has little influence on pure-
ly hadronic processes which are dominated by the
region 60 (“wee partons”), but will play an im-
portant role in the determination of currents, form
factors, and deep-inelastic amplitudes.

The lth parton, at position 6,, will be equipped
with a set {¢,} of dynamical variables. {¢,} in-
cludes the transverse coordinates and momenta
(%, p), the three spin matrices §,, and the isospin
matrices 7, . Evidently,

(&, &.]=0, 1#1. 4)

Interactions are assumed to be nearest-neighbor
in . To find their form, note that for finite longi-
tudinal momentum the total energy of two partons
is

_ 2 2 2\1/2
Hyy = (Pp? +Ppp% +myy® )Y

D1o® + My (5)
"Pm + 2P12
_ P2+ mg? Do + mo?
=P+ 2P, +P, + 2P, +Vis

where V,, is the interaction energy. Assuming
P, =P, and using Eq. (2),

_ Mmz(gl; Ez)

V2="3px, sin6 ° (®

Generalizing Eq. (6) to a chain of partons, and re-
scaling the infinite-momentum Hamiltonian [(trans-
verse mass)?] to get rid of the infinite time-dilation
factor P, we have

X 1
3(’=}; WU(&, ). (7

The continuum limit of Eq. (7) using the parton
distribution (3) is

_ [ d0U(E(6), 86£(6), ...)
H~f 2m(x, sing ) : (8)

Our choice for the spin-dependent part of U re-
lies on the following considerations:

(a) Spin-orbit coupling is disregarded. This
seems to be in line with the linearity of the Regge
trajectories of the known hadronic states.

(b) The low-lying states of the system should
have low values of spin. This means in particular
a finite spin density and preference for anti-align-
ment of spins, so that a ferromagnetic lattice
should be ruled out.

(c) Rotational invariance in the infinite-momen-
tum frame necessitates only invariance under ro-
tations around the preferred longitudinal (z) direc-
tion. In particular, note that the Pauli matrix of

is the parton helicity operator and generates rota-
tions in the x-y plane. The matrices o] are not
rotation generators and play the role of helicity -
flip operators.

(d) The resultant continuum limit of the model
should lead to a conformally invariant theory.
This, as is well known, is related to the assumed
average isotropy of the original Feynman graph
and is the ingredient which ensures crossing sym-
metry and duality.

(e) Lorentz invariance is very difficult to ensure
a priori at infinite momentum. Rather, we shall
show that the model has a covariant generalization,
which has already been given elsewhere.’

The interaction we have found to obey all these
conditions is the so-called x-y model®:

Uspin(gt ’ gl-ﬂ.): %go,* ‘O;L,u . (9)

The complete solution will be presented in Sec. II.
The end result is the transverse momentum-trans-
fer part of the recent pion model of Neveu and
Schwarz.” In addition, the model includes half-
integer-spin states which are naturally identified
with baryons.

We shall not deal with isospin in this paper. A
model which includes parton isospin has been for-
mulated and will be presented elsewhere.

II. SPIN WAVES AT INFINITE MOMENTUM

As mentioned in the Introduction, the infinite-
momentum spin Hamiltonian is assumed to have
the following form:

Hspin = ﬂgé_z
1

The time-dilation factor m),siné, is the average
separation between neighboring partons, and the
continuum limit will involve X,~ 0. We may thus
designate m,siné, by d6,. The variables ¢, com-
mute for different I’s and anticommute for the
same [. It is convenient to use the Jordan-Wigner
trick and define a new set of variables by a non-
local transformation. The new set will in fact de-
fine two bonafide Fermi-Dirac (F.D.) fields per-
taining to even and odd points on the chain. The
distinction between even and odd points is not sur-
prising in view of the expected anti-alignment of
neighboring spins in the low-lying states and the
resultant noncontinuity of ¢;,. Thus, define

1 L
01 0141

A, 8inod,; (10)

1 im 2y
N exp(— o’)o‘k_
/‘d_o_)‘ 2 ; n 2A=1>
di=% 1 exp(ﬂio")o;x (11)
." n ’
d9)\ 2 =1

dgk = 2d92>‘= 2d02x_1 .
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Note that ¢ *=(y7)7, ¢*=(¢")". It is readily veri-
fied that the column yx = (},’f) satisfies the standard
F.D. anticommutation rules,

[xx xnle =0, (12)
1
[X)\’ X{']F -de_)\ (PO

The continuum limit of Eq. (12) is obviously

[x(6), x(6")],=0,
(13)
[x(6), xT(6"],=6(6 -06").

