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(Can nonrealizable Hamiltonians be realized?)

Y. Aharonov
Department of Physics, Tel Aviv University, Ramat Aviv, Israel
and Department of Physics, University of South Carolina, Columbia, South Carolina 29208

E. C. Lerner
Department of Physics, University of South Carolina, Columbia, South Carolina 29208
(Received 7 June 1979)

We show that gauge-type coupling can be the basis for new renormalization phenomena in which ordinary
configuration-space coordinates become effectively canonically conjugate. This is demonstrated first for the
case of a particle in a very strong magnetic field, where some of the experimental consequences can be
surprising. Another example is presented which suggests a possible new approach to the quark-confinement

problem.

This paper introduces an extension in an entire-
ly new direction of previous work® on the use of
simple models to describe renormalization phe-
nomena. The original discussion was tied directly
to mass renormalization in nonrelativistic electro-
dynamics. It was shown that the introduction of
appropriately time-averaged observables results
in the renormalization of the ¢ -number commuta-
tion relation between position and velocity from
[x,%]=i%/m, to [x,%]=i%/m, where m, and m are,
respectively, the “bare” and “renormalized” mas-
ses. However, commutation relations between
canonical observables are unaffected. In the fol-
lowing, we show that examples exist which lead to
the renormalization of commutation relations be-
tween canonical observables with attendant unsus-
pected and interesting physical consequences.

Our basic Hamiltonian is H=Hy+ V(x,y), where
H, describes the two-dimensional motion of a
charged particle interacting with a constant, uni-
form magnetic field in the z direction, i. e.,

Hy=1Q[(p, —5y")*+ o+ " 1. (1)
Here Q=eB/mc is the Larmor frequency, and, for
convenience, we have made the scale transforma-
tion x" =xVmQ, p,=p (mQ)V2, y'=yVmQ, p,=p,

X (mQ)™V2, Now introduce the splitting x " =x + dx,
y'=y+08y, with

x=ix"~p,, x=ix'+p,

y='+p,, Sy=h -p,.
We then have [x,y]=i%, so that if x and y are in-
deed the relevant coordinates, we have a situation
wherein a pair of canonical variables have had
their commutator “renormalized” from zero to

if. (It is obvious in this instance that, if V=0, o«
and 6y oscillate with the frequency £, while ¥ and

(2)

20

y, which are the classical coordinates of the or-
bit center,? are constants of the motion.)

In order to justify the term “relevant” for x and
v, we start with a simple choice for V. Consider
the case where

V', 9" =La(x 2+y?). (3)
The Hamiltonian H can be written as
H=3(Q+ a)[(6x)2+ (0y)2]+ Lo (x2+72)
+a(xdx+y5y), (4)

where there is no ambiguity in the last term be-
cause ¥ and y commute with 6x and 6y. The first
and second terms on the right in Eq. (4) represent
two independent oscillators with frequencies Q+
and @. Their eigenstates |N)|n) [with associated
energies (N +3)(Q+ )+ (n+ 5 )] provide a basis
system in Hilbert space. Suppose now that @ is so
large (with @ fixed) that any finite excitation of the
system necessarily involves N=0. Then the third
term on the right in Eq. (4), looked upon as a per-
turbation, can be disregarded if we neglect effects
of order @/, since its only nonvanishing matrix
elements are between different values of N. Thus
the finite excitations of the system are those cor-
responding to a one-dimensional oscillator with a
Hamiltonian of the form a(p2+q3).

The effect of the high-frequency mode associa-
ted with H, is to “renormalize” the potential
V(x’,y’) from an ordinary interaction in a two-
dimensional configuration space to a one-dimen-
sional Hamiltonian in phase space. That this fea-
ture is quite general becomes more apparent from
the following choice for V:

V(x',y)=3ay "2+ X cospx’. (5)
The Hamiltonian H=H,+V is then
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H=5Q[(5x )%+ (8y)*]+5a(5y)*+ ay 2
+ay8y + A cosB(x + 6x), (6)

where the second term on the right causes a neg-
ligible shift in H,, and the fourth term may also
be neglected as per the discussion above. The
last term may be analyzed by writing

eiB(§+6x) = eiﬂ:’cewm:: elﬂf[eiﬂﬁx _<ei35x>]

+ et (o180 (7

where the expectation value is taken in the state
N=0 so that, in fact, €"**)=¢™ % The term

in square brackets in Eq. (7) obviously has zero
expectation value in the N=0 state; it is also a
bounded operator so that, regarded as a perturba-
tion, it gives corrections of order 1/©, and can
thus also be neglected. The Hamiltonian (6) then
effectively becomes

H=H +5a52+ )\ cospx, . (8)

with A’ =xe™"/4 3 Thus, once again, the high-fre-
quency mode represented by H, plays the catalyt-
ic role of renormalizing the potential V(x’,y’) in-
to a one-dimensional Hamiltonian, in this case,

of the Bloch type. The finite excitations of the
system will therefore have the familiar band
structure spectrum..

