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How macroscopic properties dictate microscopic probabilities
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We argue that the quantum probability law follows, in the lakgimit, from the compatibility of quantum
mechanics with classical-like properties of macroscopic objects. For a finite sample, we find that likely and
unlikely measurement outcomes are associated with distinct interference effects in a sample weakly coupled to
an environment.
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Given that quantum theory is probabilistic, is there a fun-and the outcome given by the expectation value is determin-
damental physical principle that dictates the form of theistic. The macroscopic measurement induces a vanishing
guantum probability law? We will argue that, indeed, thesmall disturbance in each individual spin. Yet the total accu-
assigned probabilities for a given test performed on a largenulated effect on the scatterer is finite. In the second micro-
sample of identical systems are dictated by the classical-likecopic method, we measure separately on each spin the op-

properties of macroscopic systems. eratorsay;, i=1, ... N, and evaluate from th® outcomes
Consider a sample & identically prepared nonentangled the average oM,. The microscopic measurements do dis-
spins in the stat¢y). The state of the sample is then turb the spins and randomize the state of the sample accord-
ing to the quantum probability law. However, since the first
WY =[)aleh)2- - - [d)n- (1) macroscopic method nearly does not affect the sample its

outcome should agree up toy corrections with the mean

Since spins carry a magnetic moment, the sample may als@syt of a subsequent microscopic measurements. We shall
be viewed as a collection of magnetic moments, all pointingsee that in the limit oN— o this suffices to fix the form of

in the same direction, which under a suitable arrangemenfe quantum probability distribution. On the other hand, for a
describe a magnetlike object. In the limit of large enodgh |56 put finite sample, the probability law still follows if we
the sample becomes a macroscopic object, with definite COlake 4 further assumption on the stability of physical laws
lective properties like a total magnetic moment and asso0Ciggainst small perturbations.

ated magnetic field. _ Consider the following identity. Operating with the spin
Suppose now that we want to measure such a collectiVgperatore=f- ¢ on a single spin state we can express the
property of our sample, say, the magnetic momight=X resulting state as

-M, in the X direction. Since the magnetic moment of each
spin is proportional to the spin itself, we need to measure the ol)= o)+ Ac|yt), (4)

X component of an observable like
where o and Ao are the expectation value and the uncer-

N
z o tainty of o with respect to the statg, and " is a normal-
I =T ized state orthogonal te:
M= N (2
(lyt)=0, llyl=lly*]=1. (5)

In the largeN limit . . .
rgelt iimi If o is not an eigenoperator ¢f/) we have on the right hand

side of Eq.(4) also a component dfi/*). However, let us

lim [M,,M]=i lim %zo. (3 now apply the relation to the collective stdég| V). We get
N— N— . \ ; N
. . - _ 1
This suggests that averaged collective observables,Mike M, W)= N kZl o)+ N kZl W)
represent “macroscopic,” classical-like, properties of the - -
sample. _ o
Our main idea is to compare two distinct methods, the = o W)+ 1V (6)

“macroscopic” and “microscopic” methods, for observing

the macroscopic collective magnetic moment. First, we conggre [T =41 [ ) - - |y Since (W TH)= 5.
. . . k 1 k N - i j ijo

sider acollectivemeasurement d1, , which does not probe he norm of the second term on the right hand side is

the state of individual spins. For instance, a single charged

test particle can be scattered to determine the total magnetic Ao

field of the sample. As we show below, and as 8).above W”«yi” =

indicates, in the larg8l limit the state is an eigenstate bf,

Ao
\/N.
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Apart from the special cases whesg~O(1/\N), the last
term on the right hand side in E¢6) is a small correction,
and in the largeN limit,

lim M| ¥)=o,|¥).

N— o

8
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a string of numbers of-1 or —1. The numbers . of +1s
andn_=N-n_, of —1s should again allow us to evaluate
the average

n, n_
FN:W(+1)+W(_1)' (15

Similar results, which we discuss in the following, have beerSince in this limit the disturbance caused to the system van-

described iM1-3].

ishes, consistency of the microscopic measurements with the

Next, let us see that the disturbance caused to individuahacroscopic collective measurement dictates the equality

spins, as a result of a collective measuremenMgf, van-

ishes in the larg& limit. The evolution of the system under

a measurement is described by the unitary operator
=exp({QM,), whereQ is conjugate to the “pointerP of the
measuring device. Denoting H¥) the initial state of the
measuring devicésay a Gaussian centered aroudy and
applyingU to the combined state, we have