Substitution of Eq. (11) into the Hamiltonian (10)
leads to the discrete form of the one-space—one-
time massless free Dirac Hamiltonian. An impor-
tant feature are the boundary terms whose form
depends on whether the total number of partons N
is even or odd,

Hupn = =37 {lo343(5 - 93-1) = D3Wr-1 = 9]
+boundary terms +H.c.}. (14)
The coupling constant g has been set equal to
7~1, and it is tacitly assumed that the fields per-
taining to the zero and N +1 partons identically

vanish. The boundary terms for the two cases are
as follows.

Even N=2L:

~[( o7 +o190) + (W o7 + L]
Odd N=2L +1:

-[(ZVl oy +¢I Z/’;) - (4)24-14’5 - ¢Z 4’E+1)] .

The formal continuum limit of Hyy,, is obviously

(15)

Heont = = %j;"de{[XTa, (l/i)aGX]+H'c‘}

+boundary terms, (16)

where the two-dimensional Dirac matrix « is de-
fined as

a=<2 'é). (17)

We emphasize that the continuum limit may be tak-
en only after the long-wavelength normal modes of
the discrete Hamiltonian have been proven to be
continuous in 6.

The Hamiltonian (14) leads to Heisenberg equa-
tions for the fields (y, ¢). The boundary terms re-
sult in boundary conditions on the proper frequen-
cies. It will be seen that these latter differ in the
odd and even systems.

Using the anticommutation rules (12), we have

5
. 1
B+ 7o (0r = 91r1)=0,
; ' (18)
19,0y — Eg;(d)xu =5)=0.
The boundary terms are as follows.
Even:
. 1
18,y + E’é;‘i’l: 0,
1 (19a)
18,0, +E¢L =0.
QOdd:
. 1
10,9, + d_9¢1= 0,
1 (19b)

. 1 ,
10, = Fe';BL =0.

The inhomogeneity of the equations may be dealt
with by subdividing the chain into R —« subchains
such that L(r), the number of partons in the »th
subchain, still tends to infinity. The interparton
separation df will be assumed constant in each
subchain: df,=d0,. Further, the parton distribu-
tion is symmetric under the transformation
6+ m =0, so that d6(»)=do6(R —r). Under these
conditions, and neglecting boundary terms, the
normal modes will have the following form:

$% ,=cos [( >3 kLg+k, A) —a](bke"‘“h‘ +cletvrt),

s§<r

ok, = —sin[(E kL, + ’;7(7\+%)> ——a] (20)

8<7r

% (bke-iwkt - C:eiwkt),

d6,w, =2 sinkk, . (1)

It is obvious that by setting %, =qd6,, namely, tak-
ing the long-wavelength limit, we have w, - w,=4.
The phase o and the eigenvalue g are found by sub-
stituting (20), (21), and the value of k&, into the
boundary conditions, Eq. (19), and using the afore-
mentioned symmetry.

Even:

2 sin}k, cos(k, —a) - sin(3k, - a) =0,
: (22a)

2 sink, sin(gm — 3k, - a) —cos(gn—k, —a)=0.

Odd:

2 singk, cos(k, — @) - sin(3k, - @) =0,
(22b)

2 sinkk, cos(qm -k, — ) +sin(gm = $k, —=a)=0.

It is readily verified that Eqs. (22) are solved by



3
a =§k1= %qde1 . (23)
Even
q=(w+3 ~V+3,
Odd:
—y—T v, v=0,1,2
q-Vﬂ—dGI» ’ T Vy Ay Mo

We re-emphasize, that for calculations involving
the partons in the interior of the chain the wave
number v should be cut off at the 6-dependent value
(mr,sind)™, which defines the long-wavelength lim-
it.

To summarize, the continuum limit of the nor-
mal-mode expansion is:

Even:
1 o iy -
TCE = Z cos(v = )6 (b, e~ =122t 4 o1 pilv-172)ty |
V=1l '

(6, H)=— 71_;, Z sin(v - %)0 (bve-l(v-uz)t - cIet(u-uz)t)
=)
Odd: (25)

(o, 1) = 711—1_— [o" +Z cosvé(B, et +C,er“"):|,
=1
1 K.
(6, )=~ = Z sinv6(B, e~ - Clei™),
=1

(6,, 5)/1.=[B,, B:]=6,,, etc.,
[B, ol,=[C, 0l,=0, (26)
[o=,0*],=1.