Up until now we have restricted ourselves to po-
tential functions which renormalize to Hamiltoni-
ans quadratic in the “momentum,” i. e., standard
type Hamiltonians. It should be apparent from the
above discussion that this limitation is by no
means necessary. Indeed, the way is now open to
consideration of a host of new phenomena corres-
ponding to more general Hamiltonians. Of particu-
lar interest is the case where V(x’,y’) is periodic
in both variables, since an operator of the form
cos (\p/%) generates finite translations and is truly
nonlocal.* It is to be emphasized that just as a
Hamiltonian for a particle with “bare” mass m,
can underlie the dynamics of a particle of renor-
malized mass m, so can a “respectable” Hamil~
tonian, quadratic in the momenta, serve to gener-
ate dynamics associated with Hamiltonians of es-
sentially arbitrary form.

A specific example of the consequences of the ef-
fective nonlocality is the following: Imagine a
slab of nonmagnetic material placed perpendicular
to the magnetic field, i. e., with its surface in the
xy plane. Suppose also, for simplicity, that the
xy dependence of the potential due to the slab is of
the form V=V ,cosBx’. Consider now the back-
scattering of an electron which impinges on the
slab. The incoming electron is assumed to have
sharp momentum in the z direction with an associ-
ated kinetic energy less than 7ZQ; it is also max-

imally focused in the xy plane so that its wave
function, on the basis in which y and 6y are diag-
onal, has the form® exp[ikz ~y2/2% — (6y)%/2K].

The potential V is renormalized to VA’ cosBx in
accordance with the discussion above, so that to
first order in the potential, the backscattered elec-
tron has a wave function of the form

exp [-ikz—(6y)?/2n{exp [-(1/27)(y + 7B)?]
+exp [-(1/2n)(y -7B)?]}.

For sutficiently large B,° this scattered wave will
thus consist of two transversally displaced, max-
imally focused “pencils.”

Other examples of the consequences of the non-
locality will be considered elsewhere. Straightfor-
ward order-of-magnitude considerations indicate
that the lowest temperatures and strongest mag-
netic fields experimentally available will make the
observations of such effects conceivable, though
very difficult. One can, of course, seek to ob-
serve the effects indirectly in naturally occurring
magnetic fields of the requisite strength, for ex-
ample, in neutron stars.’

Finally, we remark that a straightforward exten-
sion of the magnetic-field model suggests a new
type of binding with some possibly far reaching
conceptual consequences. The idea involved is,
briefly, the following: The Hamiltonian H, of Eq.
(1) is replaced by the three-dimensional, two-
particle Hamiltonian®

Ho=ﬁo[(§1+)‘fz)2+ (ﬁz“‘Xfl)z]v (9)

Solution of Hamilton’ s equations for this Hamilto-
nian alone gives for the coordinates,

V,(0) . V,(0)
Q sin Qf - )

V,(0)
Q

F,(t)=171(0)+ (cos Qt -1),

(10)
ra(t)=r5(0)+

sin Qt+V;§0) (cos Qi -1),

with @=2\/m,. Once again, if @ is sufficiently
large, the relevant coordinates are those of Eq.
(10) time averaged over an interval >>1/Q so
that the oscillatory terms are removed. In com-
ponent form, looking at the x component, say,
these satisty [x,, x,]=ik/2) or

B;z -;1),(51—;52)]’=;'—f. | (1)

Thus the relative coordinates become conjugate to
the center-of-mass coordinates.

If, now, we augment the Hamiltonian (9) by a po-
tential function V(I T, - T,!), the implication of Eq.
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(11) and our above discussion is that the renorma-
lized V becomes a function of the momentum con-
jugate to the center of mass, and thus acts as a
free-particle Hamiltonian for the center-of-mass
motion. The choice V(It,—r,|)=3alT, -r,| 2 then
obviously gives the standard nonrelativistic free-
particle Hamiltonian with (center-of-mass) veloci-
ty having the components a(x, —x,), etc.

What we have here, in effect, is a model wherein
the “bare” motion, i.e., that which is seen in ob-
servations over very short time intervals, is that
of a two-particle system with the coupling as de-
scribed, while the “renormalized” motion repre-
sents a single free particle whose Hamiltonian de-
pends on the original bare potential V(| Fz —;ll ).

Since we have discussed the model in nonrela-
tivistic terms, the question of Galilean invariance
arises. This invariance is ensured by the trans-
formation property of the vector potential appear-

ing in H,, namely, K=—A(;2 - Fl).s A Galilean
boost therefore introduces a fourth component to
the potential, which results in an additive term in
H proportional to the boost velocity and to (r, —r).
This, in turn, results in the required shift in the
center-of-mass velocity.®

The speculative extension of this model to quarks
naturally suggests itself. Three basic problems
are involved: (i) .the extension to systems consis-
ting of three or more constituent particles, (ii)the
interaction between such systems, and (iii) the re-
lativistic generalization of the whole picture. Pre-
liminary investigation indicates that all three prob-
lems can be handled. Of particular interest is the
fact, which should be obvious from the above dis-
cussion, that V(Ir’2 -r, ,|) must be asymptotically
linear in the particle separation. Thus this model,
if meaningful, provides a new justification for a
linear confinement potential.
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