N
Ul 1Py =TT ulwlP),

9
whereu,=e'(>x«/NQ_Using Eq.(4) we have
Q — Q
Ul ) = cosg T lonsing |0
: - Q
+|Acrsmﬁ|¢/¢>. (10
Expanding this equation in W/we get
A 212 —
Ulw)=|1- ZNQ e >QW)[P)+[5y), (1D
where
AocQ N
o) =i— 2 [POIP)TOUNY). (12
k=1

lim Fy= o, (16)

N—o

On the left hand side we have the averages obtained from the
individual measurements, and on the right hand side the de-
terministic result for the macroscopic measurementof
From the above equation we identifg, |2 and|c_|? with

the usual quantum mechanical frequenciesdge +1 and
o=—1.

Our argument can be easily generalized. Fomdavel
system a single macroscopic measurement is not sufficient,
because the average is determined from the absolute square
of n amplitudes. However, now we can measure macroscopi-
cally n—1 independent commuting observablds.g.,

Ly, ... ,LQ’l) and together with the overall normalization
>n;=N evaluate the relevant probabilities.

The above result for thel—co limit is still unsatisfactory,
when considering a finite sample, because in this case we can
no longer neglect the disturbanggy) in Eq. (11). One way
to proceed is to make an additional assumption which seems
natural for macroscopically large samplgse results of
physical experiments are stable against small perturbations
Hence, for finite largéN, the operatoM, fails to be a precise

N—oo

For nonzerd Sy) the measuring device is entangled with the igenoperator of¥) in Eq. (8). However, by a small modi-

sample. Since|Wy) are mutually orthogonal{dx|Sx)

fication of the state t¢¥')+|5W¥), with magnitudel|| V)|

~1/N, and the entanglement produced by this measuremerit O(1/y/N), the perturbed state does become an exact eigen-

is small. In particular, in the limiN—c, we may drop the
term|dy) above and obtain

it U|W)[P)=expiQay)|W)|P)=|¥)|(P—ay)).

13

For a given initial statey)=c|+)+c_|—) with |+) and

|—) as the eigenstates of,, the collective measurement

will shift the pointer by the value
o =le P+ +[e[A(-1). (14)

Next suppose that we perform on th@mesample a “micro-
scopic” measurement of each individual spin

state ofM,. Alternatively, if after coupling toP, we first
project the state in Eq11) by |W)(¥|, this would eliminate
the term|Sx) and the final microscopic measurement would
give rise only to likely outcomes. The “stability” principle
then requires that the corresponding probability law can
qualitatively change at most by terms of ord2¢1/\/N).

To get further insight into the physical meaning of this
disturbance it is useful to adopt another line of consideration.
Suppose that, after coupling the sample to the poiRfeve
do not observe the exact value Bf but proceed to perform
the microscopic measurement. Hence we now regard the
pointer as an environmentlike system that couples weakly
with the sample. The outcome of the microscopic measure-
ment is described by the postselected state,n ) of the

in the sample. We can evaluate the final state of the pointer system

X-direction. The outcome of this microscopic measurement i by projecting Eq.(11) from the left by(n, ,n_|:

052116-2



HOW MACROSCOPIC PROPERTIES DICTAT. .. PHYSICAL REVIEW A 65 052116

Ao?Q? — flipped its direction. To do that we will now regard the mea-
(ny . [U[W)[P)=| 1— ——|(n, N_[e Q)| w)|P) suring device on a quantum level as well.
The accuracy of the collective measurement is determined
+{(n; ,n_[8x). (18) by the initial uncertainty of the measuring device pointer. Let

us express it as
Noting thatU is diagonal with respect to the final state of the

sample, we get 1
AP= , (21
_ eyN
[P—Fn)=|P—0y)+[5P), (19
where € is some real number to be fixed in the following.
where The disturbance to thigh spin of the sample is then induced
by the evolution
|§P>:<n+,n,|5)(> (20)
(n.n¥) U, =expi —QSXi, (22

The last equation states that the difference between a pointer

state shifted by the frequency and by the mean is given byhich describes a rotation around theaxis of the spin, by

the correption|55). Consider the case of a “likely” out-  an yncertain angle af 6~ AQ/N~ ¢/\/N. The probability of

come, withFy—o,~0. By examining Eqs(12), (19), and 3 single spin remaining in its initial stataot flipping hence