The boundary conditions are summarized by

Even:

¢(0)=28o9(0) =8¢ (m)=9(n)=0.
Odd:

$(0)=28¢(0)=d¢¥(m) = p(m)=0.

Note the existence of a zero-frequency mode des-
ignated o in the odd system. Its appearance stems
from the invariance of Hgy, under a 180° rotation
around any transverse axis. Because of the half-
integral helicity of the odd system, the ground
state has to be degenerate. Obviously, the opera-
tors ¢* are isomorphic to the Pauli matrices, and
a natural choice for the ground state is ¢%==+1.
This, in fact, is borne out by counting the number
of normal modes and comparing it with the total
number of states, which is just 2¥.

The continuum limit of Eq. (18) is of course the
two-dimensional Dirac equation,®

i(d,+adgx=0, (28)

27)

or, define the Dirac matrices
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01 i 0
¢ o _ 5_ b0
Y —<1 0), Y —(0 —i)’ YV =YY =a, (29)

to get
(v*o,+7%0¢)x=0. (30)

The Dirac equation leads to two conservation laws,
associated with 3° and 1. The charge density as-
sociated with the gauge transformation x - e¢'®y is

X", =37, v1+[07, o1} (31)
Comparison with the definition (11) leads to
slx", x1=0%(6), (32)

where p? (0) is the helicity density at the point 6.
Thus, the Dirac “charge” is simply the conserved
total helicity of the system. Evidently, the nor-
mal-mode operators create or destroy a unit of he-
licity and the fermionic excitations are just spin -
waves.

In the even system the ground state is a singlet,
while in the odd case the ground state is a degener-
ate doublet.

As is well known, the two-dimensional massless
Dirac equation is conformally invariant. This is
most easily demonstrated by using the linear com-
binations y¥i¢ =x,., which satisfy

3uexi(9, $)=0. (33)

The y matrices in this representation are

(38 e oe(h D)
(34)

Continuing the Dirac equation to the Euclidean re-
gion {—~ —i7, and defining z =6 +iT, we find

97 X4=9,x-=0 (35)

so that x, are analytic inside the strip 0< #< 7, and
the equation is invariant under the conformal
transformation,

z—w(z),

f;w(z)=re'¢, (36)

X~ rela‘ﬁ/z X -

Furthermore, the helicity current J* is just
J40)=3x"a, x]. @37

The boundary conditions may be compactly sum-
marized by the requirement that no helicity flux
crosses the boundaries,

J*#0)=J%(m)=0. (38)

Evidently J* is form-invariant under (36) so that
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the boundary conditions remain invariant too.

The model is thus completely solved and satisfies
all the required conditions. The main feature is
the fermionic character of the low-lying excitations
which originates from the nonlocal definition of the
fields x. These, in turn, though just an artifice in
the discrete problem, are the correct variables for
the continuum limit because of their continuity
properties, which are not shared by the original
spins.

IIl. VERTICES AND AMPLITUDES

Although the model is best described in terms of
the yx fields, external probes will interact locally
with the individual partons. It is thus necessary to
extract the spin operator from the F.D. fields.
This is done by inverting Eq. (11) and substituting
integrations for sums,

. -
0 51a(0)=Vd0 exp<32z fo ao[x"e"), x(e')]>¢‘(e),

0'x:veu(g)z —@d)-(e) (39)

X exp(%n [91 a9'x"(e"), X(9')])€'”s )

o*(0)=[o=(0)]".

The operator S is just the conserved total helicity
of the system,

s=1 [ aslx'(e), x@)). (40)

S has an integer eigenvalue in the even case and a
half-integer one in the odd case. It is easily veri-
fied that o(0) satisfies the required commutation
and anticommutation rules. In particular, the ¢’s
commute at different points.

Assume now that a pion current carrying trans-
verse momentum % interacts with the system. The
interaction energy with a parton at the point 6 will
have to include the momentum shift operator
e *(®  the time dilation factor (\,sin6)"}, and the
rotationally invariant helicity-flip operator % -o.
(The expression k-¢ and similar expressions are
to be interpreted as k.0, +k,0,.) Thus

. k.o~ (0) + k-0 *(6)

=npikex(0) I \T/TR=2 I

V(k, 0)=ve X SING ’ (41)
ki=k tik,.

Summing over all partons with the density function
Eq. (3),

. ikex(6)
V(k)= nzoz I%{h[a;(e)m;(9)]+H.c.}.
(42)

The poles of this expression occur at the (mass)?
values of the particles in this channel, while the
residues are the vertices. As usual, e'*"*(®

has to be normal ordered and using the cutoff

(X, sind)™%, a factor (sin6)~** appears under the in-
tegral sign. Moreover, the expressions (39) for
o(6) are perfectly regular except for the factor
Vdd = (m\,sin6)*?, which shifts the exponent of sing
by a half unit of energy. As is well known, the
poles are due to the divergence at =0, 7, and will
thus occur at

k?=—3 +integer . (43)

Noting that the reference state is the well-known
tachyon of dual theory at (mass)?=-1, it is seen
that the positions of the poles agree with the spec-
trum of the even system. The residue of the first
pole [called “pion” by Neveu and Schwarz (N-8)] is
therefore the following.

Even:
R(k)=Gl:e** *©:[k,y=(0) +H.c.]
et Mk b~ (me~t™ +H.c.]},
(44)
Odd:
R(k)=G{:e™* *@:[k,y~(0)+H.c.]
+1e® M i~ (me™t " +H.c.]}.

Note that the factor ¢ in the odd case combines with
the imaginary e~ ™ (which anticommutes with ) to
ensure the Hermiticity of the vertex. G is an over-
all coupling constant which includes the A, factors.

It is readily verified that the even vertex is iso-
morphic with the transverse part of the N-S “pion”
vertex, so that we shall not deal with it further.
We only wish to comment on the factor (-)° which
appears in the vertex at 6 =7. The point is that in
computing amplitudes involving a number of exter-
nal lines, these lines are attached to the fundamen-
tal “trunk” and their relative “times” are inte-
grated over. Each time an external creation or
destruction operator crosses another there is a
sign change because of the fermionic nature of the
excitations. When crossing from one side of the
strip (8=0) to the other (6=r), this sign change is
just ()5 where S is the total number of fermions
in the state, which is equal to its helicity. This
faetor may in fact be absorbed into the usual re-
definition of the F.D. field’s time-ordered products
to include the relative sigh changes.

We shall now compute the scattering amplitude of
a “pion” off a ground-state baryon for transverse
momentum transfer, and exhibit its relativistic in-
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variance. The vertex to be used is the “odd” ver-

sion of Eq. (44). Assuming an incoming “pion” mo-

mentum of %2, and an outgoing “pion” k,, we have to
multiply the usual dual amplitude originating from
e'*'* by the contraction of the two x fields. Using
the normal-mode expansion (25), we find for the
s-t term

(O] %y 9(0) oy + ¢ (7)] 0)

eiT
I:k1 -k (1+.2 oo )+(k1x kz)zo’] ;

(45)

multiplying by the standard dual integrand and
using 2k, < k,=—-t-1, X=¢'", we find

=xh-‘

[—2(t+1)fX‘“”2(1 -X) "2 . (t+1)fX'“”2'1(1 = X)"t1 4 2i0%(ky X By), fX'S‘”2'1(1 -X)“‘l] . (486)

This expression is relativistically invariant if it is
identical to the infinite-momentum limit of the co-
variant pion-nucleon amplitude

A(s, t) + (lé1 - ]éz)B(s) t)

when &, , are transverse. In terms of the infinite-
momentum variables the amplitude should thus
have the form

Als, Dli(p'=p)x ot +2M]
+B[2s = 2M2 +1+1+2i(ky X k,),0%].

(47)
Using the identity

—s+M? -t S"AJ2 - - -f -
sz”(l—X) 72 e [ XeHi(g - x) i,

t+1
we find that (46) is in fact identical with (47) upon
taking

A=0, B=fX's+”2'1(1 —x)-t1, (48)

M is the ground-state baryon mass, which up to
now is undetermined. The {-u term is obtained by
s-——u. The s-u term is obtained by evaluating one
vertex at =0 and the other at 6= 7 with the re-
sult

A=0, B=_fX—s+M2-1(1 _X)—u+M2—1’

As remarked in the Introduction, the infinite-
momentum model described above has a manifestly
covariant generalization. As this version has al-
ready been presented elsewhere we shall only sum-
marize it briefly.