(20), we find that in this case destructive interferences reduc@garies as~1— €2/N. Therefore the probability for all thil

the magnitude of the correction {p5P)|~0. On the other  gpins to remain in their initial state is

hand, consider now an unlikely resudt =N, n_=0, and

henceF y— a=N. In this case the equality of the two sides e?\N )

in Eq. (19) cannot be satisfied {fsP) is small. Indeed, we (1— ﬁ) ~exp(—€). (23)

get the result that in this case the postselected environment

state interferes constructively afidP)||~1. (In fact in this  Therefore, fore<1, the probability that even one spin of the

case all higher orders in l4/give rise to order 1 contribu- sample has not flipped is close to unity. Nevertheless, since

tions) Hence what we could have regarded in the likely caseat the same time we can still haie> 1/e%, the measurement

as a negligible M correction now becomes the dominant becomes arbitrarily precise for large enough

contribution. This is in agreement with the uncertainty relation for
It is interesting that here we see, as far as we know for th%omponents oM and a single spin. From the commutation

first time, a fundamental difference, from ricroscopic relation(3) with a finite N, and from[ o, M,]=i0;/N we
point of view between likely and unlikely outcomes for a paye

given sample. The unlikely results require a large coherent
interference effect between the microscopic amplitudes in (M)
Eq. (12) that are induced by the weak interaction with the AM,AM =
weakly coupled environment.

We further emphasis that the analysis considered here ignd
quite general. In reality, when a sample is measured, it is
always subjected to environmental effects which couple (oyi)
weakly with the particles of the sample.g., the electromag- AoiAM(N)=
netic dipole coupling

Before concluding, and for completeness, let us examingjence we can measure simultaneously all componerit of
the effect of a macroscopic measurement, from the point of)rovided that we keep the accuracy &M ~AM ~ 1/\N
. . X y )

view of the full quantum formalism(Hence, from now on,  ajhough for largeN this inaccuracy becomes vanishing

we will assume the usual quantum probability laWhen g4y we still cannot distinguish between different eigenval-
we perform a precise measurement\df we must disturb oo \wvhose separations vary abl1/

other noncommuting observables. In the case of the indi- Finally, let us compare our approach with other related

vidual microscopic measurements, we will randomly Changeattempts to derive quantum probabilities. Hafiand Gra-
the state of individual spins, and consequently destroy th am[2] constructed the “frequency operatof, by consid-

macroscopic, magnetlike, properties of the sample: the new”. . .
state may look like a collection of randomly polarized spins.erlng the sum of_prOJectors to f.i” possible results of the mea-
surements, which are weighted by an appropriate

Now let us consider the collective measurement. Clearly"degeneracy" factor, the latter corresponding to the number
when we measure a macroscopic qua re the average 4 . ’ . .
pic quantity g of different strings of possible results with the same total

magnetic moment of the magnete do not destroy the mac- - .
roscopic state. However, to be in conformity with the uncer-numbers ofn, andn_ . In the limit of N—c°, f\ becomes
tainty principle we must caussmedisturbance to the spins. an eigenoperator di)y . The eigenvalue of the frequency
We will now show that the strength of the disturbance isOPerator is then given by the quantum probability. In our
generally such thahot even one spirof the sample has approach it is the collective magnetic operakdrthat be-

(24)

(25
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comes an eigenoperator. However, since in order to obsengested that this law can be obtained if one further invokes a
f one has to perform a highly nonlocal measurement of théatural stability assumption.
spin sample, the frequency does not seem to be a physically Finally, we compared two definite measurement out-
realizable operator. comes: a rare sequence where all spins are found to be in the
Instead, we argued that iordinary, everyday, macro- 7 direction, and an expected sequence with roughly an equal
scopic observations we do measure collective operators likaumber off and | outcomes. Classically there is no micro-
the operatoM discussed here. Indeed, such collective op-Scopic difference between the two sequences: they have the
erators appear naturally in the usual electromagnetic interasamea priori probability. Surprisingly, we observed that in
tions of an external test particle with a sample of magneticquantum mechanics these “likely” and “unlikely” sequences
moments that constitute a macroscopic object. An approactio differ on a microscopic level, and are associated with
similar to ours has been suggested by Farhi, Goldstone, ardistinctive interference effects.
Gutmann[3]. The present article extends this approach by
analyzing the measuring process. This research was supported in part by Grant No. 62/01-1
In conclusion, we have demonstrated how the agreeme®@f the Israel Science Foundation, established by the Israel
between macroscopic and microscopic observations dictatéscademy of Sciences and Humanities, NSF Grant No. PHY-
the quantum probability law. For a finite sample we sug-9971005, and ONR Grant No. N00014-00-0383.
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