The idea is to represent the parton by Dirac
spinors and construct a diagram development gen-
erator from a sum of nearest-neighbor y-matrix
interactions. The interaction which leads to the
model has the following form:

1
Z_: (Vo121 * Uy +y; * @yy4) Ea; s (49)

where

-
u iysyu
e, Y
2’ 2
Defining even and odd fields as before, by using
y°® instead of ¢*,

U *%( Zﬁlw )vz,-l,

1 21=1
P} = \/—— < H iy )Uzz ’
one finds that the four-vector y*= (}g ﬁ) satisfies the

two-dimensional Dirac equation. The rest goes on
as before, except that the vertex is now defined by

ik-x(6)

(50)

V(k, 6)

1
@
au
|

S
q:

(51)

The zero-frequency mode of the odd system is now
of the form

. [, 1rY,=-g". (52)

Evidently I'* should be identified with the Dirac
matrices of the spin-; ground-state baryon. In
fact, due to the axial-vector character of y,

(V2 /i)T* is just y3y* for the ground state. Evi-
dently a constraint on the allowed states of the bar-
yon system is the (space-time) Dirac equation,

peT|y=G/N2MT®| ), (53)

where M is the mass operator. In fact, the N-S
subsidiary condition, which in our language limits
the external vertices to k-7, may be understood
qualitatively upon noticing that an external particle
which satisfies (53) will not violate this equation
upon colliding with another particle, if their inter-
action mass is proportional to p+y. This of course
is just a heuristic argument, not a complete ex-
planation of the constraints.

IV. DISCUSSION

We have presented a dual-parton model which
incorporates parton spin. The model has both me-
sonlike and baryonlike states, and its meson sec-
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tor corresponds to the Neveu-Schwarz model.
There are several obvious flaws in our picture.
First, the ground-state “pion” is a tachyon. Sec-
ond, baryon states which do not decouple from the
spurious ground-state scalar have not yet been
identified. On the plus side there exists in this
model a well-defined procedure of identifying the
vector and axial-vector current operators and thus
calculating electromagnetic and weak form factors
and amplitudes. This of course would involve the
solution of the gauge-invariance problem, which
we have not dealt with in this paper. There is the
further problem of extending this type of model to

include isospin and chirality. A model which in-
cludes parton isospin but no chirality constraints
will be presented elsewhere. We wish to end with
a conjecture that chiral and isospin constraints to-
gether may be the ingredient needed to generate a
more physical spectrum.

Note added in proof. The problem of coupling
photons has been solved and it has been proved that
a deep-inelastic photon couples only through trans-
verse components, in contrast to the usual model
where it couples only through longitudinal compo-
nents.
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Impact-Parameter Representations in Potential Scattering*
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Starting from the Lippmann-Schwinger equation the off-energy-shell generalizations of the
Glauber amplitude and the Blankenbecler-Goldberger amplitude are derived for potential
scattering., The Lippmann-Schwinger equation for partial waves treated as a Fredholm
equation is solved and the high-energy limit studied.

I. INTRODUCTION

The eikonal approximation of Glauber! has been
extensively used in analyzing data involving high-
energy scattering. An alternative form for the
scattering amplitude at high energies was pro-
posed by Blankenbecler and Goldberger.? A great
deal of theoretical work has recently been done on
the formal aspects of these impact-parameter re-
presentations of scattering amplitudes in potential
scattering.’** In a recent paper Lévy and Sucher®
derived the Glauber amplitude in potential scatter-
ing (and relativistic scattering) for the on-energy-
shell case using the “eikonal approximation” for
the propagators. In the present work we have
studied the high-energy scattering and derived

both the Blankenbecler-Goldberger amplitude and
the Glauber amplitude in the potential scattering
for the off-energy-shell scattering. The transi-
tion to the on-energy-shell case is trivial. Our
study makes clear the set of approximations one
has to make to get one or the other amplitude.

II. DERIVATION OF BLANKENBECLER -
GOLDBERGER AND GLAUBER AMPLITUDES
FOR OFF -ENERGY -SHELL SCATTERING

In this section we derive the Blankenbecler-
Goldberger (B-G) amplitude and the Glauber (G)
amplitude for off-energy-shell scattering. Our:
starting point is the Lippmann-Schwinger® equa-
tion,



